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Abstract

Alternative splicing is an important gene regulatory mechanism that dramatically increases the

complexity of the proteome. However, how alternative splicing is regulated and how transcription

and splicing are coordinated are still poorly understood, and functions of transcript isoforms have

been studied only in a few limited cases. Nowadays, RNA-seq technology provides an exceptional

opportunity to study alternative splicing on genome-wide scales and in an unbiased manner. With

the rapid accumulation of data in public repositories, new challenges arise from the urgent need to

effectively integrate many different RNA-seq datasets for study alterative splicing. This paper

discusses a set of advanced computational methods that can integrate and analyze many RNA-seq

datasets to systematically identify splicing modules, unravel the coupling of transcription and

splicing, and predict the functions of splicing isoforms on a genome-wide scale.

1. Introduction

Alternative splicing is an important means of generating proteomic diversity. Recent

estimates indicate that nearly 90% of human multi-exon genes are alternatively spliced [1].

The mechanisms regulating alternative splicing are still poorly understood, and their

complexity attributes to the combinatorial regulation of many factors: e.g., splicing factors,

cis-regulatory elements, and RNA secondary structures [2,3]. RNA-seq technology yields

genome-wide, high-throughput expression profiles at many different levels of organization,

and has opened up great opportunities for elucidating complex cellular activities at high

resolution. From each RNA-seq dataset, we can derive not only the expression levels of

genes, but also those of exons and transcripts (i.e., splicing isoforms). With such data, we

can build three types of networks: (1) the exon co-splicing network, describing the

relationships of how exons are co-spliced; (2) the transcript or isoform co-expression

network; and (3) the gene co-expression network. Given many RNA-seq datasets, a

collection of these three types of networks can be constructed to provide detailed

information for deciphering alternative splicing at the exon, isoform, and gene levels.
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However, the expression levels of exons, isoforms, and genes cannot be directly compared

across RNA-seq studies with different platforms or from different labs, because systematic

variations among datasets are often beyond the capability of statistical normalization.

However, the correlations of expression profiles (or exon inclusion rate profiles) in different

datasets are unitless and therefore comparable. As co-expression and co-splicing networks

are constructed from such correlations, they are not affected by inter-dataset variations.

Thus, modeling RNA-seq datasets as co-expression (co-splicing) networks provides an

effective way to integrate a large number of RNA-seq experiments conducted in different

laboratories, at different times, and using different technology platforms.

This paper reviews three studies with different biological viewpoints, which investigate

genome-wide alternative splicing using state-of-the-art methods to integrate and analyze

multiple networks derived from RNA-seq datasets. We begin by exploring exon co-splicing

networks, to study how regulation is coordinated at the splicing level [4]. The next work

discovers patterns in a series of two-layered coupled networks, in order to understand how

transcriptional and splicing machinery are coupled and how they coordinate to regulate gene

expression [5]. Finally, we perform the first systematic prediction of splicing isoform

functions by integrating a set of isoform co-expression networks [6]. In each of the three

studies, we propose an advanced computational method to model, integrate and analyze

multiple networks at different genomic levels. We also provide either computational

validation or supporting results from the literature to confirm the discovered patterns or

novel function predictions.

2. Reconstruct splicing regulatory modules

A central concept in transcription regulation is the transcription module, defined as a set of

genes that are co-regulated by the same transcription factor(s). Analogously, such

coordinated regulation also occurs at the splicing level [7,8]. However, the study of

coordinated splicing regulation has thus far been limited to individual cases [7,9,10]. In this

paper, we define a splicing module as a set of exons that are regulated by the same splicing

factors. The exons in a splicing module can belong to different genes, but they exhibit

correlated splicing patterns (in terms of being included or excluded in their respective

transcripts) across different conditions, thus forming an exon co-splicing cluster.

Given an RNA-seq dataset containing a set of samples, we calculate the inclusion rate of

each exon1 in every sample which is defined as the ratio between its expression level and

that of the host gene. Using these rates, we can construct a weighted co-splicing network,

where the nodes represent exons and the edge weights are the correlations between their

inclusion rates, measured across all samples in the dataset. Furthermore, given a series of

RNA-seq datasets, we can derive a series of co-splicing networks. The comparative analysis

of these networks is an effective way to integrate a large number of RNA-seq experiments

performed with different platforms and in different laboratories.

1Throughout this review, we only consider cassette exons, which are common in alternative splicing events. Henceforth, the term
“exon” always means “cassette exon”.
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A heavy subgraph in a weighted co-splicing network represents a set of exons that are

strongly correlated in their inclusion rate profiles; i.e., they are co-spliced. Exons that

frequently form a heavy subgraph in multiple datasets are likely to be regulated by the same

splicing factors, and thus form a splicing module. We call such patterns frequent co-splicing

clusters (FSC). Frequent clusters are much less likely to be spurious patterns that heavy

subgraphs identified in only a single network, and thus are more likely to represent real

splicing modules. The FSC can be restated by the graph algorithm jargon as the “frequent

dense vertexset (FDVS)” [11] or “recurrent heavy subgraph (RHS)” [12]. The only

difference between the FDVS and RHS patterns is that they are defined based on the

multiple unweighted networks and weighted networks, respectively. In [11], Yan et al.

showed the advantage of identifying frequent clusters across multiple networks compared to

identifying clusters in single networks or the summary network which is averaged across all

individual networks. In [12], Li et al. further demonstrated the power and importance of

weighted network analysis, compared with unweighted network pattern mining. In this

work, we therefore adopted the tensor-based computational framework for effectively

identifying FSCs from 38 weighted exon co-splicing networks derived from human RNA-

seq datasets [4]. The method produced an atlas of FSCs, which we then validated against

biological knowledge bases.

2.1. Problem Formulation

Our goal is to identify co-spliced exon clusters that frequently occur across multiple

weighted co-splicing networks. A co-splicing network of n nodes (exons) can be represented

as an n×n adjacency matrix A, where element aij is the weight of the edge between nodes i

and j. This weight is the correlation between the two exons’ inclusion rate profiles. Given m

co-splicing networks with the same n nodes but different edge weights, we can represent the

whole system as a 3rd-order tensor (or 3-dimensional array) A=(aijk)n×n×m. An element aijk

of the tensor is the weight of the edge between nodes i and j in the kth network (Figure 1). A

co-splicing cluster appears as a heavy subgraph in the co-splicing network, which in turn

corresponds to a heavy region in the adjacency matrix. A frequent co-splicing cluster is one

that appears in multiple datasets, and appears as a heavy subvolume of the tensor (Figure 1).

Thus, the problem of identifying frequent co-splicing clusters can intuitively be formulated

as the problem of identifying heavy subtensors in a tensor.

Representing a set of networks as a 3rd-order tensor brings the following advantages: (1) the

tensor model provides access to a wealth of numerical methods, in particular continuous

optimization methods. In fact, reformulating discrete problems as continuous optimization

problems is a long-standing tradition in graph theory. There are many successful examples,

such as using a Hopfield neural network for the traveling salesman problem [13] and

applying the Motzkin-Straus theorem to solve the clique-finding problem [14]. (2)

Advanced continuous optimization techniques require very few ad hoc parameters, in

contrast with heuristic graph algorithms. Both unweighted and weighted networks can be

translated into tensor models treatable by the same tensor-based computational method. On

the other hand, most existing graph methods applicable to unweighted networks cannot be

easily adapted to weighted networks. (3) By transforming a graph pattern mining problem
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into a continuous optimization problem, it becomes easy to incorporate constraints

representing prior knowledge.

A frequent co-splicing cluster in the tensor A can be defined by two membership vectors: (i)

an exon membership vector x=(x1,…,xn)T, where xi=1 if exon i belongs to the cluster and

xi=0 otherwise; and (ii) a network membership vector y=(y1,…,ym)T, where yj=1 if the exons

of the cluster are heavily interconnected in network j and yj=0 otherwise. The summed

weight of all edges in the FSC is

(1)

Note that only the weights of edges aijk with xi=xj=yk=1 are counted in HA. Thus, HA (x, y)

measures the “heaviness” of the FSC defined by x and y. The problem of discovering a

frequent co-splicing cluster can be formulated as a discrete combinatorial optimization

problem: among all patterns of fixed size (K1 member exons and K2 member networks), find

the heaviest. This is also an integer programming problem: find the binary membership

vectors x and y that jointly maximize HA under the constraints  and

.

Although this discrete formulation is very intuitive, it has several major drawbacks to this

discrete formulation. The first is parameter dependence, meaning that it is hard for users to

suggest reasonable values for the size parameters K1 and K2. The second is high

computational complexity; the optimization task is NP-hard, and therefore not solvable in a

reasonable time even for small datasets. Therefore, the discrete formulation is infeasible for

an analysis of many massive networks. However, we can solve a continuous optimization

problem with the same objective by relaxing the integer constraints to continuous

constraints. That is, we look for non-negative real vectors x and y that jointly maximize HA.

This problem is formally expressed as follows:

(2)

where  is a non-negative real space, and f(x) and g(y) are vector norms. After solving Eq.

(2), users can easily identify the top-ranking networks (after sorting the tensor by y) and top-

ranking exons (after sorting each network by x) that contribute to the objective function.

After rearranging the networks in this manner, the FSC with the largest heaviness occupies a

corner of the 3D tensor. We can then mask all edges in the heaviest FSC with zeros and

optimize Eq. (2) again to search for the next FSC.

The choice of vector norms in Eq. (2) has a significant impact on the outcome of the

optimization. A vector norm defined as , p>0, is also called an “Lp-

vector norm”. In general, the closer p is to zero, the sparser the solution favored by the Lp-
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norm. That is, the algorithm tends to find membership vectors where fewer components are

significantly different from zero [15]. As p increases, the solutions favored by the Lp-norm

grow smoother; in the extreme case p→∞, the elements of the optimized vector are

approximately equal to each other. Our ideal membership vector is a compromise solution

having a small number of exons (“sparse”) whose values are close to each other in

magnitude (“smooth”), while the rest of exons are close to zero. Our past research [12] has

shown that this goal can be achieved using the mixed norm L0,∞(x) = α‖x‖0 + (1 − α) ‖x‖∞

(0 < α < 1) for f(x). The norm L0 favors sparsity while the norm L∞ encourages smoothness

in the non-zero components of x. In practice, we approximate L0,∞(x) with another mixed

norm: Lp,2(x) = α‖x‖p + (1 − α) ‖x‖2 (0 < α < 1), where p<1. Our criterion for the network

membership vector is that the exon cluster should appear in as many networks as possible,

so the vector components should be non-zero and close to each other. This is the typical

outcome of optimization using the L∞ norm. In practice, we approximate L∞ with Lq(y),

where q>1 for g(y). Therefore, the vector norms f(x) and g(y) are fully specified as follows,

(3)

We performed simulations to determine suitable values for the parameters p, α, and q,

applying our tensor method to collections of random weighted networks. We randomly

placed FSCs of varying size, recurrence, and heaviness in a subset of the random networks.

We then tried different combinations of p, α, and q, and adopted the combination (p=0.8,

α=0.2, and q=10) that led to the discovery of the most FSCs.

2.2. Method

Since the vector norm f(x) is non-convex, our tensor method requires an optimization

protocol that can deal with non-convex constraints. The quality of the optimum discovered

for a non-convex problem depends heavily on the numerical procedure. Standard numerical

techniques such as gradient descent converge to a local minimum of the solution space, and

different techniques often just find different local minima. Thus, it is important to find a

theoretically justified numerical procedure. We use an advanced framework known as multi-

stage convex relaxation, which has good numerical properties for non-convex optimization

problems [15]. In this framework, concave duality is used to construct a sequence of convex

relaxations that give increasingly accurate approximations to the original non-convex

problem. We approximate the sparse constraint function f(x) by the convex function

, where h(x) is a specific convex function h(x)=x2 and  is the

concave dual of the function  (defined as . The vector v contains

coefficients that will be automatically generated during the optimization process. After each

optimization, the new coefficient vector v yields a convex function  that more closely

approximates the original non-convex function f(x). For more details of our tensor-based

optimization method, please refer to our original paper [12]. The source code is available on

our website (http://zhoulab.usc.edu/tensor/).

Once the solution vectors of Eq. (2) have been found, frequent co-splicing clusters can be

intuitively identified by including exons and networks with large membership values.
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However, a solution can result in multiple, overlapping patterns whose “heaviness” is

greater than a specified threshold. Here, heaviness is defined as the average weight of all

edges in a pattern. To identify the most representative pattern, we first rank exons and

networks in decreasing order of their membership values in  and . Then we extract two

representative patterns that satisfy the heaviness threshold: the pattern that occurs in the

most networks while having a minimum number of top-ranking exons (this value is selected

beforehand, for example 5), and the pattern with the largest number of top-ranking exons

while appearing in a minimum number of top-ranking networks (e.g., 3). If these patterns

are not the same, both are included as co-splicing clusters in our results. After discovering a

pattern, we mask its edges in those networks where it occurs (replacing those elements of

the tensor with zeroes) and optimize Eq.(2) again to search for the next most frequent co-

splicing cluster.

2.3. Data sources

We identified 38 human RNA-seq datasets from the NCBI Sequence Read Archive, each

with at least 6 samples providing transcriptome profiling under multiple experimental

conditions, such as diverse tissues or various diseases. For each dataset, we used the Tophat

[16] tool to map short reads to the hg19 reference genome, then applied the transcript

assembly tool Cufflinks [17] to estimate expressions for all transcripts with known UCSC

transcript annotations [18]. We calculated the inclusion rate of each exon as the ratio

between its expression (the sum of FPKM2 over all transcripts that cover the exon) and the

host gene’s expression (the sum of FPKM over all transcripts of the gene). It is worth noting

that in RNA-seq experiments, a gene expression with low FPKM is usually not precisely

estimated, because the number of reads mapped to the gene is quite small. Therefore, in

order to limit our analysis to reasonably accurate estimates, as pointed out by [19], we only

calculated inclusion rates for those genes whose expressions are above 80th percentile in at

least 6 samples. Applying this criterion resulted in inclusion rate profiles for 16,024 exons,

covering 9,532 genes. We constructed an exon co-splicing network from each RNA-seq

dataset, using Pearson’s correlation between the inclusion rate profiles across all samples as

the edge weight between each exon pair. To make these correlation estimates comparable

across datasets with different sample sizes, we applied Fisher’s z transform [20]. Given a

PCC estimate r, Fisher’s transformation score was calculated as . The

distributions of z-scores vary from dataset to dataset, so we standardized the z-scores to

enforce zero mean and unit variance in each dataset [21,22]. By inverting the z-scores, the

corresponding “normalized” correlations were obtained, and were used as edge weights in

the networks. We then performed non-uniform edge sampling of these networks to speed up

the computations. As FSC patterns predominately contain edges with large weights, this

sampling method preferentially selects edges with large weights. Details of this sampling

method refer to [12].

2FPKM stands for “Fragments Per Kilobase of exon per Million fragments mapped”, as defined in [17].
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2.4. Results

We applied our method to 38 RNA-seq datasets generated under various experimental

conditions, looking for FSCs with heaviness ≥ 0.4 and containing at least 5 exons. We

identified 7,194/3,104/1,422/594 co-splicing clusters with recurrences ≥3/4/5/6,

respectively. To assess the biological significance of the clusters, we evaluate the extent to

which they represent functional modules and splicing modules.

Functional analysis—We evaluated the functional homogeneity of the host genes for

each exon cluster using Gene Ontology (GO) annotations. To limit the search to specific

functions, we filtered out GO terms associated with >300 genes. If the host genes of exons

are statistically enriched in a GO term, with p-value<1E–4 (based on the hypergeometric

test), then we declare the exon cluster to be functionally homogeneous. We found that

23.3% of the clusters appearing in ≥3 datasets are functionally homogenous, compared to

6.0% of randomly generated clusters with the same sizes. This ratio of 3.9 between the

enrichment rates of clusters discovered in real data and random patterns is evidence that

many of the discovered patterns have strong biological relevance. The enrichment ratio

increases with the recurrence of FSCs, confirming the benefits of integrating multiple RNA-

seq datasets to improve the quality of detected patterns. The functionally homogenous

clusters cover a wide range of GO terms associated with post-transcriptional functions, such

as “RNA splicing”, “ribonucleoprotein binding”, “heterogeneous nuclear ribonucleoprotein

complex”, “negative regulation of transcription from RNA polymerase II promoter”, and

“cellular protein localization”.

Splicing regulatory analysis—By construction, the exons in the discovered co-splicing

clusters have highly correlated inclusion rate profiles across different experimental

conditions. Such clusters are likely to consist of exons that are co-regulated by the same

splicing factors. It has been shown that splicing factors can affect alternative splicing by

interacting with cis-regulatory elements in a position-dependent manner [23]. We collected

the experimental RNA target motifs (2220 RNA binding sites) of 62 splicing factors from

the SpliceAid2 database [24]. To identify which splicing factors are associated with a co-

splicing cluster, we performed the following analysis. First, for each exon of a co-splicing

cluster, we retrieved the internal exon region and its 50bp flanking intron region which are

enriched in the motifs of those 62 splicing factors by performing a BLAST search (E-

score<0.001). If the exons of a cluster are highly enriched in the targets of a splicing factor,

we consider the cluster to be “splicing homogeneous”. Although the collection of known

splicing motifs is very limited, at the p-value<0.05 level (based on hypergeometric test), we

still observed that 4.9% of the clusters with ≥5 exons and ≥6 recurrences are splicing

homogenous, compared to 1.6% of randomly generated patterns with the same size

distribution. The enrichment ratio is 3.0. Performing the same analysis for less frequent

clusters, we found that the enrichment ratio decreases with the recurrence. The five most

frequently enriched splicing factors are hnRNP E2, 9G8, hnRNP U, SRp75 and SRp30c. We

also found that some splicing factors tend to co-bind to the cis-regulatory regions of exons in

a co-splicing cluster, suggesting the combinatorial regulation of those splicing factors. We

also found that combinatorial splicing regulation can occur in post-transcriptional processes.
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3. Discovery of coupled transcription-splicing modules

In this research, we identify coupled transcription-splicing modules in a series of paired

gene co-expression and exon co-splicing networks, where each pair of networks is derived

from the same RNA dataset [5]. The concept of our approach is illustrated in Figure 2. A set

of co-expressed genes (heavily interconnected in the gene co-expression networks) is likely

to be co-regulated by the same transcription factor, and thus may represent a transcription

module. Similarly, a set of co-spliced exons (heavily interconnected in the exon co-splicing

networks) is likely to be co-regulated by the same splicing factor, and thus may represent a

splicing module. When we find a transcription module wherein all or some of the exons

form a splicing module, there is likely to implicate the transcription and splicing coupling is

taking place. We call this a coupled module. Finally, if a coupled module (a co-expressed

gene cluster coupled with a co-spliced exon cluster) appears in multiple gene-exon network

pairs, then we call it a frequent coupled cluster (abbreviated FCC). Such clusters are much

more likely to exemplify a real biological coupling mechanism than coupled modules found

only in a single network pair.

To identify FCCs in a large collection of edge-weighted co-expression and co-splicing

network pairs, we propose another computational method based on the tensor model

introduced in Section 2. Given L RNA-seq datasets, we can produce a collection of L gene

co-expression networks with the same N gene nodes but different edge weights

(correlations). This collection can be represented as a 3rd-order tensor G=(gijk)N×N×L (see

Figure 2). Each element gijk is the weight of the edge between genes i and j, calculated from

the kth RNA-seq dataset. In the same way, a collection of L exon co-splicing networks with

the same M exon nodes can be modeled as the tensor E=(eijk)M×M×L. As each exon belongs

to only one gene, but a gene may have more than one exon, we also need a relation matrix R

with the following characteristics: (1) rij=1 when gene i contains exon j, rij=0 otherwise; and

(2) each column vector has only one non-zero element. Therefore, R is very sparse, with

exactly M non-zero elements.

As shown in Figure 3, an FCC can be described within the tensor model as follows. Its gene

cluster and exon cluster intuitively correspond to heavy regions of the tensors G and E
respectively. Thus, the FCC can be found by simultaneously reordering the tensors G and E
such that the heaviest elements move toward the top-left corner, while their constituent

genes and exons keep “belong-to” relationships. The heavy subvolume can then be

expanded outwards from the left-top corner, until the FCC reaches its optimal size.

3.1. Problem Formulation

In this section, we propose a novel computational method to identify FCCs. An FCC is

defined as follows: “a set of genes G that are frequently co-expressed in a set of datasets D

(forming a heavy subgraph in multiple gene networks), and a set of their exons E that are

co-spliced in the same set of datasets (forming a heavy subgraph in multiple exon

networks)”. Figure 3 gives an example. We formulate the problem of identifying an FCC as

follows.
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Definition of an FCC

An FCC consists of a set of genes G, a set of exons E, and a set of datasets D that satisfy

the following criteria:

Heavy Subgraph Criterion

Genes of G are heavily connected to each other in each dataset of D (these are called

active datasets); exons of E are heavily connected to each other in the same set of

datasets.

Relation Criterion

Each gene of G contains ≥1 exon of E, and each exon of E is contained by ≥1 gene of G.

An FCC can be described by three membership vectors: (i) the gene membership vector x =

(x1,…,xN)T, where xi=1 if gene i belongs to the gene set G and xi=0 otherwise; (ii) the exon

membership vector y = (y1,…,yM)T, where yj=1 if exon j belongs to the exon set E and yj=0

otherwise; and (iii) the dataset membership vector w = (w1,…,wL)T where wk=1 if the

cluster appears (i.e., is sufficiently heavy) in the dataset k of D, and wk=0 otherwise. We call

the data sets in D “active datasets” for the cluster.

Using these three membership vectors, the “heavy subgraph criterion” can be formulated by

maximizing the “heaviness” functions of the gene and exon subgraphs in the active datasets

D. The “heaviness” function of a gene subgraph,

, is the summed weight of all edges of the

subgraph in its active datasets. The “heaviness” function of an exon subgraph,

, is the summed weight of all edges of the

subgraph in its active datasets D. Only the weights of edges between two member nodes

(xi=xj=1, or yi=yj=1) are counted in HG and HE.

The “relation criterion” can be formulated by using the idea of the linear assignment

problem formulation in operation science [25]. Let the relation variables Z=(zij)N×M indicate

the matching between genes and exons, where zij=1 if gene i contains exon j and both belong

to the FCC, and 0 otherwise. Then the relation criterion can be implemented by maximizing

the objective function  with the constraint  for all

i=1,…,N, where K2 is the number of exons in the cluster. Maximizing OR(Z) can finds a set

of genes and exons that are all related to each other, and simultaneously have large weights

xi and yj in their respective membership vectors. This objective function suffices because the

special characteristic of R already guarantees that each exon belongs to only one and only

one gene.

Discovering an FCC can now be formulated as a discrete combinatorial optimization

problem: among all FCCs of fixed size (K1 member genes, K2 member exons, and K3

member datasets), we look for the pattern that maximizes the combined objective function

O(x, y, w, Z) = HG(x, w) + λHE(y, w) + μOR(x, y, Z), where λ, μ >0 are constant weights
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balancing the two criteria. This is an integer programming problem, which is not solvable in

reasonable time even for small datasets. Instead we solve a continuous optimization problem

with the same objective function, formally expressed as follows:

(4)

Constraints I and II above represent a well-known convex coding scheme [12,26] using the

Lp=1 (1≤p<2) norm, which generates sparse solution vectors where only a few elements are

significantly different from zero. Thus, the gene (exon) membership vector x(y) representing

the module contains only a few genes (exons). On the other hand, the Lh=1 (h≥2) norm used

in Constraint III generates a “smooth” solution vector whose elements are approximately

equal; this leads to the discovered cluster occurring in as many datasets as possible.

Eq. (4) defines a tensor-based optimization framework for the problem of identifying FCCs.

By solving Eq. (4), users can easily identify the top-ranking datasets (after sorting elements

of w in non-increasing order) and top-ranking genes/exons (after sorting elements x/y in

non-increasing order) contributing to the objective function. After rearranging the tensors in

this manner, the optimum FCC occupies a corner of the 3D tensors G and E. We then mask

the edges of this cluster in both networks with zeros, and optimize Eq. (4) again to search for

the next module. The constant weights λ and μ in the objective function control the relative

importance of the terms in the objective function. To fully exploit the power of this method,

we collect all the FCCs discovered by our algorithm under several different combinations3

of λ and μ, then remove duplicates. The other three parameters, f, g and h, can be fixed

through simulations.

3.2. Method

We derived an iterative algorithm to maximize the objective function with the constraints

defined in Eq. (4). This algorithm repeatedly updates x, y, w, and Z, each time holding the

other three variables fixed, until the objective function converges to a fixed point. The

source code is available on our website (http://zhoulab.usc.edu/CMTensor/).

According to the definitions of the membership vectors x, y, and w, FCCs can be intuitively

identified with the genes, exons, and datasets in the solution vectors that have the largest

membership values. In this work, we empirically define an FCC extracted from the top-

ranking genes, exons and datasets as a triplet (G′,E′,D′). We require an FCC to contain ≥5

genes G′, ≥5 exons E′ and ≥2 active datasets D′. Furthermore, we require that (1) each gene

subgraph G′ and each exon subgraph E′ have an average edge weight (“heaviness”) >0.4; (2)

at least 70% of the host genes of E′ are included in G′; and (3) at least 70% of all exons of

3In practice, we used the following combinations: λ is any of the six predefined values {0.01, 0.05, 0.1, 1, 10, 50} and μ is any of the
five predefined values {10, 20, 50, 100, 500}.
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the genes in G′ are included in E′. We refer to the ratios used in the second and third criteria

as coverages:  and

. The first criterion sets a standard for how

heavy and frequent a cluster should be, while the second and third define the minimum

degree of “coupling” between a gene set and an exon set.

We can often generate multiple overlapping FCCs from the set of top-ranking genes, exons,

and datasets which satisfy all the criteria defined above. We refer to a group of overlapping

FCCs derived from the same membership vectors x, y, and w as a family of FCCs.

3.3. Data sources

From the Sequence Read Archive of NCBI we selected all human RNA-seq datasets, each of

which contains at least six samples (the minimum for robust correlation estimation). This

results in a total of 38 datasets. For each dataset, we used the Tophat [16] tool to map short

reads to the hg18 reference genome, then applied the transcript assembly tool Cufflinks [17]

to estimate expressions for all transcripts with known UCSC annotations [18]. We calculated

the inclusion rate of each exon in every sample, and the expression of its host gene. For each

dataset, we built two networks: a weighted gene co-expression network, in which nodes

represent genes and edges are weighted by expression correlations between two genes; and a

weighted exon co-splicing network, in which nodes represent exons and edge weights

represent correlations between the inclusion rates of two exons. We then performed the

same network normalization procedure as introduced in Section 2.3, to make the edge

weights comparable across datasets by removing the sample size effect. The normalized

rates profile correlations were then used as edge weights in the networks We used non-

uniform edge sampling when analyzing all networks to speed up the computations [12].

3.4. Results

After we applied our method to the 38 paired gene co-expression networks and exon co-

splicing networks derived from RNA-seq datasets, we identified 8,667 FCC families

containing a total of 43,580 FCCs. Each FCC contains ≥5 member genes, ≥5 member exons,

and appears in ≥2 RNA-seq datasets; it also has heaviness ≥0.4, coveragegene≥0.7, and

coverageexon≥0.7. The average number of genes/exons of these patterns is 12.61/12.64 and

the average recurrence is 2.04. To assess the statistical significance of the FCCs, we also

applied our method to 38 paired random networks, each of which is generated from one of

the paired real networks by the edge randomization method4. We repeated this process 10

times, and each time only 0 ~ 3 FCC families (average 0.9 families) were identified. This is

an extremely low value compared to the 8,667 FCC families discovered in real data.

3.4.1. Frequent coupled clusters are likely to represent transcription and
splicing modules—Because the genes in an FCC are strongly co-expressed in multiple

4Given a real edge-weighted network, the random network is generated by randomly redistributing the weights over all edges. This
procedure is widely used and called “degree-preserving network randomization” [51].
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datasets generated under different conditions, they are likely to represent a transcription

module. To assess this possibility, we used the 191 ChIP-seq profiles generated by the

Encyclopedia of DNA Elements (ENCODE) consortium [27]. These data provide potential

targets of regulatory factors that may or may not be active under a specific condition.

However, if the gene set of an FCC is found to be highly enriched in the targets of a

regulatory factor, then this factor is likely to actively regulate the genes in the FCC. Since

FCCs within the same family are highly overlapping, we treat a family of FCCs as a unit in

the following analyses. We denote a family of FCCs to be “transcriptionally homogenous” if

any of its containing FCCs is significantly enriched in the targets of a regulatory factor.

According to this definition, 61.2% of the identified FCC families are transcriptionally

homogenous, with an enrichment q-value<0.05, compared to 8.9% of randomly generated

patterns with the same size distribution. The five most frequently enriched regulators are

YY1, E2F4, c-Myc, MAX, and TAF, all of which have been implicated in cancer pathogenesis

or progression [28–32].

Since the exon set of an FCC has highly correlated inclusion rate profiles across different

experimental conditions, they are likely to be co-regulated by the same splicing factors. We

collected the experimental RNA target motifs (2,220 RNA binding sites) of 62 splicing

factors from the SpliceAid2 database [24]. For each exon in an FCC, we retrieved the

internal exon region and its 100bp flanking intron region which are enriched in the motifs of

those 62 splicing proteins by performing a BLAST search (E-score <0.05). If the exon set of

any FCC within a family is significantly enriched (q-value <0.05) in the targets of a splicing

factor, we consider this family to be “splicing homogenous”. Although the collection of

known splicing motifs is very limited, we still observed that 8.9% of the FCC families are

splicing homogenous, compared to 5.1% of randomly generated patterns with the same size

distribution. The five most frequently enriched splicing regulators are PSF, hnRNP-D,

hnRNP-C1, SLM-2, and HuB.

3.4.2. Exploring the mechanisms of transcription and splicing coupling—In

this section, we evaluate the hypothesis that the functionally coupled recruitment of

transcription and splicing factors could be mediated by protein-protein interactions (PPIs),

using data from the BioGRID repository [33]. We consider not only direct PPIs between two

factors, but also indirect interactions through a mediator protein (i.e., one-hop interactions).

Some experiments have shown that transcription and splicing factors can be recruited by the

same other proteins [34,35]. In order to have a broad coverage, we used the 109 human

transcription factors in the ENCODE [27] and JASPAR databases [36], and 10,278 DNA

binding motifs downloaded from [37]. We performed a BLAST search (E-score <0.05) in

1000bp regions of the transcription start sites of all genes, and then used a hyper-geometric

test (q-value <0.05) to identify transcription factors that are enriched among the genes of an

FCC. The putative splicing factors for each FCC were identified as described in Section

3.4.1. The total number of PPIs between transcription and splicing factors within the same

FCC families (including direct and one-hop interactions) is 105, compared to only 14.8 in

random families with the same numbers of genes and exons. The enrichment ratio is 7.1,

supporting the idea that PPI mediated association can be an important mechanism of

transcription-splicing coupling.
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4. Isoform function prediction with a multiple instance based label

propagation method

Although recent years have seen an increase in the number of studies on isoform-specific

functions, most functional annotations for proteins are still only recorded at the gene level. It

remains unclear to what extent alternatively processed isoforms have divergent functions.

To fill this gap, this section reports the first systematic prediction of isoform functions. We

have designed a novel multiple instance based label propagation method that makes

predictions by integrating many genome-wide RNA-seq datasets.

4.1. Problem and challenges

From an algorithmic viewpoint, the isoform function prediction problem is characterized by

four major challenges:

i. The training data are unconventional. Most existing functional annotations are

recorded for genes and not isoforms, yet each gene contains one or more isoforms.

This type of data is called “multiple-instance (MI) labeled” data. In this framework,

the isoforms are instances and each gene is a bag of isoforms. If a gene is labeled as

having a function, then we know that at least one of its isoforms has this function;

on the other hand, if a gene is labeled not to have the function, then none of its

isoforms has this function.

ii. The isoform function prediction task is unconventional. In fact, we want to make

two types of predictions. The first is “inheritance prediction”: given a gene having

a function, we want to know which of its isoform(s) “inherit” this function. The

second is “de novo prediction”: we want to predict the functions of isoforms even

for genes for which we have no information.

iii. Integrating multiple isoform association networks with MI labels has never been

done before. Many studies in the area of gene function prediction have implied that

combining multiple data sources can result in higher-quality function predictions

[38]. We believe that the same principle is valid for isoform function prediction.

However, no method has been designed for the selection and integration of MI-

labeled networks.

iv. There is a dearth of validation data for isoform function prediction. To assess the

performance of our predictions, we need functional annotations on some isoforms.

To address the first two challenges (i–ii), we propose a new technique called instance-

oriented MI label propagation (abbreviated “iMILP”) that enables both inheritance and de

novo predictions by exploiting the benefits of unlabeled data [6]. To address challenge (iii),

we recast the network selection problem as a feature selection problem, and introduce a

wrapper strategy to solve the problem. Figure 4 illustrates the iMILP and network selection

and combination approaches. To address challenge (iv), we validate predictions using the set

of isoforms whose host genes are annotated and contain only a single isoform.
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4.2. Methods

The proposed method consists of two components, as illustrated in Figure 5: (i) The network

selection and combination component chooses the optimal subset of networks relevant to a

given function among all input isoform co-expression networks, then aggregates them into a

single network. This combined network is the input of the second component. (ii) The

predictor component is a novel MI label propagation method. It returns function predictions

for all isoforms by diffusing information from the labeled genes throughout the network of

isoforms. These two components are explained in the following subsections.

4.2.1. Instance-oriented MI label propagation method—All existing label

propagation methods [39,40] for MI-labeled networks focus on classifying bags. They

follow the rule that “knowing one of the instances in the bag is positive is sufficient for
predicting this bag as positive”. However, an undesirable consequence of this rule is that in

any positive bag, all but the single most positive instance are ignored. Therefore, these

methods do not help when we need to answer a question such as “which instances are
positive in the positive bag?” In our problem, we are more interested in knowing which

isoforms (or instances) inherit the function of the gene (or bag) than which single isoform is

the best representative of the function of the gene. We propose a novel instance-oriented MI

label propagation (iMILP) method to make predictions at the instance level. Its label

propagation rule is that “In the positive bag, a node (or instance) that links to more nodes

from positive bags receives larger prediction scores; nodes that link to no other nodes from

positive bags are demoted to have a prediction score of zero.” As we shall see, applying this

rule iteratively to a well-chosen isoform network clearly identifies all instances that are

qualified to inherit the bag’s label.

The isoform association network (with N isoforms) is represented as an adjacency matrix

 where wij denotes the intensity of association (normalized Pearson’s

correlation coefficient, PCC) between isoforms i and j. The normalized Laplacian of W is L

= D1/2WD1/2, where D is a diagonal matrix with Dii=Σjwij. For ease of presentation, we

create a bag (called the “unlabeled bag”) to contain all the isoforms whose gene label is

unknown (y=0). Unlike the positive and negative bags, the unlabeled bag does not

correspond to a single gene. However, because none of the unlabeled genes and isoforms

provides any constraints on the network, their isoforms can be grouped in this way without

changing the result. Having defined the network and terminology, our proposed iMILP

algorithm is as follows:

1. Initialize the soft label f of each node (isoform) in the positive, negative, or

unlabeled bag (gene) as f=+1, −1 or 0, respectively.

2. Clamp the soft labels of nodes as follows:

i. For nodes in the positive bags, fnew ← f when f> ε (ε is a positive number,

close to zero), otherwise fnew ← 0.

ii. For nodes in the negative bags, fnew ← −1.

iii. For nodes in the unlabeled bag, the soft labels f remain unchanged: fnew

← f.
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iv. For each bag (whether positive, negative, or unlabelled), normalize the

scores fnew of all nodes in the bag, so that their squared sum is 1: f ←
norm(fnew).

3. Diffuse labels: f ← Lf.

4. Repeat from Step 2 until f converges.

This algorithm adapts the pioneering label propagation approach [41] to the MI-labeled

network. The diffusion step (3) propagates the information in the soft labels from the

“source nodes” of labeled bags to neighbor nodes. Because the soft labels of source nodes

are weakened by the diffusion step, the clamping step (2) restores their strength in the

positive and negative bags, supporting the next round of the diffusion process. The clamping

step should be performed on the bag level, so that the relative importance of nodes in a bag

can be preserved.

In a positive bag, nodes with negative soft labels (or even more strictly, nodes with f<ε) are

“demoted” to zero, as indicated in step 2(i). The threshold ε should be anti-correlated with

the number of instances in the positive bag. In practice, we used . In a negative

bag, following the MI labeling rule, all nodes must be negative and receive f scores equal to

−1, as shown in step 2(ii). However, sometimes there are many negative bags, and the

negative source nodes should not dominate the whole network. This problem is alleviated by

the next step of normalizing f scores in the negative bags. The single “unlabeled bag”

contains a large number of isoforms from different host genes. We keep their f scores

unchanged, because these nodes serve as bridges for information to diffuse from the source

nodes in labeled bags throughout the network. Nevertheless, we still normalize the unlabeled

bag after each step, to guarantee that their soft labels converge. Therefore, the normalization

step is important for all three types of bags, but has a slightly different purpose in each case.

Specifically, normalization in step 2(iv) means constraining the squared sum of the soft

labels in a bag to 1. This step has three implications for the solution: (a) all bags are equal,

(b) the soft label f of a node is always proportional to its contribution to the bag, and (c) the

larger the bag, the lower the f scores of its nodes. Figure 6 illustrates the diffusion and

clamping steps using an example network with 15 nodes. It can be observed that the f scores

of the nodes inheriting labels in the positive/negative bags are replenished after each

clamping step.

After all the soft labels f converge, we need to make a final prediction for each node. For

inheritance predictions, we assign positive labels to all nodes with non-zero f scores in the

positive bags. The criterion should be more stringent for de novo predictions. We

empirically set a threshold of 0.05, so that all nodes with f values at least this large in the

unlabeled bag are predicted to be positive. The source code is available on our website

(http://zhoulab.usc.edu/IsoFP).

4.2.2. Network selection and combination algorithm—In order to identify which

isoform networks are the most informative for each function prediction, we recast the

network selection problem as a feature selection problem. By viewing each network as a
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feature, we can take advantage of established feature selection strategies. The wrapper

method is a widely used strategy [42]. As shown in Figure 5, it uses the prediction

performance of a subset of networks to guide the search for the best subset. A prediction

performance score is obtained by applying the predictive model to the current subset of

networks, with ten random rounds of five-fold cross validation. The average AUC (area

under the receiver operating characteristic curve) over all ten rounds is reported as the

performance score. Our search algorithm employs a greedy sequential forward strategy [43]

to find the best subset of networks. The “greedy” search heuristic adds a new network to the

currently selected subset only if doing so improves the prediction performance. The detailed

procedure is presented below. After selecting a subset of K networks G = {i1,…,iK}, we

used equal weights to combine them into a single network: , where Lh is the

normalized Laplacian of network h.

4.3. Data sources

4.3.1. Isoform co-expression network construction—The mRNA isoform

sequences were extracted from NCBI Reference Sequences (RefSeq) [44]. We discarded all

RefSeq records that were not manually reviewed. To construct the isoform co-expression

networks, we retrieved 29 datasets of human, full-length mRNA sequencing studies from the

NCBI Sequence Read Archive database [45]. Each dataset was required to have at least 6

experiments, and not to be a population study. We used the eXpress [46] tool, combined

with the Bowtie2 aligner [47], to infer isoform expression values. The RefSeq mRNA

transcripts were used as transcriptome annotations. The mRNA level expression values were

converted directly into protein isoform expressions. In cases where two or more RefSeq

mRNA sequences correspond to the same protein sequence, they were regarded as belonging

to a unique protein isoform, and their expression values were added.

In each RNA-seq dataset, a protein isoform was retained for further analysis only if the

coefficient of variation (the ratio of standard deviation to mean) of its expression profile is ≥

0.3 and significantly expressed with an expression value ≥10 FPKM in at least two

experiments.

We calculated Pearson’s correlation coefficient (PCC) between the expression profiles of

each isoform pair meeting the above criteria. We then performed the same network

normalization procedure as introduced in Section 2.3 to obtain the normalized PCCs. For

fast computation, only co-expressed isoform pairs with normalized PCCs ≥0.5 were

included in the isoform co-expression networks.

4.3.2. Functional annotation of genes—Gene Ontology (GO) data [48] were used as

function categories, and the UniProt Gene Ontology Annotation (UniProt-GOA) database

[49] is our source of gene function annotations. Using the mapping information provided by

the UniProt database, GO functions were assigned to each NCBI’s Gene ID, which includes

one or more RefSeq transcripts. However, all GO annotations with the IEA (Inferred from

Electronic Annotation) evidence code were removed from consideration in our analysis

because they have not been verified by human curators. The GO terms are categorized into
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three major branches: Biological Process (BP), Cellular Component (CC) and Molecular

Function (MF).

For a given GO term F, we labeled all its annotated genes as positive bags, and labeled those

genes annotated with a sibling GO term as negative bags. The sibling GO terms of F are

defined as those that share at least one direct parent with F and are not ancestors or

descendants of F. We removed some functional categories from consideration using two

criteria: (i) GO terms associated with >1000 genes (or <5 genes) were considered too

general (or too specific). (ii) If a GO term has more than 95% of its associated genes also

annotated with its sibling GO terms, it is considered indistinguishable from its siblings.

After removing such terms, 4519 GO terms remained for use in our predictions and analysis.

4.4. Results

4.4.1. Prediction Performance of the iMILP method—The 29 RNA-seq datasets that

we used to generate isoform co-expression networks cover a wide range of experimental and

physiological conditions. We first applied our algorithm to each single network. However,

no single network yielded an average AUC across all GO terms better than 0.53. The

average AUC across all 29 single networks is only 0.48, worse than a random guess.

Therefore, we applied the wrapper method to select and combine a different subset of

networks for each GO term, based on their “usefulness” to the specific prediction at hand.

The combined networks achieved dramatically better AUC scores, averaging to 0.67 across

all GO terms. This result demonstrates the necessity of integrating multiple data sources for

isoform function prediction.

4.4.2. Functional annotations of isoforms—Applying our method to the entire

training dataset yielded 70,392 isoform-level function predictions. 13,621 of them were de

novo predictions, meaning that the host genes are unannotated with respect to the predicted

function in the current GO database. Therefore, as a side benefit, the iMILP method also

contributes to function annotation at the gene level. In addition to the de novo results, we

predicted the functions of 8,856 isoforms that have a least one annotation inherited from

their host genes. In general, we believe that these inheritance predictions are more reliable

than de novo predictions. Therefore, in the following analysis of the properties of isoform

functions, we focused on inheritance predictions.

With the isoform-level annotations resolved, we were interested in seeing which gene

functions are usually shared by many isoforms of the same gene, and which functions are

only inherited by one or a small number of isoforms. We proposed the concept of

inheritance rate (IR): given a GO term and a multi-isoform gene annotated by this term, IR

is the ratio between the number of isoforms assigned to the GO term and the total number of

isoforms for this gene. A high IR rate suggests that this function of the gene is robust against

alternative isoform processing; otherwise the function is sensitive to this process. Among all

GO terms annotated to at least 10 genes, the functions with the highest IR values are

“nucleic acid transport”, “RNA splicing, via transesterification reactions”, “cellular protein

localization” and “hair follicle maturation”. The functions that are most sensitive to the
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regulation of isoforms are “regulation of membrane potential”, “actin cytoskeleton

reorganization”, “taxis” and “positive regulation of apoptotic process”.

4.4.3. Functional divergence among isoforms—Among the 7,714 multi-isoform

genes annotated in the RefSeq database, 2,534 (791 or 1572) genes have at least two

isoforms with functional predictions in the same GO branch (BP, CC or MF). For each of

these genes, we calculated the functional dissimilarity averaged across all pairs of isoforms

with annotations in the same GO branch. The similarity score of two isoforms was estimated

using the G-SESAME method [50], and dissimilarity was simply defined as one minus the

similarity score. The isoform functional divergence of a gene was calculated as the average

dissimilarity score over all possible isoform pairs with GO annotations. Only isoforms that

belong to the same gene and have predicted GO term(s) in the same GO tree branch were

compared with each other to investigate functional dissimilarity.

We found that for all three GO branches, a large number of genes have isoforms that share

the same or very similar functions (dissimilarity between 0 and 0.1). Specifically, among

BP, CC and MF annotations, 19.0% (482), 44.8% (354) and 30.7% (483) of the genes

respectively have multiple isoforms annotated with identical functions. Nevertheless, a small

but significant proportion of genes have functionally distinct isoforms. For example, in the

BP branch, 13.1% of genes have isoforms with a dissimilarity score greater than 0.5. The

proportions for CC and MF terms are 4.9% and 5.2%, respectively.

5. Conclusion

Recent years have seen the rapid accumulation of RNA-seq data, which can measure cellular

activities at high resolution. There is an increasing need for powerful computational tools

capable of integrating many RNA-seq datasets to study splicing regulation. In this paper, we

describe three novel computational approaches that can discover splicing modules and

coupled transcription-splicing modules, and predict the functions of splicing isoforms. The

first method is a network pattern mining algorithm by modelling a set of networks as a 3rd-

order tensor. It takes a set of exon co-splicing networks as input, and outputs clusters of

exons which are densely interconnected in as many networks as possible. The analysis of the

identified patterns demonstrated that the exon clusters with high recurrence are more likely

to represent splicing modules than those occurring in only single networks. The second

method is also a tensor-based pattern discovery algorithm for analyzing multiple coupled

networks. It takes as input a large collection of coupled co-expression and co-splicing

network pairs, and outputs patterns each of which consists of a co-expressed gene cluster

coupled with a co-spliced exon cluster that frequently appears in multiple coupled networks.

The identified coupling modules enable the exploration of how the transcription and splicing

factors cooperate to regulate gene activities. Different from the first two methods which are

unsupervised learning, the third method is essentially a semi-supervised learning approach.

Taking as input a set of networks in which a small portion of nodes have multiple-instance

class labels, this algorithm aims to classify those unlabeled nodes in the networks and

outputs their predicted labels. This semi-supervised learning algorithm was applied to the

isoform function prediction problem. The predicted isoform functions suggest that although

many genes have isoforms carrying the same function, there is a substantial fraction of genes
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that are spliced into isoforms with diverse functions. These advanced computational

approaches have provided effective analysis tools to integrate a large number of RNA-seq

datasets for studying alternative splicing from various aspects. As more RNA-seq data are

released to the public databases in the near future, such integrative analysis methods will

grow in its ability to provide high-quality and high-resolution splicing patterns and

functional annotations of the transcriptome.
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Figure 1.
A collection of co-splicing networks can be stacked into a third-order tensor such that each

slice represents the adjacency matrix of one network. The weights of edges in the co-

splicing networks and their corresponding entries in the tensor are color-coded according to

the scale to the right of the figure. After reordering the tensor by the exon and network

membership vectors, a frequent co-splicing cluster (red) emerges in the top-left corner. It

contains exons A, B, C, and D, which are heavily interconnected in networks 1, 2, and 3.
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Figure 2.
Illustration of the tensor model for collections of networks. From each RNA-seq dataset, we

can build a gene co-expression network and an exon co-splicing network. Because all of the

gene networks share the same set of genes, the collection of gene co-expression networks

can be stacked into a third-order tensor G, such that each slice represents the adjacency

matrix of one network. The same scenario applies to the exon co-splicing networks, which

form a third-order tensor E. Weights of the edges in each network and their corresponding

entries in the tensor are color-coded according to the scale at the right of the figure. The

relationships between genes and exons in the two tensors are described by a binary matrix R,

in which rij = 1 when the ith gene contains the jth exon; otherwise rij=0.

Li et al. Page 23

Methods. Author manuscript; available in PMC 2015 June 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3.
Illustration of a frequent coupled cluster (FCC). In a collection of three paired gene co-

expression and exon co-splicing networks, a subset of genes {1,2,3} are heavily

interconnected and their exons {A,B,C,D} are also heavily interconnected. These subsets

form an FCC that represents the coupled transcription-splicing module. The gene and exon

clusters intuitively correspond to the heavy subtensors in G and E.
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Figure 4.
Illustrations of (A - LP) standard label propagation, with labels assigned to each node; (B -
iMILP) the proposed instance-oriented MI label propagation, with labels assigned to bags of

nodes; and (C - iMILP + Network Selection) the method of integrating multiple networks

before iMILP. Each node represents an instance, and positive/negative/unknown nodes are

drawn as gray/white/question-mark circles with solid lines. Positive/negative bags of

instances are represented by the large gray/white ovals with dotted lines.
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Figure 5.
Flowchart of the proposed method with two components: “network selection and

combination” and “predictor”. The network selection and combination step uses the wrapper

feature selection strategy. The predictor component is our proposed iMILP method.

Li et al. Page 26

Methods. Author manuscript; available in PMC 2015 June 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 6. Illustration of the iMILP approach applied to a 15-node network
The initial network with its MI labels is shown in (A). Red dotted ovals represent positive

bags of nodes, and green dotted ovals represent negative bags of nodes. (B) Each node is

initialized according with soft labels according to step 1 of the iMILP algorithm. After a

series of label propagation and clamping steps (C–F), the soft labels converge to network

(G) which gives the final predictions. The shade of color in a node indicates the value of its

soft label. The changing colors show that labels are propagated after each diffusion step, and

that the soft labels in positive and negative bags are replenished after each clamping step, to

prepare for the next diffusion step. In (G), both inheritance and de novo predictions are

correctly made by the colors of the nodes.
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