Skip to main content
. 2014 Jul 7;2014:109310. doi: 10.1155/2014/109310

Table 2.

Particle-size distribution models.

Name Model Parameters
Anderson
(AD [8])
F(d)=f0+barctan(clogdd0) b, c, f 0, d 0

Fredlund4P
(F4P [11])
F(d)=1{ln[exp(1)+(a/d)n]}m{1-[ln(1+df/d)ln(1+df/dm)]7} a, n, m, d f  
(d m = 0.0001 mm)

Fredlund3P
(F3P [11])
F(d)=1{ln[exp(1)+(a/d)n]}m{1-[ln(1+0.001/d)ln(1+0.001/dm)]7} a, n, m
(d m = 0.0001 mm)

Modified logistic growth
(ML [43])
F(d)=1[1+aexp(-bdc)] a, b, c

Offset-nonrenormalized
lognormal
(ONL [9])
G(X) = F(X) + c, 
where X = In⁡(d)  
F(X)=1+erf[(X-μ)/(σ2)]2(Xμ)
F(X)=1-erf[(X-μ)/(σ2)]2(X<μ)  
μ, σ, c

Offset-renormalized lognormal
(ORL [9])
G(X) = (1 − ε)F(X) + ε 
[F(X) defined in ONL model]
μ, σ, ε

Skaggs
(S [12])
F(d)=  {1+(1F(d0)-1)exp[-uDc]}-1, 
where D = (dd 0)/d 0   
d 0 = 0.002 mm for T1; d 0 = 0.001 mm for T2, 
T3; F(d 0): fraction < d 0
u, c

van Genuchten type
(VG [7])
F(d) = [1+(d g/d)n]  m,  
where m = 1 − 1/n
d g, n

van Genuchten type modified
(VGM [34])
F(d) = 1 − (1 − F min⁡)[1+(ad)n]m, 
where m = 1 − 1/n; 
F min⁡, fraction of minimum particle size
a, n

Weibull
(W [10])
F(d) = c + (1 − c){1 − exp⁡(−aD b)}, 
where D = (dd min⁡)/(d max⁡d min⁡)  
d max⁡ = 2 mm, d min⁡ = 0.002 mm for T1;  
d max⁡ = 1 mm, d min⁡ = 0.001 mm for T2, T3
a, b, c,

d: particle diameter in mm.

erf⁡[]: error function.