Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Jun 18;70(Pt 7):i41. doi: 10.1107/S1600536814013658

Rietveld refinement of the langbeinite-type mixed-metal phosphate K2Ni0.5Zr1.5(PO4)3

Igor V Zatovsky a,*
PMCID: PMC4120588  PMID: 25161511

Abstract

Dipotassium [nickel(II) zirconium(IV)] tris­(orthophosphate) was prepared from a self-flux in the system K2O–P2O5–NiO–K2ZrF6. The title compound belongs to the langbeinite family and is built up from two [MO6] octa­hedra [M = Ni:Zr with mixed occupancy in ratios of 0.21 (4):0.79 (4) and 0.29 (4):0.71 (4), respectively] and [PO4] tetra­hedra inter­linked via vertices into a 3 [M 2(PO4)3] framework. Two independent K+ cations are located in large cavities of the framework, with coordination numbers to O2− anions of nine and twelve. The K, Ni, and Zr sites are located on threefold rotation axes.

Related literature  

For the structure of the mineral langbeinite, see: Zemann & Zemann (1957). For langbeinite-related phosphates based on different pairs of polyvalent metals, see: Wulff et al. (1992) for K2 REZr(PO4)3 (RE = Y, Gd); Orlova et al. (2003) for K2FeZr(PO4)3; Ogorodnyk et al. (2007a ) for K1.96Mn0.57Zr1.43(PO4)3 and K1.93Mn0.53Hf1.47(PO4)3; Ogorodnyk et al. (2007b ) for K2Ni0.5Ti1.5(PO4)3. For the profile function used in the Rietveld refinement, see: Thompson et al. (1987).

Experimental  

Crystal data  

  • K2Ni0.5Zr1.5(PO4)3

  • M r = 529.29

  • Cubic, Inline graphic

  • a = 10.15724 (13) Å

  • V = 1047.92 (2) Å3

  • Z = 4

  • Cu Kα radiation, λ = 1.540598 Å

  • T = 293 K

  • Flat sheet, 25 × 25 mm

Data collection  

  • Shimadzu LabX XRD-6000 diffractometer

  • Specimen mounting: glass container

  • Data collection mode: reflection

  • Scan method: step

  • min = 10.910°, 2θmax = 104.911°, 2θstep = 0.020°

Refinement  

  • R p = 0.100

  • R wp = 0.134

  • R exp = 0.034

  • R Bragg = 0.041

  • R(F) = 0.035

  • χ2 = 15.761

  • 4701 data points

  • 107 parameters

  • 2 restraints

Data collection: PCXRD (Shimadzu, 2006); cell refinement: DICVOL-2004 (Boultif & Louër, 2004); data reduction: FULLPROF (Rodriguez-Carvajal, 2006); program(s) used to solve structure: FULLPROF; program(s) used to refine structure: FULLPROF; molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: PLATON (Spek, 2009) and enCIFer (Allen et al., 2004).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814013658/wm5021sup1.cif

e-70-00i41-sup1.cif (15.2KB, cif)

Rietveld powder data: contains datablock(s) I. DOI: 10.1107/S1600536814013658/wm5021Isup2.rtv

e-70-00i41-Isup2.rtv (360.1KB, rtv)

CCDC reference: 1007892

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

K1—O1i 2.956 (16)
K1—O2ii 3.165 (14)
K1—O4ii 3.325 (14)
K2—O3ii 2.973 (15)
K2—O2iii 3.026 (16)
K2—O4ii 3.127 (15)
K2—O4iii 3.332 (15)
Zr1—O1 2.070 (14)
Zr1—O2iv 2.098 (14)
Zr2—O4 2.036 (12)
Zr2—O3i 2.041 (16)
P1—O3 1.530 (18)
P1—O4 1.523 (13)
P1—O2 1.515 (15)
P1—O1 1.493 (16)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

supplementary crystallographic information

S1. Comment

Phosphates of the langbeinite structure type are considered as favorable for environmentally safe crystalline forms of radioactive waste solidification (Orlova et al., 2003). Langbeinite-type frameworks 3[M2(PO4)3] can be composed of various polyvalent metal pairs, for example, K2Ni0.5Ti1.5(PO4)3 (Ogorodnyk et al., 2007b), K1.96Mn0.57Zr1.43(PO4)3 and K1.93Mn0.53Hf1.47(PO4)3 (Ogorodnyk et al., 2007b), K2FeZr(PO4)3 (Orlova et al., 2003), K2REZr(PO4)3, RE = Y, Gd (Wulff et al., 1992). Herein the powder X-ray refinement of a phosphate, structurally isotypic with the mineral langbenite, K2Mg2(SO4)3 (Zemann & Zemann, 1957), K2Ni0.5Zr1.5(PO4)3, (I), is presented (Fig. 1).

The K, Ni, and Zr sites lie on threefold rotation axes in positions 4 a with the sequence {(Zr,Ni)1—(Zr,Ni)2—K1—K2} where (Zr,Ni)1 and (Zr,Ni)2 are metal sites with a mixed occupancy (Fig. 2). P and O atoms are located in 12 b positions.

The structure of (I) contains two independent [(Zr,Ni)O6] octahedra and one [PO4] tetrahedron which are linked together via common vertices, forming a three-dimensional framework (Fig. 3). The (Zr,Ni)–O bond lengths are 2.070 (14) Å, 2.098 (14) Å and 2.036 (12) Å, 2.041 (16) Å for [(Zr,Ni)1O6] and [(Zr,Ni)2O6], respectively. It should be noted that the occupancy of the metal sites by Ni2+ is slightly different (0.21 (4) for the M1 site and 0.29 (4) for the M2 site) whereas in case of K2Ni0.5Ti1.5(PO4)3 (Ogorodnyk et al., 2007b) Ni2+ ions are almost equally distributed (occupancy of 0.25 for both positions), with ((Ti,Ni)—O bonds ranging from 1.938 (5) to 1.962 (5) Å. The three-dimensional framework 3[(Zr,Ni)2(PO4)3] has large closed cavities where the two independent K+ cations are located. K1 is coordinated by nine O atoms, while K2 is surrounded by twelve O atoms (Fig. 4), with K—O bond lengths ranging from 2.956 (16) to 3.332 (15) Å (Table 1).

S2. Experimental

A well-ground mixture of 11.8 g KPO3 and 1.12 g NiO was placed in a platinum crucible and then was heated up to 1273 K. The temperature was kept constant during one hour and after that it was decreased to 1173 K. 4.25 g of K2ZrF6 were added to the flux under stirring with a platinum stirrer (initial K:P, Zr:P and Zr:Ni ratio equal to 1.3, 0.15, and 1.0, respectively). The crystallization of the melt was performed in the temperature range from 1173 to 913 K at an rate of 25 K/h. Finally, the crucible was cooled down to room temperature. The obtained material of (I) was recovered by washing with hot deionized water. The small crystals of (I) had the form of regular tetrahedra and were of light-yellow colour. The atomic ratio of the elements in (I) was found to be 4:1:3:6 for K/Ni/Zr/P, respectively: The sample was dissolved in 80% sulfuric acid under heating. The amount of the elements was then determined by atomic emission spectroscopy with inductive coupled plasma, AES-ICP, Spectroflame Modula ICP "Spectro".

S3. Refinement

The powder pattern of (I) was indexed in the cubic system using DICVOL-2004 (Boultif & Louër, 2004). The pattern indexing showed that the sample was a single phase. Atomic coordinates of K1.96Mn0.57Zr1.43(PO4)3 (Ogorodnyk et al., 2007a) were used during Rietveld refinement as a starting model. For profile refinement a pseudo-Voigt function with axial divergence asymmetry (Thompson et al., 1987) was used. First, the scaling factor, background, cell parameters etc. were refined during profile matching. Atomic coordinates were then refined during the next step. Atomic coordinates and displacement parameters of corresponding Zr and Ni sites were constrained to be the same. Isotropic displacement parameters of all atoms were appended to the refinement. The occupancies of K, Ni and Zr were refined taking into account that the occupancies of the hexacoordinated metal site should be equal to unity which was done using occupancy constraints. As the occupancy of the K sites was found to be 1, the occupancy factors of K1 and K2 were fixed at 1. The displacement factors of the O atoms were spread over a large range which is meaningless in this case due to the quality of the powder diffraction data. Thus Uiso values for all O atoms were constrained to be equal. As a result, the values of Uiso and their e.s.d.'s have close values. At the final refinement cycles two geometric restraints were applied to the lengths of P—O bonds because their values were unsatisfactory for the model (without restraints, one was ≈ 1.44 Å while another was close to 1.57 Å). Experimental, calculated and difference patterns are shown in Fig. 1.

Figures

Fig. 1.

Fig. 1.

Results of the Rietveld refinement of K2Ni0.5Zr1.5(PO4)3. Experimental (dots), calculated (red curve) and difference (blue curve) data.

Fig. 2.

Fig. 2.

A view of the asymmetric unit of K2Ni0.5Zr1.5(PO4)3. Displacement ellipsoid are drawn at the 50% probability level.

Fig. 3.

Fig. 3.

A projection of the structure of (I) along [111]. PO4 tetrahedra are pink, (Zr,Ni)1O6 octahedra are turquoise, (Zr,Ni)2O6 octahedra are green, K+ cations are shown as yellow spheres.

Fig. 4.

Fig. 4.

The O environment of K1+ and K2+ cations for (I). Displacement ellipsoid are drawn at the 50% probability level.

Crystal data

K2Ni0.5Zr1.5(PO4)3 Dx = 3.355 Mg m3
Mr = 529.29 Cu Kα radiation, λ = 1.540598 Å
Cubic, P213 T = 293 K
Hall symbol: P 2ac 2ab 3 Particle morphology: isometric
a = 10.15724 (13) Å yellow
V = 1047.92 (2) Å3 flat sheet, 25 × 25 mm
Z = 4 Specimen preparation: Prepared at 293 K and 101.3 kPa

Data collection

Shimadzu LabX XRD-6000 diffractometer Data collection mode: reflection
Radiation source: X-ray tube, X-ray Scan method: step
Graphite monochromator min = 10.910°, 2θmax = 104.911°, 2θstep = 0.020°
Specimen mounting: glass container

Refinement

Rp = 0.100 107 parameters
Rwp = 0.134 2 restraints
Rexp = 0.034 9 constraints
RBragg = 0.041 Standard least squares refinement
R(F) = 0.035 (Δ/σ)max = 0.001
χ2 = 15.761 Background function: Linear Interpolation between a set background points with refinable heights
4701 data points Preferred orientation correction: March-Dollase Numeric Multiaxial Function
Profile function: Thompson-Cox-Hastings pseudo-Voigt * Axial divergence asymmetry

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
K1 0.7043 (6) 0.7043 (6) 0.7043 (6) 0.054 (5)*
K2 0.9317 (7) 0.9317 (7) 0.9317 (7) 0.052 (4)*
Zr1 0.1448 (2) 0.1448 (2) 0.1448 (2) 0.007 (2)* 0.79 (4)
Zr2 0.4146 (3) 0.4146 (3) 0.4146 (3) 0.004 (2)* 0.71 (4)
Ni1 0.1448 (2) 0.1448 (2) 0.1448 (2) 0.007 (2)* 0.21 (4)
Ni2 0.4146 (3) 0.4146 (3) 0.4146 (3) 0.004 (2)* 0.29 (4)
P1 0.4581 (6) 0.2296 (8) 0.1286 (7) 0.004 (2)*
O1 0.3180 (14) 0.2335 (14) 0.0844 (15) 0.003 (2)*
O2 0.5417 (12) 0.2950 (14) 0.0238 (14) 0.003 (2)*
O3 0.5025 (12) 0.0869 (16) 0.1471 (13) 0.003 (2)*
O4 0.4729 (14) 0.3039 (12) 0.2580 (10) 0.003 (2)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
? ? ? ? ? ? ?

Geometric parameters (Å, º)

K1—O1i 2.956 (16) Zr1—O1xiii 2.070 (14)
K1—O2ii 3.165 (14) Zr1—O2xiv 2.098 (14)
K1—O4ii 3.325 (14) Zr2—O4 2.036 (12)
K1—O1iii 2.956 (16) Zr2—O3i 2.041 (16)
K1—O2iv 3.165 (14) Zr2—O4xi 2.036 (12)
K1—O4iv 3.325 (14) Zr2—O3iii 2.041 (16)
K1—O1v 2.956 (16) Zr2—O4xiii 2.036 (12)
K1—O2vi 3.165 (14) Zr2—O3v 2.041 (16)
K1—O4vi 3.325 (14) Ni1—O2xii 2.098 (14)
K2—O3ii 2.973 (15) Ni1—O1xiii 2.070 (14)
K2—O2vii 3.026 (16) Ni1—O2xiv 2.098 (14)
K2—O4ii 3.127 (15) Ni1—O1xi 2.070 (14)
K2—O4vii 3.332 (15) Ni1—O1 2.070 (14)
K2—O3iv 2.973 (15) Ni1—O2x 2.098 (14)
K2—O2viii 3.026 (16) Ni2—O4 2.036 (12)
K2—O4iv 3.127 (15) Ni2—O3v 2.041 (16)
K2—O4viii 3.332 (15) Ni2—O3i 2.041 (16)
K2—O3vi 2.973 (15) Ni2—O4xi 2.036 (12)
K2—O2ix 3.026 (16) Ni2—O3iii 2.041 (16)
K2—O4vi 3.127 (15) Ni2—O4xiii 2.036 (12)
K2—O4ix 3.332 (15) P1—O3 1.530 (18)
Zr1—O1 2.070 (14) P1—O4 1.523 (13)
Zr1—O2x 2.098 (14) P1—O2 1.515 (15)
Zr1—O1xi 2.070 (14) P1—O1 1.493 (16)
Zr1—O2xii 2.098 (14)
O1—Zr1—O2x 93.2 (5) O1—Ni1—O2x 93.2 (5)
O1—Zr1—O1xi 90.6 (6) O1—Ni1—O1xi 90.6 (6)
O1—Zr1—O2xii 175.9 (5) O1—Ni1—O2xii 175.9 (5)
O1—Zr1—O1xiii 90.6 (6) O1—Ni1—O1xiii 90.6 (6)
O1—Zr1—O2xiv 87.7 (6) O1—Ni1—O2xiv 87.7 (6)
O1xi—Zr1—O2x 87.7 (6) O1xi—Ni1—O2x 87.7 (6)
O2x—Zr1—O2xii 88.6 (5) O2x—Ni1—O2xii 88.6 (5)
O1xiii—Zr1—O2x 175.9 (5) O1xiii—Ni1—O2x 175.9 (5)
O2x—Zr1—O2xiv 88.6 (5) O2x—Ni1—O2xiv 88.6 (5)
O1xi—Zr1—O2xii 93.2 (5) O4xi—Ni2—O4xiii 87.5 (5)
O1xi—Zr1—O1xiii 90.6 (6) O3v—Ni2—O4xi 170.8 (5)
O1xi—Zr1—O2xiv 175.9 (5) O3iii—Ni2—O4xiii 84.5 (5)
O1xiii—Zr1—O2xii 87.7 (6) O3iii—Ni2—O3v 92.1 (5)
O2xii—Zr1—O2xiv 88.6 (5) O3v—Ni2—O4xiii 96.5 (5)
O1xiii—Zr1—O2xiv 93.2 (5) O3i—Ni2—O3iii 92.1 (5)
O3i—Zr2—O4 96.5 (5) O3i—Ni2—O4 96.5 (5)
O4—Zr2—O4xi 87.5 (5) O4—Ni2—O4xi 87.5 (5)
O3iii—Zr2—O4 170.8 (5) O3iii—Ni2—O4 170.8 (5)
O4—Zr2—O4xiii 87.5 (5) O4—Ni2—O4xiii 87.5 (5)
O3v—Zr2—O4 84.5 (5) O3v—Ni2—O4 84.5 (5)
O3i—Zr2—O4xi 84.5 (5) O3i—Ni2—O4xi 84.5 (5)
O3i—Zr2—O3iii 92.1 (5) O3iii—Ni2—O4xi 96.5 (5)
O3i—Zr2—O4xiii 170.8 (5) O3i—Ni2—O4xiii 170.8 (5)
O3i—Zr2—O3v 92.1 (5) O3i—Ni2—O3v 92.1 (5)
O3iii—Zr2—O4xi 96.5 (5) O3—P1—O4 109.5 (8)
O4xi—Zr2—O4xiii 87.5 (5) O1—P1—O2 108.1 (9)
O3v—Zr2—O4xi 170.8 (5) O1—P1—O3 110.1 (9)
O3iii—Zr2—O4xiii 84.5 (5) O1—P1—O4 109.9 (9)
O3iii—Zr2—O3v 92.1 (5) O2—P1—O3 109.7 (8)
O3v—Zr2—O4xiii 96.5 (5) O2—P1—O4 109.5 (9)
O1xi—Ni1—O2xii 93.2 (5) Zr1—O1—P1 135.2 (10)
O1xi—Ni1—O1xiii 90.6 (6) Ni1—O1—P1 135.2 (10)
O1xi—Ni1—O2xiv 175.9 (5) Zr1xv—O2—P1 168.8 (10)
O1xiii—Ni1—O2xii 87.7 (6) Zr2xvi—O3—P1 153.7 (9)
O2xii—Ni1—O2xiv 88.6 (5) Zr2—O4—P1 156.8 (9)
O1xiii—Ni1—O2xiv 93.2 (5) Ni2—O4—P1 156.8 (9)

Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+3/2, −y+1, z+1/2; (iii) −z+1/2, −x+1, y+1/2; (iv) −y+1, z+1/2, −x+3/2; (v) y+1/2, −z+1/2, −x+1; (vi) z+1/2, −x+3/2, −y+1; (vii) −z+1, x+1/2, −y+3/2; (viii) −y+3/2, −z+1, x+1/2; (ix) x+1/2, −y+3/2, −z+1; (x) x−1/2, −y+1/2, −z; (xi) z, x, y; (xii) −z, x−1/2, −y+1/2; (xiii) y, z, x; (xiv) −y+1/2, −z, x−1/2; (xv) x+1/2, −y+1/2, −z; (xvi) −x+1, y−1/2, −z+1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: WM5021).

References

  1. Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
  2. Boultif, A. & Louër, D. (2004). J. Appl. Cryst. 37, 724–731.
  3. Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Ogorodnyk, I. V., Zatovsky, I. V., Baumer, V. N., Slobodyanik, N. S., Shishkin, O. V. & Vorona, I. P. (2007a). J. Solid State Chem. 180, 2838–2844.
  5. Ogorodnyk, I. V., Zatovsky, I. V. & Slobodyanik, N. S. (2007b). Russ. J. Inorg. Chem. 52, 121–125.
  6. Orlova, A. I., Trubach, I. G., Kurazhkovskaya, V. S., Pertierra, P., Salvado, M. A., Garcia–Granda, S., Khainakov, S. A. & Garcia, J. R. (2003). J. Solid State Chem. 173, 314–318.
  7. Rodriguez-Carvajal, J. (2006). FULLPROF Laboratoire León Brillouin (CEA–CNRS), France.
  8. Shimadzu (2006). PCXRD Shimadzu Corporation, Kyoto, Japan.
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  10. Thompson, P., Cox, D. E. & Hastings, J. B. (1987). J. Appl. Cryst. 20, 79–83.
  11. Wulff, H., Guth, U. & Loescher, B. (1992). Powder Diffr. 7, 103–106.
  12. Zemann, A. & Zemann, J. (1957). Acta Cryst. 10, 409–413.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814013658/wm5021sup1.cif

e-70-00i41-sup1.cif (15.2KB, cif)

Rietveld powder data: contains datablock(s) I. DOI: 10.1107/S1600536814013658/wm5021Isup2.rtv

e-70-00i41-Isup2.rtv (360.1KB, rtv)

CCDC reference: 1007892

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES