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Abstract

Over the previous decade, there has been an explosion of interest in network science, in general, and its application
to the human brain, in particular. Most brain network investigations to date have used linear correlations (LinCorr)
between brain areas to construct and then interpret brain networks. In this study, we applied an entropy-based
method to establish functional connectivity between brain areas. This method is sensitive to both nonlinear
and linear associations. The LinCorr-based and entropy-based techniques were applied to resting-state functional
magnetic resonance imaging data from 10 subjects, and the resulting networks were compared. The networks
derived from the entropy-based method exhibited power-law degree distributions. Moreover, the entropy-
based networks had a higher clustering coefficient and a shorter path length compared with that of the
LinCorr-based networks. While the LinCorr-based networks were assortative, with nodes with similar degrees
preferentially connected, the entropy-based networks were disassortative, with high-degree hubs directly con-
nected to low-degree nodes. It is likely that the differences in clustering and assortativity are due to ‘‘mega-
hubs’’ in the entropy-based networks. These mega-hubs connect to a large majority of the nodes in the network.
This is the first work clearly demonstrating differences between functional brain networks using linear and non-
linear techniques. The key finding is that the nonlinear technique produced networks with scale-free degree dis-
tributions. There remains debate among the neuroscience community as to whether human brains are scale free.
These data support the argument that at least some aspects of the human brain are perhaps scale free.
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Introduction

W ith the advent of the network science field, newly
developed network methods have been applied to the

most complex of biological systems: the human brain. The con-
nectivity patterns in the human brain have been modeled as net-
works, from the neuronal level (Bonifazi et al., 2009; Yu et al.,
2008) to macroscale brain organization (Achard et al., 2006;
Eguiluz et al., 2005; Hagmann et al., 2008; Hayasaka and Laur-
ienti, 2010; Iturria-Medina et al., 2008; Stam, 2004). Functional
brain networks are typically derived from linear correlation
(LinCorr) of time series from multiple data points in the
brain, most commonly from functional magnetic resonance im-
aging (fMRI) (Achard et al., 2006; Eguiluz et al., 2005; Haya-
saka and Laurienti, 2010; van den Heuvel et al., 2008). This
work uses nonlinear analyses to establish connections in func-
tional brain networks and demonstrates significant differences
compared with networks generated using linear analyses. Net-
works constructed with linear and nonlinear analyses show

differences most notably in the degree distributions with non-
linear networks having nodes with a substantially higher de-
gree. Given that there is no gold standard, it is vital that these
differences be further studied. One should not assume that lin-
ear outcomes, which are the default in the literature, are correct
and that methods producing different outcomes are wrong. This
work sets the groundwork for future studies that examine rela-
tionships between brain networks and cognition to determine
whether these nonlinear findings have behavioral relevance.

In order to create a functional brain network from time se-
ries data, the strength of temporal association or coherence
needs to be summarized between disparate areas of the
brain. Although there are many possible ways to summarize
such functional connectivity (Smith et al., 2011), Pearson’s
correlation coefficient is perhaps most widely used due to
its computational ease and familiarity among researchers.
However, a correlation coefficient is only sensitive to a linear
component of a relationship between two variables. Conse-
quently, a correlation coefficient may miss any nonlinear
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relationships among brain areas. To overcome this limitation,
in recent decades, there has been ongoing interest in combined
linearity and nonlinearity in measures of brain connectivity, es-
pecially with electroencephalogram (EEG) (Pritchard et al.,
1995; Stam et al., 1996, 1998). Mutual information has been
used as a nonlinear measure of cross-relation in fMRI studies
(Hartman et al., 2011; Hlinka et al., 2011); by a nonlinear
measure, we mean one sensitive to both linear and nonlinear
cross-relation. This is in contrast to the Pearson’s correlation
coefficient or LinCorr, which only assesses the former. After
Gaussianization of the data, these studies (Hartman et al.,
2011; Hlinka et al., 2011) report a significant but small amount
of nonlinearity using phase-angle randomized multivariate sur-
rogate data. Using other nonlinear measures along with surro-
gate data, Xie and coworkers (2008) also reported significant
nonlinearity in fMRI data.

For our nonlinear measure of cross-relation, we chose
cross-sample entropy (XSampEnt) (Richman and Moorman,
2000). The implementation of XSampEnt is described in the
‘‘Materials and Methods’’ section. XSampEnt is an order-2
measure; in general, such measures are able to probe smaller
distances in reconstructed state space than order-1 measures
(Xie et al., 2010). XSampEnt also assesses the pattern syn-
chronization between time series rather than just strict non-
temporal (zero lag) cross-relation (Richman and Moorman,
2000; Xie et al., 2010). XSampEnt has been successfully ap-
plied to the analysis of cardiovascular measures (Yang et al.,
2002), renal sympathetic nerve activity (Zhang et al., 2007),
fMRI data (Hu and Shi, 2006), EEG data (Vakorin et al.,
2010; Xie et al., 2010), and financial data (Liu et al., 2010).

Besides its proven utility in analyzing experimental and
observational data as described earlier, XSampEnt has been ex-
tensively validated using simulated data with known proper-
ties. In their original paper, Richman and Moorman (2000)
tested XSampEnt using realizations of the MIX( p) process.
MIX( p) starts with N sinusoidal data points, and pN of the orig-
inal sine-wave points are randomly chosen to be replaced by
random numbers, where p is a probability value. Richman
and Moorman calculated XSampEnt between MIX( p) realiza-
tions of p = 0.3 versus p = 0.1 and p = 0.3 versus p = 0.6, and hy-
pothesized that the comparison 0.3 versus 0.1 should show
much more (sine wave) pattern synchronization than 0.3 versus
0.6. For a range of the closeness parameter r (see ‘‘Materials
and Methods’’ section for the definition), Richman and Moor-
man were able to confirm their hypothesis (Richman and
Moorman, 2000). Similarly, Hu and Shi (2006) generated sim-
ulated data consisting of regularly spaced sinusoidal pulses and
irregularly spaced sinusoidal pulses. Thus, both time series
consisted of the same pattern (identical sinusoidal pulses),
but in the first time series the pulses were regularly spaced in
time while in the second they were irregularly spaced (some
Gaussian noise was added to both). Although LinCorr between
the two was very low (0.0032), XSampEnt between the two
was virtually the same as the sample entropy (SampEnt) mea-
sured for each individually (XSampEnt = 2.22 vs. SampEnt
regular and irregular = 2.24), indicating that XSampEnt suc-
cessfully detected the identical asynchronous patterning in
each (Hu and Shi, 2006). Xie and colleagues (2010) examined
XSampEnt using five different simulations, including both de-
terministic and stochastic models (coupled broadband noises,
coupled Lorenz–Lorenz data, coupled Rossler–Rossler data,
coupled Rossler–Lorenz data, and a neural mass model) for

both noise-free simulations and simulations with added
noise. For a wide range of coupling strengths, XSampEnt per-
formed well, although slightly less so than their new measure
of cross-fuzzy entropy (Xie et al., 2010).

Thus, in this work, we applied XSampEnt to resting-state
fMRI data and examined the resulting connectivity pattern.
In particular, we constructed brain functional connectivity
networks having the same set of nodes but links defined by
different connectivity measures, namely XSampEnt and Lin-
Corr. The topological characteristics of these networks were
then examined. Since XSampEnt is sensitive to nonlinear re-
lationships in addition to linear associations identified by
LinCorr, we expected that the network organization might
differ between the two types of networks.

Materials and Methods

The fMRI data used in this study were acquired from 10
healthy young subjects. These subjects were a part of a larger
study (Peiffer et al., 2009), and these are the same set of sub-
jects used in our previous network analysis study (Hayasaka
and Laurienti, 2010). All the subjects signed a written in-
formed consent, and the original study was approved by
the Institutional Review Board of Wake Forest School of
Medicine and conducted in accordance with the Declaration
of Helsinki. The fMRI data from each subject consisted of
120 images acquired during 5 min of resting using a gradient
echo-planar imaging protocol with TR/TE = 2500/40 msec
on a 1.5T GE twin-speed LX scanner with a birdcage head
coil (GE Medical Systems, Milwaukee, WI). The acquired
images were motion corrected, spatially normalized to the
MNI (Montreal Neurological Institute) space, and re-sliced
to 4 · 4 · 5 mm voxel size using an in-house processing script
based on SPM99 package (Wellcome Trust Centre for Neu-
roimaging, London, United Kingdom). In order to avoid arti-
ficially introducing local spatial correlation, the resulting
images were not smoothed (van den Heuvel et al., 2008).
To correct for physiological noises, the spatially normalized
fMRI time series for each subject was first band-pass filtered
(0.009–0.08 Hz) to reduce respiratory and other physiologi-
cal noises (Fox et al., 2005; van den Heuvel et al., 2008).
Moreover, the mean time courses from the entire brain, the
deep white matter, and the ventricles were regressed out
from the filtered time series (Fox et al., 2005; van den Heuvel
et al., 2008). To account for subject motion, the six rigid-
body motion parameters from the motion correction process
were also regressed out from the time series. Finally, node
time courses were obtained by averaging the voxel time
courses in 90 distinct anatomical areas defined by the Ana-
tomical Automatic Labeling atlas (Tzourio-Mazoyer et al.,
2002). Further details on fMRI data processing can be
found elsewhere (Hayasaka and Laurienti, 2010).

Once the time series data were obtained for each subject, a
LinCorr-based brain network was constructed. This was per-
formed by producing a 90 · 90 cross-correlation matrix, with
each element corresponding to LinCorr between the time series
data of two brain areas. The resulting correlation matrix was
then thresholded in order to characterize high positive correla-
tion values as functional connections. This process yielded a
binary matrix known as an adjacency matrix, describing the
LinCorr network. A number of thresholds, corresponding to
70–97.5th percentiles of the correlation coefficients in the
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matrix, were used in this process to form adjacency matrices
with strong positive correlations as edges. During the thresh-
olding process, the elements (1s) along the main diagonal
were set to zero to eliminate self-loops.

With the same fMRI time series data described earlier, a net-
work based on XSampEnt connectivity was also constructed
for each of the subjects. XSampEnt is based on Pincus’
order-1 cross-approximate entropy (XApEnt) (Richman and
Moorman, 2000). In essence, in an initial delay-time embed-
ding dimension m, this measure first calculates the average
number of vectors in reconstructed state space from series 1
that are close to vectors from series 2 (close being defined
by the critical distance, or closeness parameter r). The embed-
ding dimension m is then increased by 1, and the average num-
ber of close vectors is recomputed. XSampEnt is then the
negative log of a ratio, the second average over the first aver-
age. XSampEnt represents an improvement over XApEnt in
that it only requires one pair of points within the critical dis-
tance of each other to yield a value. XSampEnt increases as
the number of vectors that remain close decreases, reflecting
less pattern synchronization in the data. For our calculation
of XSampEnt, we set the m parameter (initial embedding di-
mension) equal to 1 based on preliminary investigations. Fol-
lowing Pincus (1991), we set the r parameter equal to 0.2 of
the average of standard deviation (SD) of each pair of the
time series. We used the calculation method by Zhang and as-
sociates (2007) to assess XSampEnt in our fMRI data. In brief,
let u and v represent two time series: u = [u(1), u(2),.u(N)]
and v = [v(1), v(2),.v(N)], where N is the number of data
points in each series. With m and r fixed (as defined earlier),
we form two vector sequences xm and ym: xm(i) = [u(i), u(i +
1),.u(i + m–1)] and ym(i) = [v(i), v(i + 1),.v(i + m–1)].
Then, for each i £ N – m, we define

Bm
i (r)(v k u) =

#fj � N �m j d(xm(i), ym(j)) � rg
N�m

(1)

where j ranges from 1 to N – m, and d(.) is the distance func-
tion. Then, let

Bm (r)(v k u) =
+N�m

i = 1
Bm

i (r)(v k u)

N�m
: (2)

In other words, Bm (r)(v jj u) is the average value of
Bm

i (r)(v k u). Similarly, we define Am
i and Am as

Am
i (r)(v k u) =

#fj � N �m j d(xmþ 1(i), ymþ 1(j)) � rg
N�m

(3)

Am (r)(v k u) =
+N�m

i = 1
Am

i (r)(v k u)

N�m
: (4)

Finally, we can calculate XSampEnt as

XSampEnt(m, r, N) = � ln
Am (r)(v k u)

Bm (r)(v k u)

� �
: (5)

With the method described earlier, a 90 · 90 connectiv-
ity matrix was constructed, with each element quantifying

XSampEnt between two brain areas. In the resulting matrix,
the main diagonal elements were set to zero to eliminate self-
loops. A number of thresholds, corresponding to 70–97.5th
percentiles of XSampEnt in the matrix, were then applied
so that a small proportion of strongest connections were
retained as edges. Thus, the edge density of the resulting
XSampEnt network was the same as that of the correspond-
ing LinCorr network, facilitating comparisons of characteris-
tics between the two types of networks.

In this study, we hypothesized that XSampEnt might cap-
ture brain connectivity which cannot be explained by the
LinCorr method. This was examined by comparing various
topological characteristics of the XSampEnt and LinCorr
networks. Since both types of networks were constructed
from the same fMRI data of the same set of subjects, any
differences found in this study can be attributed to the dif-
ference in the connectivity measures. In this study, we exam-
ined topological characteristics often discussed in the brain
network literature. First, we examined the node degree, or
the number of edges at each node. In particular, we examined
the distribution of node degrees from each subject’s net-
works (LinCorr and XSampEnt) by Kolmogorov–Smirnov
(KS) tests (Clauset et al., 2009) to compare against known
parametric distributions: a power law distribution, an expo-
nentially truncated power law distribution, and an exponen-
tial distribution. Furthermore, we also compared the degree
distributions directly between the LinCorr and XSampEnt
networks for each subject by a KS test. In these analyses, a
significant deviation was detected at p < 0.05 significance
level. A degree distribution is often used to examine hetero-
geneity of node degrees (Amaral et al., 2000; Clauset et al.,
2009). For example, in a class of networks, known as scale-
free networks, the degree distribution follows a power-law
distribution—or scale-free distribution—indicating the ex-
istence of very few extremely high-degree nodes; whereas
the vast majority of nodes have only a small number of
edges (Barabasi and Albert, 1999; Clauset et al., 2009). In
the brain network literature, the degree distribution of a
brain network, whether it is functional or structural, is
found to be an exponentially-truncated power-law distribu-
tion (Achard et al., 2006; Gong et al., 2009; Hayasaka and
Laurienti, 2010; He et al., 2007). It is a variant of power-law
distributions, with its tail truncated; there are still extremely
high-degree nodes, but which are attenuated in magnitude
and abundance compared with power-law distributions
(Mossa et al., 2002).

In addition to degree distributions, we also examined the
clustering coefficient C and the shortest average path length
L (Reijneveld et al., 2007; Rubinov and Sporns, 2010). The
clustering coefficient C is defined as the probability that a
node’s neighbors are also neighbors to each other, and it
summarizes how tightly nodes are interconnected. Large C
is indicative of a network with strong local interconnections.
The path length L is the average of shortest distances be-
tween any two nodes in a network, in terms of the number
of edges separating them. In a network with small L, informa-
tion can travel from any node to any other nodes just by a few
steps. A network with large C and small L is often character-
ized as a small-world network (Watts and Strogatz, 1998), si-
multaneously supporting local specializations and efficient
global communication (Bullmore and Sporns, 2009; Rubinov
and Sporns, 2010; Telesford et al., 2011a). Both C and L have
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been closely examined in the brain network literature, and
brain networks, both anatomical and functional, have been
found to be small-world networks (Bullmore and Sporns,
2009; Humphries and Gurney, 2008; Telesford et al., 2011b).
To compare C and L between the LinCorr and XSampEnt
networks, normalized clustering coefficient and path length
were also calculated. While the path length was normalized
against that of the equivalent random network with the same
degree distribution (Maslov and Sneppen, 2002), the cluster-
ing coefficient was normalized against that of the equivalent
lattice network with the same degree distribution (Sporns and
Zwi, 2004; Telesford., 2011b). In particular, 30 realizations
of random and lattice networks were generated from each
of the original networks, and the resulting path lengths and
clustering coefficients were averaged. This resulted in the av-
erage clustering coefficient Clatt from the lattice networks and
path length Lrand from the random networks, which were
used to normalize the clustering coefficient by C/Clatt and
the path length by L/Lrand. These normalized statistics were
then compared between the LinCorr and XSampEnt net-
works by paired t-tests.

We also examined the assortativity of the LinCorr and
XSampEnt networks. The assortativity in a network is de-
fined as the tendency for high (or low)-degree nodes being
preferentially connected to other high (or low)-degree
nodes (Newman, 2002, 2003). The assortative tendency of
a network can be quantified by the assortativity coefficient
ranging from �1 to 1, calculated as the correlation coeffi-
cient between the origin node degree and the terminus
node degree of all the edges in the network (Newman,
2002, 2003). A highly negative assortativity coefficient indi-
cates that the network is disassortative, with nodes with
dissimilar degrees being preferentially connected, while a
highly positive coefficient indicates that the network is assor-
tative. In general, social networks tend to be assortative,
whereas technological and biological networks tend to be
disassortative (Newman, 2003). However, brain networks
have been found to be assortative (Hagmann et al., 2008;
Joyce et al., 2010). The assortative or disassortative tendency
of a network can also be examined by a 2D connection prob-
ability plot. A 2D connection probability plot, also known as
the correlation profile, shows the probability that an edge

with the origin node degree k is connected to the terminus
node with degree j (Newman, 2003). A 2D connectivity
plot can be generated from a single network by summarizing
the abundance of edges in that network with certain origin
and terminus degrees (Maslov and Sneppen, 2002; Maslov
et al., 2004; Newman, 2003; Song et al., 2006; Xu et al.,
2009). Such plots enable an examination of assortativity in
detail, visually summarizing how nodes with different levels
of degrees are connected in the network. If nodes with sim-
ilar degrees are connected in an assortative network, then
connection probability is elevated along the leading diago-
nal. In contrast, if nodes with dissimilar degrees are con-
nected in a disassortative network, connection probability
is elevated along the axes instead.

Results

Clustering coefficient C and path length L, metrics associ-
ated with small-world characteristics of a network (Telesford
et al., 2011b; Watts and Strogatz, 1998), were first compared
between the LinCorr and XSampEnt networks. This was
done by calculating C and L over a range of percentile thresh-
olds (70–97.5%). The average C and L from all the subjects
are plotted in Figure 1. The data clearly demonstrated that C
and L significantly differed between the two types of net-
works, indicated by asterisks for p < 0.01 (paired t-test).
The clustering coefficient C was significantly larger for the
XSampEnt networks for 70–90th percentile thresholds
(Fig. 1a), while the path length was significantly shorter
for the XSampEnt networks at any threshold (Fig. 1b). In ad-
dition to C and L, the assortativity coefficient Rjk was also
calculated and compared between the two types of networks
(Fig. 1c). Interestingly, Rjk was positive (i.e., assortative) for
the LinCorr networks, whereas Rjk was negative (i.e., disas-
sortative) for the XSampEnt networks. The difference was
significant ( p < 0.01, paired t-test) at any threshold. This dif-
ference in assortativity may be due to the presence of high-
degree mega-hubs in XSampEnt networks that are connected
to a large number of low-degree nodes.

To account for the likely differences in comparable
null networks, we compared normalized clustering coeffi-
cient (C/Clatt) and path length (L/Lrand) as described in the

FIG. 1. Clustering coefficient C, path length L, and assortativity coefficient Rjk at different thresholds The averages of
clustering coefficient C (a), path length L (b), and assortativity coefficient Rjk (c) were calculated from the linear correlation
(LinCorr) and cross-sample entropy (XSampEnt) networks of all the subjects formed at different percentile thresholds (70–
97.5%). The error bars show standard deviations (SD). Significant differences ( p < 0.01) assessed by paired t-tests are indi-
cated by asterisks. Color images available online at www.liebertpub.com/brain
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‘‘Methods’’ section. Figure 2 shows the normalized clustering
coefficients and path lengths. For the XSampEnt networks, the
normalized clustering coefficient was significantly higher
( p < 0.01) than that of the LinCorr networks, except at high
thresholds (95th percentile or higher; Fig. 2a). This indicates
that relative to comparable lattice networks, the clustering was
higher in the XSampEnt networks. On the other hand, the nor-
malized path length was significantly smaller ( p < 0.01) for the
XSampEnt networks compared with the LinCorr networks, ex-
cept at the highest threshold (Fig. 2b). The results support the
observation that the path length is shorter in the XSampEnt net-
works. This was particularly true as the threshold was increased.
These results may be due to the presence of mega-hubs that
are connected to a large portion of the network, enabling
even relatively isolated nodes to reach the remainder of the
network in just a few steps. It should be noted that, according
to the formula provided by Laurienti and coworkers (2011),
the edge density of a 90-node network should be approxima-
tely 7.89 · 90�0.986 = 0.093% or 9.3%. Thus, the 90th percen-
tile threshold may be the most appropriate threshold in this
study, producing networks with a comparable density to
other types of self-organized networks (Laurienti et al.,
2011). For this reason, we focus on the results from the net-
works formed with the 90th percentile threshold in the rest of
this article.

The XSampEnt networks had mega-hubs connected to the
vast majority (up to 84%) of the other nodes, while such
nodes did not exist in the LinCorr networks. This can be
seen in Figure 3, in which all edges originating from the 5
highest-degree nodes are emphasized. In contrast, in the Lin-

Corr networks, there were no nodes with more than 18 con-
nections (20% of nodes). This disparity in connectivity can
be seen in the degree distributions for the LinCorr and
XSampEnt networks (Fig. 4). While the degree distributions
of the XSampEnt networks followed a scale-free distribu-
tion, the degree distributions of the LinCorr networks, al-
though generated from the same time series data, resulted
in exponentially truncated curves as previously reported
(Hayasaka and Laurienti, 2010). KS tests (Clauset et al.,
2009) indicated no evidence of a significant departure from
a power-law distribution among the degree distributions of
the XSampEnt networks ( p-value range: 0.12–0.92), while
8 out of 10 LinCorr networks had degree distributions signif-
icantly deviating from a power-law distribution ( p-value
range: 0.0002–0.18). The exponent of the power-law fit for
the XSampEnt networks was between �2 and �3 (mean –
SD = 2.53 – 0.16).The degree distribution for each network
was fit to a power law, and the corresponding R2 was com-
puted. A paired t-test was used to compare the goodness of
fit between the LinCorr (average R2 = 0.66, 0.059 SD) and
XSampEnt (average R2 = 0.91, 0.026 SD). The networks gen-
erated using XSampEnt exhibited a significantly better fit
( p < 0.0001) than those generated using LinCorr based on a
two-tailed T-test.

These are interesting findings, as the vast majority of
brain network studies have identified truncated degree distri-
butions rather than scale-free distributions (Bullmore and
Sporns, 2009), with just a few exceptions (Eguiluz et al.,
2005; van den Heuvel et al., 2008). This degree distribu-
tion difference has significant implications for fundamental

FIG. 2. Normalized clustering coefficient
and path length at different thresholds. The
normalized clustering coefficient (C/Clatt)
(a) and path length (L/Lrand) (b) were calcu-
lated at different percentile thresholds
(70–97.5%) and averaged across subjects.
The plots show the mean of the normalized
statistics, along with the SD as error bars.
Significant differences ( p < 0.01) assessed by
paired t-tests are indicated by asterisks.
Color images available online at
www.liebertpub.com/brain

FIG. 3. A XSampEnt network and a Lin-
Corr network. The XSampEnt network (top
left) and the LinCorr network (top right) were
generated from the same data for one of the
subjects. The nodes are embedded in the brain
space according to their anatomical coordi-
nates. To examine the number of connec-
tions mediated by hubs, the edges originating
from the five highest degree nodes in each
of these networks are also shown (bottom).
The XSampEnt network shows a few
mega-hubs that are connected to the vast ma-
jority of nodes (bottom left). On the other
hand, although there are some hub nodes
mediating a dozen or so connections in the
LinCorr network, there are no mega-hubs
with a tremendously large degree (bottom
right). Color images available online at
www.liebertpub.com/brain
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property differences between the XSampEnt and LinCorr net-
works. For example, the XSampEnt-derived networks would
have shorter connections between nodes and might be more re-
sistant to a random node failure but would be tremendously vul-
nerable to failure of a hub (Albert et al., 2000). In contrast, the
LinCorr networks with truncated degree distributions would be
more resistant to hub failure (Achard et al., 2006). Mega-hubs
in the XSampEnt networks also suggest that such hubs can exist
if both linear and nonlinear dynamics are considered. We also

note that the SampEnt (Richman and Moorman, 2000) in our
XSampEnt networks was negatively correlated with degree
(R =�0.624), indicating that the fMRI time series of mega-
hubs are themselves dynamically more regular than that of
nonhubs. In some way, regular dynamical activity at a node
aids in its forming nonlinear connections with other nodes.

The location of the hubs within the brain was determined
by mapping the degree of each node back into brain space.
Figure 5 shows the location of the network hubs (defined at
the top 20% of nodes). We recognize the arbitrary nature of
a threshold such as this, but the purpose of this figure is to
simply demonstrate the spatial location of the high-degree
nodes. This was done, because simple averages are inappro-
priate when the degree distribution follows a power law. The
hub maps show the number of subjects for which each node
was considered a hub. In both the LinCorr and XSampEnt
networks, the maximum number of subjects that exhibited a
hub in the same location was 7 out of a possible 10. The
location of the most consistent hubs was markedly different
for the two methods. For LinCorr, the most consistent hub
was in the right superior, medial frontal gyrus. Additional
areas of relatively high consistency were the bilateral insula,
the left Rolandic operculum, left mid cingulum, and the right
supramarginal gyrus. For XSampEnt networks, the most con-
sistent hub was located in the left motor cortex. Additional
areas of relatively high consistency included the right inferior
frontal gyrus, the left superior, medial frontal gyrus, left
supramarginal gyrus, left Rolandic operculum, and the left in-
ferior temporal gyrus. On comparing the methods, it is clear
that the Rolandic operculum and the supramarginal gyri were
consistent hubs. The superior, medial frontal gyrus was a hub
based on both methods but it was on the right in LinCorr and
on the left in XSampEnt. A noticeable absence of hubs was
consistent for the two methods in the left superior middle
frontal gyrus and the right superior parietal lobe.

To further understand the relationship between change in
clustering and degree, we plotted the nodal clustering coeffi-
cient Ci against the node degree. As can be seen in Figure
6a, there is no clear relationship between Ci and node degree
in a LinCorr network. On the other hand, Figure 6b shows el-
evated Ci among low-degree nodes and attenuated Ci among
high-degree nodes in the XSampEnt network. While these
plots are based on the network data from a single subject,
the pattern is consistent across subjects. These results indicate

FIG. 4. Degree distributions. The degree distributions of the
networks with connectivity based on XSampEnt (blue) and
LinCorr (red) are shown. The x-axis denotes the node degree,
and the y-axis denotes the complimentary cumulative distribu-
tion function (1-CDF) describing the abundance of nodes with
a certain degree or higher. The degree distributions from the
XSampEnt networks follow a scale-free distribution charac-
terized by a straight line on a log–log plot, indicating that
there are a few nodes with an extremely large degree or
mega-hubs; while the vast majority of nodes have just a few
connections at most. On the other hand, the degree distribu-
tions from the LinCorr networks are exponentially truncated.
Although high-degree nodes exist in the LinCorr networks,
with k& 20, such nodes have far less connections than the
mega-hubs observed in the XSampEnt networks. Color
images available online at www.liebertpub.com/brain

FIG. 5. Hub maps showing the
consistency of the location of the
top 20% of all brain hubs. The color
bar indicates the number of subjects
that had a hub in each brain region.
The maximum number of sub-
jects with the same hub location
was seven for both the LinCorr
and the XSampEnt networks (dark
red). The right side of the image
is the right side of the brain.
Color images available online at
www.liebertpub.com/brain
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that these two types of networks have different topological or-
ganizations. We also compared Ci and node degree between
the LinCorr and XSampEnd networks (Fig. 6c and d, respec-
tively), and we found no apparent relationships between the
two types of networks.

Providing further support to the substantial differences be-
tween the XSampEnt and LinCorr networks are the connec-
tion probability plots. An example from one of the subjects is
shown in Figure 6. These plots show the likelihood of edges
connecting a node with degree K(i) at the origin to another

FIG. 6. The relationship between node
degree and clustering coefficient. The node
degree and the node clustering coefficient Ci

was plotted from the LinCorr network (a)
and the XSampEnt network (b) generated
with the top 10% strongest connections
from the same subject. While the variability
of Ci seems to decrease as the node degree
increases in the LinCorr network (a),
there is no obvious relationship between Ci
and the degree. On the other hand, in the
XSampEnt network, Ci is elevated for low-
degree nodes but it decreases for nodes with
higher degrees (b). When Ci and the node de-
gree are compared between the two types of
networks [(c) and (d), respectively], no ob-
vious relationship can be observed. These
patterns are consistent among the other
subjects. Color images available online at
www.liebertpub.com/brain

FIG. 7. Connection probability plots. Each plot shows the connection probability of a network, representing how likely an
edge with a certain origin degree and a terminus degree exists in the network. The connection probability is concentrated
along the x- and y-axes in the XSampEnt network from a representative subject (left), indicating that nodes with a variety
of degrees are connected to high-degree nodes. This concentration along the axes is a sign of disassortative connectivity
in which nodes with disparate degrees tend to be preferentially connected. On the other hand, the LinCorr network from
the same subject (right) shows a concentration of probability along the diagonal, resulting from nodes with similar degrees
being connected with each other. This is an indication of assortative connectivity in the LinCorr network. The inset shows the
connection probability plot of the LinCorr network scaled to the comparable size of that of the XSampEnt network; this is to
emphasize the differences in the connection probability plots between the two networks. Color images available online at
www.liebertpub.com/brain
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node with degree K(j) at the terminus. From Figure 7, we can
easily see that the LinCorr network is assortative (assortativ-
ity coefficient 0.236 – 0.100) with elevated connection prob-
ability along the main diagonal (Fig. 7, right). On the other
hand, the XSampEnt network is disassortative (assortativity
coefficient �0.463 – 0.048), which is indicated by connec-
tion probability spanning along the axes (Fig. 7, left). It is
interesting to note that the connection probability among
low-degree nodes (degree < 20) in the XSampEnt network
somewhat resembled that of the corresponding LinCorr net-
work. To facilitate the comparison, the connection probabil-
ity plot for the LinCorr network was comparably scaled
down and displayed as an inset in Figure 7, left. Despite
this similarity, however, the connection probability attribut-
able to high-degree nodes is concentrated along the axes, ef-
fectively lowering the assortativity coefficient to negative.

Our results described earlier seem to contradict with the re-
sults found by Hartman and colleagues (2011), in which the
degree of nonlinearity, although significant, was very small
in magnitude. We believe that this discrepancy is due to the
Gaussianization process applied to Hartman and colleagues’s
data. To demonstrate this point, we examined the effects of
Gaussianization on the network metrics by Gaussianizing
our data and examining the properties of the resulting net-
works. For our Gaussianization process, rather than sorting
perfect Gaussian percentiles into the data rank order, we sorted
Gaussian random numbers produced by Gasdev function as
described in the Numerical Recipes (Press, 1992). This is be-
cause real samples of Gaussian data are not perfectly Gaussian
except in the limit approaching infinite data length. For each
data set, we produced 99 Gaussian surrogates and XSampEnt
networks were constructed based on the Gaussianized fMRI
data. We also Gaussianized and then randomized multivariate
phase angles (Prichard and Theiler, 1994), and the effect of
this process on the XSampEnt network measures was also ex-
amined (again, 99 Gaussianized and phase-angle randomized
[GaussPAR] surrogates). We found that Gaussianizing the
data lowered the clustering coefficient of the XSampEnt

networks without affecting the path length. Most notably,
Gaussianzing the data markedly degraded the scale-free prop-
erty of the XSampEnt networks as can be seen in the degree
distributions in Figure 8. The additional step of phase-angle
randomization produced almost no difference from Gaussiani-
zation alone; the cumulative degree distribution from the
GaussPAR data closely followed the degree distribution from
the Gaussianization only data. We also noted that Gaussianza-
tion (with or without phase-angle randomization) did not com-
pletely transform the degree distribution of the XSampEnt
network to that of the LinCorr network; we interpret this as
the ability of XSampEnt to assess pattern synchronization as
well as nonlinearity.

Discussion

In this work, we demonstrated interesting characteristics
of brain networks formed by functional connectivity based
on XSampEnt compared with the widely used LinCorr.
The primary finding was that resulting XSampEnt networks
exhibited characteristics of scale-free networks, with mega-
hubs connected to the majority of nodes in the network.
Such hubs have far more connections than typical hubs
found in functional brain networks constructed with LinCorr
connectivity. The degree distributions of the XSampEnt net-
works followed a power-law distribution; to the best of our
knowledge, this has not been observed in a brain network
of a comparable scale (Bullmore and Sporns, 2009). While
the location of the brain hubs differed between the two
types of networks, there were consistent hubs in the medial
frontal, opercular cortex, and suparmarginal gyrus. The
XSampEnt had its major hub in the left motor cortex, while
the primary hub in the LinCorr networks was in the right su-
perior frontal gyrus. It is interesting to note that in these data,
neither type of network exhibited the primary hub in precu-
neus, and the location was often reported to be the core of
human brain networks (Hagmann et al., 2008). The LinCorr
had this regions show up as a relatively consistent hub across
subjects, but it was not among the most consistent regions.
We can only speculate why hubs in the XSampEnt networks
favored areas of motor cortex. Under resting conditions, the
participant’s sole task is to simply remain as still as possible.
Perhaps this leads to numerous inputs and outputs to and from
the motor cortex of a nonlinear nature involved in the inhibi-
tion of unwanted movement. Further work comparing the lo-
cation of the mega-hubs from rest to various cognitive and
motor tasks provides insights into the role and importance
of these hubs. We hypothesize that the location of the
mega-hubs will be associated with brain regions that are crit-
ical in performing specific tasks. While we view the brain as a
distributed system, there is strong evidence for localization of
function as well. The mega-hubs may be situated in areas that
would be the most activated by the task but connect through-
out the brain to enable distributed information processing.

We also discovered that the XSampEnt networks had a
higher clustering coefficient and a shorter path length com-
pared with that of the LinCorr networks constructed on the
same data. Our examination on assortativity also demon-
strated that the XSampEnt brain networks were disassortative
as in many other biological networks reported in the literature
(Newman, 2003). The changes in clustering and assortativity
are most likely attributed to the presence of mega hubs. Such

FIG. 8. Degree distributions of Gaussianized data. Degree
distributions (1-CDF) are plotted from XSampEnt networks
with Gaussianized data, with and without phase-angle random-
ization (PAR). As a visual comparison, the degree distribu-
tions for the corresponding LinCorr and XSampEnt (without
Gaussianization) networks are also shown. Color images
available online at www.liebertpub.com/brain
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hubs are connected to a very large percentage of all nodes in
the network, most of which are low degree. This results in an
increase in the clustering in low-degree nodes and transforms
the network from assortative to disassortative. It is important
to note that the size of the networks used here likely contrib-
uted to this outcome. Since the networks were limited to 90
nodes, the mega-hubs (essentially out of necessity in order
to, in fact, be mega-hubs) connected a large percentage of
all nodes. In a network with many more nodes, this would
not likely be the outcome because all the low-degree nodes
would not be connected to a common hub. Such a situation
would produce disassortative networks with lower clustering
rather than with higher clustering.

Our results using XSampEnt also demonstrate its sensitiv-
ity to pattern synchronization between time series data
(Richman and Moorman, 2000). This is an important distinc-
tion from LinCorr, in which the temporal ordering of data
points is simply ignored. Mutual information, another
method to measure nonlinear association, similarly does
not assess temporal relationships in patterns between time se-
ries; it only assesses zero-lag relations (Hlinka et al., 2011).
In particular, Hlinka and associates (2011) stated:

‘‘When linear correlation is used as a measure of func-
tional connectivity, there are some implicit assumptions
made. The first is that the information in the temporal order
of the samples can be ignored (both within each time series
and the mutual interaction). While the extent of justifiability
of this assumption deserves exploration of its own, we keep
this interim assumption for the purposes of this paper, not
least in order to keep the comparison of linear correlation
to nonlinear measures [mutual information] fair.’’

As we explored the validity of this assumption in this
work, we were able to demonstrate that there are obviously
important nonlinear relations in the temporal order. That
said, we would like to note that XSampEnt’s sensitiv-
ity to nonlinear association does not mean it is ‘‘better’’
or ‘‘worse’’ than LinCorr. Rather, our results demonstrate
that the functional brain networks constructed with the
added nonlinear components result in drastically different
networks from those constructed with the more traditional
linear components alone and, thus, may provide additional
valuable information in future investigations regarding
brain function during active processing tasks.

While examining functional connectivity in fMRI data is
becoming a popular research topic among neuroimaging re-
searchers (Smith et al., 2011), a limited number of time
points in typical fMRI time series data can pose a serious
challenge in application of more sophisticated connectivity
methods based on information theory, such as XSampEnt.
Information theory-based methods are found to be the most
useful in EEG and MEG time series data with a large number
of temporal data points with a small number of recording
sites (Ponten et al., 2007; Rubinov et al., 2009; Stam et al.,
2007; Vakorin et al., 2010; Xie et al., 2010). On the other
hand, typical fMRI data have a large number of recording
sites (or voxels) and a small number of time points. The lim-
ited number of time points may pose a challenge in reliably
estimating functional connectivity between two brain areas,
and a large number of nodes necessitate calculating tremen-
dously large number of connectivity measures. If there are N
nodes, then there are N (N�1)/2 possible pairs of nodes.

While calculating such a large number of correlation coeffi-
cients has been done in multiple studies (Eguiluz et al., 2005;
Hayasaka and Laurienti, 2010; van den Heuvel et al., 2008),
calculating a large number of nonlinear connectivity mea-
sures may be computationally challenging. A comparison
of LinCorr and XSampEnt networks formed at a finer re-
gional parcellation would be a next logical step in examining
their differences further. We are in the process of implement-
ing methods that enable us to use this methodology in voxel-
based networks with *20,000 nodes; the results will be
presented in our future work.

In summary, our findings demonstrate the differences be-
tween assessing both linear and nonlinear connections when
building a network based on time series data versus assessing
just the linear connections. Although a LinCorr coefficient is
widely used as a measure of connectivity in various time series
data, due to its simplicity and computational ease, it is only
sensitive to linear relationships and will miss other underlying
nonlinear connectivity in the data, if such nonlinearities exist.
The XSampEnt approach assessing both linear and nonlinear
connections produced networks with mega-hubs. These
mega-hubs connect to nearly all the nodes in the network,
with resultant effects on clustering, pathlength, and assortativ-
ity. This is the first work clearly demonstrating differences be-
tween functional brain networks using linear and nonlinear
techniques. The key finding is that the nonlinear technique
produced network with scale-free degree distributions. There
remains debate among the neuroscience community as to
whether human brains are scale free, and these data support
the argument that the human brain is perhaps scale free.

While this work clearly shows differences in the network
topology between LinCorr and XSampEnt networks, it is not
possible at this time to conclude which method is more cor-
rect. Given that there is no gold standard to be used as a com-
parator, such a conclusion should wait for studies that
combine cognitive function with network analyses. Studies
will have to be designed to determine whether one or the
other method produces networks that better explain cognitive
function. Given that the networks exhibited quantitative and
qualitative differences, presumably one of the methods will
better reflect cognition than the other. This future work is re-
quired to determine whether the neuroscience community
should shift focus more toward information theory-based
connectivity measures that are sensitive to various types
of associations, both linear and nonlinear, such as our XSam-
pEnt technique. It should be noted that the correlation-based
linear method should not be considered the gold standard just
because it came first and is easier to perform, just as the
XSampEnt should not be considered a new gold standard.
Obviously, we were able to uncover a functional brain net-
work structure previously unobserved by the conventional
LinCorr method. While further research is needed to fully
characterize the linear and nonlinear interactions between
brain regions, this XSampEnt technique provides new evidence
of how the brain may work and shows that the self-organized
human brain network, while perhaps the most complex of bio-
logical systems, may be operationally organized similar to
other biological systems.
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