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Abstract

Genetics plays a crucial role in human aging with up to 30% of those living to the mid-80s being

determined by genetic variation. Survival to older ages likely entails an even greater genetic

contribution. There is increasing evidence that genes implicated in age-related diseases, such as

cancer and neuronal disease, play a role in affecting human life span. We have selected the 10

most promising late-onset Alzheimer’s disease (LOAD) susceptibility genes identified through

several recent large genome-wide association studies (GWAS). These 10 LOAD genes (APOE,

CLU, PICALM, CR1, BIN1, ABCA7, MS4A6A, CD33, CD2AP, and EPHA1) have been tested for
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association with human aging in our dataset (1385 samples with documented age at death [AAD],

age range: 58–108 years; mean age at death: 80.2) using the most significant single nucleotide

polymorphisms (SNPs) found in the previous studies. Apart from the APOE locus (rs2075650)

which showed compelling evidence of association with risk on human life span (p = 5.27 × 10−4),

none of the other LOAD gene loci demonstrated significant evidence of association. In addition to

examining the known LOAD genes, we carried out analyses using age at death as a quantitative

trait. No genome-wide significant SNPs were discovered. Increasing sample size and statistical

power will be imperative to detect genuine aging-associated variants in the future. In this report,

we also discuss issues relating to the analysis of genome-wide association studies data from

different centers and the bioinformatic approach required to distinguish spurious genome-wide

significant signals from real SNP associations.
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1. Introduction

Human aging is affected by both environmental and genetic factors (Cutler and Mattson,

2006). The heritability of aging is estimated to be 20%–30% to reach mid-80s estimated

from twin studies. Survival to older ages likely involves an even greater genetic contribution

(Herskind et al., 1996; Iachine et al., 1998; McGue et al., 1993). Furthermore, previous

studies have shown that siblings of centenarians have an approximately 4-fold higher chance

of survival to their early 90s compared with siblings of individuals who die at 73 years of

age (Perls et al., 1998). A larger study conducted by the same group has shown an even

higher increase (8–18-fold) in the “risk” of successful aging for siblings of centenarians

compared with random controls (US 1900 birth cohort) (Perls et al., 2002). Evidence

indicates strong familial aggregation toward aging.

The molecular genetics that underlie the human aging process is complex and it is suggested

that successful aging is likely due to numerous genes and environmental factors, each

exerting a small effect (Kenyon, 2010; Lescai et al., 2009; Plomin et al., 2009).

GenAge is a database of genes related to aging (genomics.senescence.info). To date there

are over 250 genes that have been recorded by the GenAge database based on extensive

literature reviews. All of these genes have shown possible association with human aging (de

Magalhães et al., 2009). Most of these genes play critical parts in a variety of biological

pathways in humans, and a significant number of these genes (>100) are related to severe

human diseases. It is generally believed that genes and biomarkers implicated in age-related

diseases such as coronary artery disease (CAD), cerebrovascular disease (CVD), and

Alzheimer’s disease (AD) have a role in successful aging (Panza et al., 2009). Identification

of genuine aging genes may uncover “master genes” that increase our understanding of

many age-related diseases.

There are a number of biological pathways that have been reported important in human

aging, including lipid/cholesterol metabolism [GO:0006629; GO:0008203] (APOE, PON1,
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CETP) (Barzilai et al., 2003; de Chaves and Narayanaswami, 2008; Efrat and Aviram,

2010), immune system processes [GO:0002376] (IL6 and IL10) (Jylhävä and Hurme, 2009),

drug metabolism [KEGG:hsa00982] (GSTT1) (Glatt et al., 2007; Taioli et al., 2001), energy

metabolism in mitochondria (SIRT3) (Polito et al., 2010), and insulin receptor signaling

pathway [GO:0008286] (IGF1R, FOXO3A, KLOTHO) (Arking et al., 2005; Suh et al., 2008;

Willcox et al., 2008).

Insights into human aging have been gained from studying model organisms. Extension of

lifespan can be achieved by manipulating a few genes in laboratory animals, such as flies,

worms, and mice (Kenyon, 2010). The insulin/insulin-like growth factor 1 (IGF-1) signaling

pathway has a well-established role in influencing lifespan within model organisms with

large effects (Clancy et al., 2001; Holzenberger et al., 2003; Kenyon, 2010;). Genetic

inactivation of the daf-2 gene (encoding the IGF-1 receptor homolog in C. elegans)

increases the lifespan of C. elegans by approximately 100% (Sebastiani et al., 2009).

Interestingly, there is emerging evidence that genes such as IGF-1/IGF1R (the orthologs of

which play a major part in aging in animals) can play a role in human life span. Loss of

function mutations in IGF1R have been found to be overrepresented in Ashkenazi Jewish

centenarians compared with controls (Suh et al., 2008).

Aging genes in humans may not only increase the life span but also postpone age-related

diseases. A previous study has indicated a significant decreased prevalence of age related

diseases in offspring of long-lived parents (hypertension by 23%, diabetes mellitus by 50%,

heart attacks by 60%, and no incidences of stroke) compared with several age-matched

control groups (Atzmon et al., 2004).

Characterizing various genetic and environmental factors influencing human life span is

currently one of the world’s major scientific challenges (Jylhava and Hurme, 2010). To date,

genome-wide association studies (GWAS) are one of the most widely used approaches for

identifying common genetic variations associated with human diseases. It has been

suggested that with increasing sample size, promising signals of association between human

traits and genetic variants can be revealed (McCarthy, et al., 2008). Tan and Christensen

have shown that increasing sample age from nonagenarians to centenarians further increases

the power to discover variants associated with human aging (Tan et al., 2010).

The aim of this study was to (1) investigate whether the “known” late-onset Alzheimer’s

disease (LOAD) genes play a role in human aging. This could address the question if these

genes are directly associated with AD or indirectly by allowing successful aging; and (2)

search for candidate genetic risk factors associated with human survival and aging, which

may merit further study.

2. Methods

Through collaborative efforts, we were able to draw on combined sample GWAS datasets

and analyze subject-level genotype data from 1385 subjects (1047 LOAD cases and 338

controls) with documented age at death (AAD) (Table 1). The AAD histogram follows a

normal distribution (Fig. 1), with mean AAD of 80.2 years of age (SD = 8.9 years). All of

these data were subject to subsequent quality control (QC) procedures and analysis. The data

Shi et al. Page 3

Neurobiol Aging. Author manuscript; available in PMC 2014 August 04.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



analysis was performed using PLINK software package (pngu.mgh.harvard. edu/~purcell/

plink) release 1.06 (Purcell et al., 2007).

2.1. Datasets; pooling and QC

We have obtained data from 9 research centers, 3 from the USA and 6 from the UK

(GERAD1 Consortium). The GERAD1 sample comprised up to 3941 AD cases and 7848

controls. A subset of this sample has been used in this study, comprising 3333 cases and

1225 elderly screened controls genotyped at the Sanger Institute on the Illumina (San Diego,

CA, USA) 610-quad chip. These samples were recruited by the Medical Research Council

(MRC) Genetic Resource for AD (Cardiff University; Kings College, London; Cambridge

University; Trinity College, Dublin), the Alzheimer’s Research Trust (ART) Collaboration

(University of Nottingham; University of Manchester; University of Southampton;

University of Bristol; Queen’s University, Belfast; the Oxford Project to Investigate

Memory and Ageing [OPTIMA], Oxford University); Washington University, St. Louis,

MO, USA; MRC PRION Unit, University College London, London; and the South East

Region AD project (LASER-AD), University College, London; Competence Network of

Dementia (CND) and Department of Psychiatry, University of Bonn, Germany; and the

National Institute of Mental Health (NIMH) AD Genetics Initiative. All AD cases met

criteria for either probable (National Institute of Neurology and Communicative Disorders

and Stroke and the Alzheimer’s Disease and Related Disorders Association (now known as

the Alzheimer’s Association) [NINCDS-ADRDA], Diagnostic and Statistical Manual of

Mental Disorders, 4th Ed [DSM-IV]) or definite (Consortium to Establish a registry for

Alzheimer’s Disease [CERAD]) AD. All elderly controls screened for dementia using the

Mini Mental State Examination (MMSE) or Alzheimer’s Disease Assessment Scale-

cognitive subscale (ADAS-cog), were determined to be free from dementia at

neuropathological examination or had a Braak score of 2.5 or lower. All studies used the

Illumina 610 QuadChip, except the Mayo study which used the Illumina HumanHap300

chip (Carrasquillo et al., 2009). The Illumina 610 QuadChip includes all single nucleotide

polymorphisms (SNPs) present on the Illumina 300 chip, and enabled us to merge all the

datasets.

Individual data characterized as “AUT - autopsy” or having AAD information were

extracted from the Mayo dataset (Carrasquillo et al., 2009) using the “--keep” and “--make-

bed” command in PLINK. This was repeated for samples from the Alzheimer’s Research

UK (ARUK) data (which encompassed centers in Nottingham, Bristol, Manchester, Belfast,

Oxford, and London), NIMH, and Washington University (WashU) where possible. All

GWAS datasets were transformed into the same PLINK format (1 and 2 coding in

PLINK.bed.fam and .bim format). Any samples which overlapped between GWAS datasets

were removed. Each sample was checked individually for discrepancies between AAD and

age at sampling (AAS). Samples with age at sampling greater than AAD were removed from

further analysis. Data merging was performed using “--bmerge” in PLINK in “Consensus

call” mode.

QC procedures were undertaken for the merged data to account for population stratification

and differences in the Illumina chip versions. Data merging and QC procedures are
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illustrated in Fig. 2. The merged data were separated into 2 GWAS datasets (“A” and “B”)

using the “--geno 0.05” command in PLINK.

For both of the GWAS datasets, the following QC procedures were carried out in order.

1. SNPs with genotyping rate less than 0.95 (--geno 0.05) were excluded from further

analysis.

2. SNPs with a minor allele frequency (MAF) less than 0.01 (--maf 0.01) were

excluded from further analysis.

3. A list of SNPs with MAF between 0.01 and 0.05 was generated (--freq). Within this

short list, SNPs with a genotyping rate less than 0.99 (--geno 0.01) were excluded

(--exclude) from further analysis.

4. SNPs with a Hardy-Weinberg Equilibrium p value less than 0.001 (--hwe 0.001 --

hwe-all) were excluded from further analysis, irrespective of status (AD cases or

controls).

5. Individuals with a genotyping rate less than 0.95 (--mind 0.05) were excluded from

further analysis.

6. Using the QC’d GWAS dataset “A”, a linkage disequilibrium (LD) pruned subset

of 57,160 SNPs common to all arrays and HapMap data (--indep-pairwise) was

generated. No 2 SNPs within this list had an LD r2 value greater than 0.2 across

sliding windows (window size of 1500 SNPs and 150 SNPs to shift the window).

This subset of SNPs was used by EIGENSTRAT (Price et al., 2006) for the

following calculations:

A. to detect genetic outliers defined by any individual whose ancestry is at

least 6 SD from the mean on 1 of the top 10 axes of variation;

B. to calculate principal components (PCs),

C. To generate a population stratification plot HapMap data were used as the

reference dataset—we used a filtered version of HapMap data (European

[CEU], Asian [CHB/JPT], Yoruba [YRI]) release 23 in PLINK binary

format (.bed.bim and .fam) from the PLINK web site (Purcell et al., 2007).

7. EIGENSTRAT was used to calculate the genomic control inflation factor (λ). This

was performed iteratively using the GWAS dataset “A” with AAD including

between 0 to 10 PCs. Each calculation generated a single λ value, thus a total of 11

λ values were generated. The number of PCs to be included as covariates was

determined when the lowest λ value was acquired after comparison of all 11 λ

values.

8. Extraction of PCs from EIGENSTRAT results.

After the above QC, dataset “A” consisted of SNPs common to both Illumina 300 and

Illumina 610 chips, whereas da-taset “B” consisted of SNPs only on the Illumina 610 chip.

The 2 GWAS datasets were merged using the same methods (--bmerge) as described above

(shown as merged data 2 in Fig. 2).
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We sought to find SNPs which showed bias in allele frequency due to interchip and

intercohort differences, as they can cause an inflation of the type I error rate. A box and

whisker plot was drawn using StatsDirect (version 2.7.8) (Fig. 3). Only 2 centers (Mayo and

NIMH) showed significant differences in AAD range compared with the rest of the data.

Therefore, we carried out 2 logistic regression tests using the WashU data as a control and

the Mayo and NIMH data as cases. The test incorporated the top 6 PC (described

previously) and AAD as covariates. For each comparison, a Q-Q plot of χ2 of observed

versus expected p values was generated using “estlambda” function in GenABEL (version

1.6.4) (Fig. 4) (Aulchenko et al., 2007).

2.2. Quantitative trait analysis

Ten known LOAD susceptibility genes (APOE, CLU, PICALM, CR1, BIN1, ABCA7,

MS4A6A, CD33, CD2AP, and EPHA1) were tested for association with human aging using

the most significant SNPs found in the previous GWAS (Table 2). The best proxy (with the

highest LD; using HapMap data) was used to inform the effect of SNPs if they were not

present in our data.

Quantitative trait (QT) analysis of all SNPs was performed using multivariable linear

regression (--linear) adjusted for AD status, gender, and the top 6 PC. AAD was used as a

continuous trait in this analysis thus giving maximum statistical power. Manhattan plots

were drawn using Haploview (version 4.1) to visualize GWAS results (Fig. 5) (Barrett et al.,

2005). A histogram of AAD from all individuals that passed QC was drawn using

StatsDirect software (version 2.7.8) (Fig. 1).

2.3. Power calculation

Power calculations were undertaken using QUANTO version 1.2.4. The required sample

size was estimated using an additive model created by the software.

2.4. MAF analysis of SNPs responsible for LOAD

The full range of AAD (58–108 years) was separated into 5 AAD categories, the boundaries

of which were selected to ensure each group contains an approximately equal number of

samples. This ensures SNP minor allele frequencies across each of the age categories are

directly comparable. This was carried out using “Grouping = > Categorize” function in

StatsDirect. For each of the LOAD susceptibility gene loci, the allele frequency was

calculated and stratified by AAD category. The effect of the minor allele of each SNP

involved in life span was as illustrated (Fig. 6).

The separation into 5 AAD categories were used only to facilitate visualization of MAF of

candidate SNPs in the different age ranges, and was not used to generate p values.

3. Results

3.1. Dataset composition and QC

The combined GWAS dataset has a sample size 1385 before QC. After QC, 4 participants

were removed for low genotyping rate (--mind 0.05) from the Mayo GWAS (Carrasquillo et
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al., 2010). A single sample from Bristol was removed due to discrepancies between AAD

and age at onset (AAO). An additional 16 samples were removed as genetic outliers by PCs

analysis using EIGENSTRAT. This included 14 samples from the Mayo data, 1 from

NIMH, and 1 from Belfast. The mean AAD in the pooled dataset (post QC) was greater than

80 years of age (Table 1).

The multidimensional scaling (MDS) plot showed 3 distinct clusters. As expected each

cluster represents different population ancestry—CEU, middle right; CHB/JPT, bottom left;

and YRI, top left (Fig. 7). UK, USA, and HapMap_ CEU samples formed a single cluster.

On closer inspection, slight deviation between UK and USA samples exists and this was

accounted for by including PCs as covariates.

Genomic control inflation factor (λ) was calculated using EIGENSTRAT by iteratively

including 0 to 10 PC (Price et al., 2006). We found that including 6 PC generated the lowest

genomic control inflation factor (λ = 1.003).

It was noted that there is a difference in AAD between LOAD cases (mean AAD = 81.63

years) and controls (mean AAD = 76.09 years), and similarly between male (mean AAD =

77.93 years) and female (mean AAD = 82.17 years). Anaysis of variance (ANOVA) tests of

the variance of AAD between the groups (LOAD cases vs. controls and male vs. female)

were found to be significant (p < 0.001). This confirmed that AD status and gender were

appropriate covariates.

After stringent QC, there were 1364 samples (1031 LOAD cases and 333 controls, 608 male

and 756 female) and 528,430 SNPs remaining for further analysis.

3.2. Analysis and results

Assessment of the 10 LOAD susceptibility genes yielded compelling evidence of association

of APOE locus (rs2075650) with human aging (uncorrected p = 5.27 × 10−4), which

withstood multiple testing after Bonferroni correction for 10 independent tests (Table 3A).

In addition to examining the association of these 10 LOAD susceptibility genes with aging,

we performed a genome-wide analysis which includes all SNPs on the Illumina platforms

after QC. The genome-wide significance threshold was calculated (p = 1.04 × 10−7) using

Bonferroni correction for the number of independent tests (n = 483,066), which was

estimated using the method we have previously described (Shi et al., 2010).

No variants appear to be associated with aging with a genome-wide level of significance (p

< 1.04 × 10−7). There were 41 SNPs with p value ≤ 5 × 10−5. These SNPs span the genome,

representing 35 distinct signals (pairwise r2 ≤ 0.8) across 13 chromosomes. Twenty-four of

them are located within 20 kilobase (kb) of known human genes with a wide range of

functions. SNPs with p values < 5 × 10−5 are shown in Table 3B. These signals are at best

tentative but may merit study in larger sample sets.

Without conducting logistic regression comparison, initial analysis of the association study

suggested 2 genome-wide significant SNPs—rs4110518 (p = 5.96 × 10−9) and rs2944476 (p

= 2.19 × 10−8). Comparing SNPs between NIMH and WashU data showed no significant
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difference in allele frequency, whereas 5 SNPs showed significant difference in allele

frequency comparing Mayo data with WashU data after taking into account population

stratification (i.e., PCs) and AAD. These 5 SNPs are rs4110518, rs2944476, rs10460926,

rs10953303, and rs7172278 (Figs. 4 and 5).

It is perhaps unsurprising that the 2 SNPs which showed genome-wide level of significance

overlap with the 5 SNPs that showed significant bias between Mayo and WashU data, as the

AAD of the Mayo data are significantly younger (as previously described). It is not possible

to correct for center, as the spread of the AAD is considered crucial in detecting genuine

aging-associated variants. The difference in allele frequency due to samples with young

AAD in Mayo and old AAD in WashU may well represent genuine associations. Including

center as a covariate would abolish our ability to detect this effect.

The Manhattan plot shown in Fig. 5 represented a scenario before removal of these 5 false

positive SNPs.

3.3. Power calculation

Power calculations indicate that a sample size approximately between 3000 and 15,000 is

required in order to have 80% power to detect an association with a MAF ranging above

0.05. Approximately 4000 to 19,000 samples will be needed if 95% power is required.

This estimation should be interpreted with caution as it is based on a number of assumptions

(such as effect size and mode of inheritance), and gene-environment interaction (G×E) has

not been taken into account.

4. Discussion

It is known that advancing age is one of the biggest risk factors for LOAD. The prevalence

of LOAD has been estimated ranging from 0.6% in persons aged 65 to 69 years to 22.2% in

persons aged 90 and older (Lobo et al., 2000). Because age is one of the biggest risk factors

for LOAD, it is important to understand whether genes involved in LOAD play a role in

successful aging.

In this study, we have performed an association test of the top GWAS LOAD genes (APOE,

CLU, PICALM, CR1, BIN1, ABCA7, MS4A6A, CD33, CD2AP, and EPHA1) with human

aging using the most significant SNPs found in previous studies. Apart from the well-

documented association between APOE and LOAD, the association with the other 9 genes

was identified recently through large GWAS, each with a sample size of over 10,000

(Harold et al., 2009; Hollingworth et al., 2011; Lambert et al., 2009; Naj et al., 2011).

The results of our analysis provided compelling evidence of association between APOE

locus (rs2075650) and human aging (p = 5.27 × 10−4) (Table 3A) with risk effect based on

the analysis of 1364 samples using AAD as a continuous trait. The minor allele frequency

plot (Fig. 6) shows that the MAF of this SNP significantly decreases in the old AAD

category (MAF = 0.21; AAD > 89 years of age; n = 228) compared with the other 4 younger

AAD categories (MAF = 0.27; AAD ≤ 89; n = 1136). Individuals homozygous for the minor

allele “G” showed significantly lowered AAD (p = 0.002) compared with individuals
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homozygous for the major allele “A”. No effect was seen for the individuals carrying “AG”

genotype (p = 0.891).

APOE has been extensively examined with respect to human aging due to its role in AD and

vascular disease. A longitudinal study following subjects for 18 years using 1094 individuals

aged 75 and older showed that the risk of mortality was affected by the APOE gene. Risk

was increased by 22% in those carrying the APOE ε4 allele, decreased by 28% in those

carrying the APOE ε2 allele, and individuals carrying APOE ε3 allele showed no significant

difference in risk (Lewis and Brunner, 2004; Rosvall et al., 2009). The association between

the APOE ε2 variant and aging has been investigated in Finish centenarians, where a trend

of association was observed—9%, 21%, and 25% in people aged 100 to 101, 102 to 103,

and 104 years and older, respectively (Frisoni et al., 2001). SNP rs2075650 is known to be

in tight LD with the APOE ε4 allele (Yu et al., 2007). The direction of the effect of this SNP

in our study is compatible with previous findings for the APOE ε4 allele (Christensen et al.,

2006). Apolipoprotein E (APOE) is a major transporter of cholesterol and has been

implicated in multiple age-related diseases including LOAD and vascular diseases (Panza et

al., 2007).

We observed no evidence of association with the remaining LOAD genes implying that

these genes are genuine LOAD genes with no detectable effects on human aging. However

we cannot rule out the possibility that these genes may have a weak effect on aging that our

dataset was not sufficiently large enough to detect.

We subsequently analyzed all SNPs on the Illumina chips after stringent QC procedures.

The mean AAD for the samples analyzed was older than 80 years. This minimized the

possibility of early death (prior to age 40 years) as a result of underlying nongenetic factors

or highly penetrant genetic factors affecting our analysis (McGue et al., 1993).

In an assessment of all SNPs on the chip, none were found to approach genome-wide

significance as calculated for this study (p < 1.04 × 10−7). The inability to detect any novel

aging associated variants is likely the result of a lack of power. The calculation of power

using QUANTO (version 1.2.4) has suggested a much larger sample size is required in order

to detect an association with common variants. With rare exceptions, common variants are

known to exert only small to moderate effects, according to previous studies of many

complex disorders and traits (Bodmer and Bonilla, 2008). Presenting our data on genes that

lie between 10−5 and 10−8, while not making genome wide significance, may enable groups

to identify genes for future study especially if there is overlap with other studies.

Additionally these data could be used as part of a larger meta-analysis.

GWAS provide a method of identifying common genetic variations associated with disease

or phenotype in an unbiased manner. However, it comes with a price of multiple testing

given that many thousands of SNPs are tested simultaneously, and a very stringent

significance threshold (p < 5 × 10−8) is often used to infer a genome-wide significant

association and to avoid a large number of false positives (Bertram and Tanzi, 2008).

We have conducted an analysis using AAD as a quantitative trait; this is believed to provide

more power compared with the traditional case/control approach. The advantage of

Shi et al. Page 9

Neurobiol Aging. Author manuscript; available in PMC 2014 August 04.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



statistical power gained compared with the case/control analysis is dependent upon the

design of the study. For example, dichotomizing the AAD distribution into cases and

controls would give less power than comparing the low and high extremes of the

quantitative trait (Plomin et al., 2009). Increasing statistical power by including more

samples is imperative to elucidate genuine genetic associations in our study. Including more

samples with the extreme phenotypes (e.g., exceptional longevity—nonagenarian and

centenarians) would give more power than addition of samples of average AAD (Plomin et

al., 2009; Tan et al., 2010).

Domestic and international collaborations are often required to raise sufficiently large

sample sizes in order to have adequate power to detect genuine disease associations. This is

especially true for SNPs with a small effect size. However, such combined analysis can in

some instances generate new problems. For instance, interchip and interco-hort differences

could create spurious genome-wide significant associations. More importantly, these SNPs

may pass all conventional QC filtering (e.g., Hardy-Weinberg equilibrium p value, minor

allele frequency, and genotyping rate threshold) increasing the likelihood of generating false

positive results, which are not corrected for by principal component analysis.

As shown in Figs. 4 and 5, ignoring comparison of data from different centers (Mayo and

WashU) would give spurious genome-wide significant associations (rs4110518, p = 5.96 ×

10−9 and rs2944476, p = 2.19 × 10−8). Therefore, an extra caution should be made when

performing GWAS analysis which utilizes data from multiple centers.

Including center as a covariate has been widely used to solve such problems raised by

centers and this is largely effective. However this is not always possible, especially in

circumstances where the number of cases and controls are significantly different between

centers. In our study, correcting for center was not possible due to the AAD bias in centers

sampled. The overall spread of AAD is crucial to our analysis and the difference in allele

frequency between individuals with relatively young AAD (Mayo) and relatively old

(WashU) may well represent genuine associations.

Furthermore, we have employed samples from both LOAD cases and controls in this study

which is intended to achieve maximum power to detect novel aging-associated variants.

Ideally this test is better performed using only control samples, as the AD group is likely to

be affected by different environmental and genetic factors in addition to factors associated

with aging. We have addressed this by correcting for AD status. However, it is possible that

APOE association with age in the AD group could be due to its involvement in duration and

severity of AD (Dal Forno et al., 2002). We do not however have clinical pathological

features for these samples, and therefore cannot explore these endophenotypes.

Considering that “pure controls” where individuals die without experiencing any age-related

diseases probably do not exist, we considered it valid to undertake an analysis using both

sets. However, due to the large number of AD cases that have been used relative to the

number of controls (about three-quarters of the total), any association with human aging

implicated in the study may be biased and specific to the AD population. We acknowledge

this as a limitation. However, using just the control population would result in insufficient
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numbers for a valid analysis. Follow-up studies using only control samples will be required

to confirm these associations.
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Fig. 1.
Histogram plot representing the spread of age at death (AAD) of samples included in this

study. The x- and y-axis represent AAD in years and number of individuals, respectively.

This graph follows a normal distribution, with mean AAD = 80.2 years (n = 1385).

Shi et al. Page 17

Neurobiol Aging. Author manuscript; available in PMC 2014 August 04.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 2.
Genome-wide association studies (GWAS) data quality control (QC) and data merging

strategy. Flow diagram summarizing the processes undertaken for data preparation and QC

prior to subsequent analyses. Each GWAS dataset is represented by numbered squares (top

right corner). The data were then merged together under PLINK “Consensus call” mode

(Merged Data 1). These data were split into 2 groups (Dataset “A” and “B”) according to

genotyping rate (single nucleotide polymorphisms [SNPs] which had > 95% genotyping rate

for all samples [both chips] and the rest of the SNPs with genotyping rate > 95% for samples

typed on the Illumina 610 chip). Both of these groups were subject to QC separately (see

Quality Control panel at top left corner). The 2 datasets were then merged (Merged Data 2).

Dataset “A” (which contained SNPs common to both platforms) was linkage disequilibrium

(LD) pruned and merged with HapMap data (European [CEU], Asian [CHB/JPT], and

Yoruba [YRI]) to form “Merged Data 3”. This was then used in a principal components
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analysis which revealed 16 individuals as genetic outliers. These were removed from

“Merged Data 2”. Abbreviation: GR, genotyping rate.
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Fig. 3.
Box and whisker plot, showing the age at death (AAD) distribution for each center. The

central box represents the distance between the first and third quartiles with the median

marked with a diamond. The circles indicate that an individual’s AAD is outside 2 times the

interquartile range. The dashed rectangle highlights that the majority of the data have a

similar range of AAD with the exception of the National Institute of Mental Health (NIMH)

and Mayo data.
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Fig. 4.
Q-Q plot of χ2-χ2 p values to determine bias in single nucleotide polymorphism (SNP)

frequencies observed in Mayo (a), and National Institute of Mental Health (NIMH) (b)

versus Washington University (WashU) data. (a) Logistic regression (Mayo versus WashU

samples) adjusted for the top 6 principal components (PCs) and age at death (AAD). Five

SNPs (circled) showed significant bias in the Mayo compared with WashU data taking into

account population stratification and AAD. (b) Logistic regression comparing NIMH data

versus WashU data adjusted for the top 6 PCs and AAD. No bias was observed in NIMH

compared with WashU. Solid line represents expected under null hypothesis, i.e., no

difference (or no association); open circles represent data points; dashed line the fitted slope

of all data points. The diagram was drawn using GenABEL in R (version 2.12.1).
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Fig. 5.
Manhattan plot of genome-wide association studies (GWAS) in human aging. Chromosomal

position is shown on the x-axis versus -log10 GWAS p value on the y-axis. The threshold for

genome-wide significance (p = 1.04 × 10−7) and p value threshold (p = 5 × 10−5) are

indicated by the horizontal lines. Single nucleotide polymorphisms (SNPs) between these

thresholds show “suggestive” associations. The 5 SNPs (highlighted by circles) exhibit

significant differences in allele frequencies between samples from Mayo and Washington

University (WashU) (see Fig. 4). Two of the 5 SNPs (rs4110518 and rs2944476) showed

spurious genome-wide significant signals as a result of this bias.
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Fig. 6.
Minor allele frequency (MAF) analysis for 10 late-onset Alzheimer’s disease (LOAD) genes

with respect to aging. The figure shows the relationship between single nucleotide

polymorphism (SNP) MAFs and human aging, where age at death (AAD) is separated into 5

categories. Each AAD category contains roughly equal amounts of samples to avoid bias in

sample sizes. All 10 known LOAD genes are shown together with the APOE locus

highlighted in bold (all other loci in gray). The APOE locus (rs2075650) showed significant

association with aging, with MAF = 0.27, AAD ≤ 89 years of age (n = 1136), and MAF =

0.21, AAD > 89 years of age (n = 228). None of the other gene loci were significantly

associated with aging.
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Fig. 7.
Multidimensional scaling (MDS) plot depicting the principal component analysis of Merged

Data 3. Population stratification was tested using HapMap data #23 as reference. UK and

USA and HapMap CEU samples formed a single cluster (shown inside the dashed

rectangle). Up-pointing triangles represent Asian (CHB/JPT) population (bottom left), and

right-pointing triangles represent Yoruba (YRI) population (top left). One HapMap

individual from the Asian samples appears to have dual ethnicity. The diagram on the right

shows a magnified section including UK, USA, and HapMap CEU samples.
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Table 2

SNP selection

SNP used in our study Gene SNP cited in literature LD (r2) Literature

rs2075650 APOE rs2075650 — Harold et al. (2009)

rs11136000 CLU rs11136000 — Harold et al. (2009)

rs3851179 PICALM rs3851179 — Harold et al. (2009)

rs3818361 CR1 rs3818361 — Hollingworth et al. (2011)

rs744373 BIN1 rs744373 — Hollingworth et al. (2011)

rs3764650 ABCA7 rs3764650 — Hollingworth et al. (2011)

rs610932 MS4A6A rs610932 — Hollingworth et al. (2011)

rs3865444 CD33 rs3865444 — Hollingworth et al. (2011)

rs1485780 CD2AP rs9349407 0.913 Hollingworth et al. (2011)

rs11767557 EPHA1 rs11767557 — Hollingworth et al. (2011)

The most significant single nucleotide polymorphisms (SNPs) found in previous late-onset Alzheimer’s disease (LOAD) genome-wide association
studies (GWAS) were selected for testing for their effects on human life span. The SNPs, associated genes, and the GWAS are as indicated. “-”
indicates the original index SNP was used rather than a proxy.

Key: LD, linkage disequilibrium.
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