Table 2.
Particle-size distribution models.
Name | Model† | Parameters |
---|---|---|
Anderson (AD [8]) |
b, c, f 0, d 0 | |
| ||
Fredlund4P (F4P [11]) |
a, n, m, d
f
(d m = 0.0001 mm) |
|
| ||
Fredlund3P (F3P [11]) |
a, n, m
(d m = 0.0001 mm) |
|
| ||
Modified logistic growth (ML [43]) |
a, b, c | |
| ||
Offset-nonrenormalized lognormal (ONL [9]) |
G(X) = F(X) + c, where X = In(d) |
μ, σ, c |
| ||
Offset-renormalized lognormal (ORL [9]) |
G(X) = (1 − ε)F(X) + ε [F(X) defined in ONL model] |
μ, σ, ε |
| ||
Skaggs (S [12]) |
, where D = (d − d 0)/d 0 d 0 = 0.002 mm for T1; d 0 = 0.001 mm for T2, T3; F(d 0): fraction < d 0 |
u, c |
| ||
van Genuchten type (VG [7]) |
F(d) = [1+(d
g/d)n] −m, where m = 1 − 1/n |
d g, n |
| ||
van Genuchten type modified (VGM [34]) |
F(d) = 1 − (1 − F
min)[1+(ad)n]−m, where m = 1 − 1/n; F min, fraction of minimum particle size |
a, n |
| ||
Weibull (W [10]) |
F(d) = c + (1 − c){1 − exp(−aD
b)}, where D = (d − d min)/(d max − d min) d max = 2 mm, d min = 0.002 mm for T1; d max = 1 mm, d min = 0.001 mm for T2, T3 |
a, b, c, |
† d: particle diameter in mm.
‡ erf[]: error function.