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Abstract

Objective—Angiogenesis is the formation of new blood vessels through endothelial cell

sprouting. This process requires the mitogen activated protein kinases (MAPK), signaling

molecules that are negatively regulated by the MAPK phosphatase, MKP-1. The purpose of this

study was to evaluate the role of MKP-1 in neovascularization in vivo and identify associated

mechanisms in endothelial cells.

Approach and Results—We used murine hindlimb ischemia as a model system to evaluate the

role of MKP-1 in angiogenic growth, remodeling, and arteriogenesis in vivo. Genomic deletion of

MKP-1 blunted angiogenesis in the distal hindlimb and microvascular arteriogenesis in the

proximal hindlimb. In vitro, endothelial MKP-1 depletion/deletion abrogated VEGF-induced

migration and tube formation, and reduced proliferation. These observations establish MKP-1 as a

positive mediator of angiogenesis and contrast with the canonical function of MKP-1 as a MAPK

phosphatase, implying an alternative mechanism for MKP-1-mediated angiogenesis.

Cloning and sequencing of MKP-1-bound chromatin identified localization of MKP-1 to exonic

DNA of the angiogenic chemokine fractalkine, and MKP-1 depletion reduced histone H3 serine

10 dephosphorylation on this DNA locus and blocked fractalkine expression. In vivo, MKP-1

deletion abrogated ischemia-induced fractalkine expression and macrophage and T-lymphocyte

infiltration in distal hindlimbs, while fractalkine delivery to ischemic hindlimbs rescued the effect

of MKP-1 deletion on neovascular hindlimb recovery.

Conclusions—MKP-1 promoted angiogenic and arteriogenic neovascular growth, potentially

through dephosphorylation of H3S10 on coding-region DNA to control transcription of angiogenic

genes such as fractalkine. These observations reveal a novel function for MKP-1 and identify

MKP-1 as a potential therapeutic target.
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Introduction

Angiogenesis, the process of endothelial cell (EC) sprouting from existing vessels to form

new vessels is essential for myriad physiological processes and pathological conditions

including development and growth, regeneration and repair, and tumor growth and

metastasis1,2. Despite intense study, the mechanisms underlying the activation, progression,

and regulation of angiogenesis remain incompletely understood1. The vascular endothelial

growth factor (VEGF) has been identified as one of the most potent cytokines capable of

initiating and maintaining this process, and has long been a target for both pro- and anti-

angiogenic therapies3,4. Despite its potency in model systems, both delivery of VEGF,

through recombinant proteins or gene therapy, and inhibition of VEGF for cancer therapy

have had mixed clinical success 4–6. Thus, elucidating the molecular and regulatory

mechanisms underlying this process is essential for both therapeutic formation of new

vessels that feed growing and regenerating tissues as well as prevention of aberrant vascular

growth that drives tumor size and aggression1,6.

One of the key mechanisms that regulates the cellular response to growth factors, cytokines,

and environmental stresses is the MAPK signaling pathway7. This pathway consists of

several families of primary kinase effectors, extracellular-related kinase (Erk), p38, and c-

Jun N-terminal kinase (JNK)8. These MAPK are required for vascular growth and

development9–12 and positively mediate angiogenic processes in endothelial cells, including

migration, proliferation, and tube formation13–17. They are deactivated through Thr/Tyr

dephosphorylation by the nuclear phosphatase, mitogen-activated protein kinase

phosphatase-1, MKP-1 (also known as DUSP1 or CL100)18.

In this study, we investigated the role of MKP-1 in angiogenic and arteriogenic

neovascularization. Given the requirement of MAPK activation for vascular development

and angiogenesis, we previously hypothesized that MKP-1 negatively regulates

angiogenesis; surprisingly, however, we found that MKP-1 positively mediated EC

migration and aortic ring sprouting in response to VEGF stimulation in vitro19, suggesting

that MKP-1 may also have a non-canonical function that plays a positive role in

neovascularization independently or concurrently with its action on MAPK.

Further recent observations from our laboratory suggested a potential effector of this

putative non-canonical signaling: MKP-1-mediated chromatin modification. Using a

“substrate trap” cysteine-to-serine (C259S) mutant of MKP-1 (CS-MKP-1), which results in

stable binding of MKP-1 to its substrates, we identified MKP-1 as the only known

mammalian histone H3 serine 10 (H3S10) phosphatase, which is required for VEGF-

induced H3S10 dephosphorylation20. Here, we describe the effect of genomic deletion of

MKP-1 on angiogenic and arteriogenic recovery from hindlimb ischemia in vivo and

demonstrate a positive role for endothelial MKP-1 in angiogenic gene expression associated
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with MKP-1-mediated exonic histone H3 dephosphorylation on the angiogenic and

inflammatory gene, fractalkine.

Materials and Methods

Materials and Methods are available in the online-only supplement available at

atvb.ahajournals.org.

Results

MKP-1 knockout (KO) and littermate wildtype (WT) mice (N=11–20 per group) underwent

surgical induction of hindlimb ischemia21,22, and angiogenic and arteriogenic recovery was

evaluated over 28 days by longitudinal laser Doppler perfusion imaging (LDPI, Figure 1A,

B). Exponential curve-fit analysis demonstrated that MKP-1 KO mice featured significantly

slower recovery compared to WT (τWT = 4.44 ± 0.99 days, τKO = 13.7 ± 4.08 days; p =

0.04), but recovered to the same plateau by day 28 (PWT = 0.48 ± 0.03, PKO = 0.54 ± 0.09; p

= 0.58). The perfusion ratio was significantly lower in KO limbs at days 3 and 7, and KO

mice recovered to WT levels by day 28.

Based on these observations, days 7 and 28 were selected for quantitative microCT

angiography analysis. Angiogenesis and arteriogenesis are linked in the hindlimb ischemia

model, as sufficient collateralization of the upper hindlimb is necessary for perfusion and

angiogenesis of the lower hindlimb and sufficient capillary networks are required for

arteriogenesis and collateralization. Thus, angiogenesis and collateral arteriogenesis act in

concert to establish a functional vascular network in both proximal and distal parts of the

ischemic limb. However, while these mechanisms of new vessel formation cannot be

spatially divorced, they are dominant in different regions of the limb, as has been described

previously23,24. Vascular growth in the thigh occurs primarily through arteriogenesis

stemming from increased wall shear stress in collateral vessels, whereas it proceeds

predominantly through angiogenesis in the lower hindlimb (calf) as a result of tissue

hypoxia23,24. Therefore, these two regions of interest were selected for independent analysis.

In the distal hindlimb, WT mice featured a biphasic recovery characterized by increased

vascularity above contralateral controls at day 7 (p < 0.05 vs. control) and remodeling to

control values by day 28 (p > 0.05 vs. control). In contrast, vascular parameters of KO mice

failed to exceed unoperated controls at either time point, with significantly lower vascularity

compared with ischemic WT limbs at day 7 and equivalent values at day 28 (Figure 1C–G;

unoperated control values indicated by dotted lines). In the proximal hindlimb, there were no

differences in vascular parameters between genotypes or between control and ischemic

limbs, with the exception of connectivity at day 7, in which ischemic limbs of WT mice had

significantly greater connectivity than the contralateral control and ischemic limbs of KO

mice (Supplemental Figure I).

As microCT angiography is limited by resolution to assess patent vessels of ~20μm in

diameter, microvascular angiogenesis and arteriogenesis were evaluated in both regions of

interest by immunofluorescent staining for capillaries (EC marker BS-1 lectin) and arterioles

(αSMA+, BS-1 lectin-stained vessels) at days 7, 14, and 28. In the gastrocnemius (GC)
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muscle of the lower hindlimb, ischemia significantly increased capillary density in WT mice

compared to controls (Figure 2A, B). This increase was delayed in MKP-1 KO mice, with

significantly lower values at days 7 and 14 but recovery to WT values by day 28. In contrast,

capillary density was not significantly altered by MKP-1 deletion in the soleus muscle (SM)

of the upper hindlimb (Figure 2C, D). Arteriole formation was not affected by MKP-1

deletion in the GC muscle (Figure 2E, F), but in the SM muscle of the upper hindlimb,

arteriole density was significantly higher in WT mice compared to KO and controls at day 7

(Figure 2G, H).

To evaluate the time course of MKP-1 expression in ischemic hindlimbs, SM and GC

sections of WT mice were immunostained for MKP-1 at days 7, 14, and 28. MKP-1 was

induced by hindlimb ischemia in both regions at day 7 and decreased to control levels by

day 28 (Supplemental Figure II).

In vitro, MKP-1 depletion by siRNA (Figure 3A) completely abolished VEGF-induced

human umbilical vein endothelial cell (HUVEC) migration (Figure 3B, C). Similarly, mouse

aortic endothelial cells (MAEC) from KO mice exhibited the same migratory deficit

(Supplemental Figure IIIa, b). MKP-1 depletion significantly reduced HUVEC proliferation

overall, though cells remained responsive to VEGF stimulation (Figure 3D). MKP-1

depletion also abrogated VEGF-induced HUVEC tube formation on Matrigel with reduced

length, number of nodes, and number of branches without altering cell number (Figure 3E,

F).

Next, to identify putative gene targets for MKP-1 regulation through chromatin interactions

in HUVEC, we immunoprecipitated CS-MKP-1-bound chromatin, and cloned and

sequenced associated DNA. While sequencing of vehicle-treated samples returned only

pBluescript plasmid, in VEGF treated samples, three independent clones were identified;

these fragments overlapped one another on the proximal end of exon 3 of the angiogenic and

inflammatory gene, fractalkine, also known as cx3cl1 (Figure 4A).

To test whether MKP-1 specifically dephosphorylates histone H3 serine 10 on this gene

locus, we immunoprecipitated phospho-H3S10-bound chromatin in control or MKP-1

depleted HUVEC and performed RT-PCR for the proximal region of fractalkine exon 3.

MKP-1 depletion prevented dephosphorylation of H3S10 on this gene locus at 0 and 30

minutes after VEGF treatment, returning to control levels by 90 minutes, but remained

dephosphorylated at all time points in control cells (Figure 4B). In contrast, binding of total

histone H3 to this DNA locus was not affected by MKP-1 depletion (Figure 4C).

Next, we evaluated fractalkine induction by VEGF in HUVEC. In cells depleted of MKP-1,

VEGF-induced fractalkine expression was completely ablated at both the message (Figure

4D) and protein (Figure 4E) levels. Similarly, MKP-1-null MAEC exhibited reduced VEGF-

induced fractalkine expression (Supplemental Figure IIIc). Functionally, fractalkine-

depleted HUVEC were no longer significantly responsive to VEGF-induced migration

(Figure 4F, G), and treatment of HUVEC (Figure 4H) or MAEC (Supplemental Figure IIId,

e) with recombinant fractalkine (100ng/ml) rescued the effect of MKP-1 deletion on EC

migration.
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To verify that MKP-1 mediated fractalkine gene regulation in vivo, we evaluated fractalkine

protein expression in both GC and SM muscles of control and ischemic hindlimbs of WT

and MKP-1 KO mice at days 7, 14, and 28 by immunofluorescence. Fractalkine staining co-

localized with endothelial cells in the ischemic hindlimbs of both WT and KO mice

(Supplemental Figure IV), demonstrating that ECs in the ischemic hindlimb express

fractalkine, though fractalkine staining was not exclusive to ECs, consistent with its role as a

soluble signaling molecule in its cleaved form. In GC muscle of the lower hindlimb,

fractalkine expression was significantly induced over control levels in ischemic limbs of

WT, but not KO, mice at day 7, confirming the MKP-1 dependence of fractalkine

expression. Over time, expression decreased to negligible levels in both genotypes by day 28

(Figure 5A, B). Background fractalkine levels were moderately elevated in control limbs at

day 7 compared with days 14 and 28, suggesting a systemic circulation of cytokines that

resulted in contralateral induction, though this was insufficient to cause inflammatory cell

infiltration in distal KO or control limbs (Figure 5G, H, J, K). This may suggest a threshold

expression level necessary for inflammatory cell infiltration, which was not met in either

control or KO limbs at any time point. In SM muscle of the upper hindlimb, fractalkine

expression was not significantly induced in either ischemic or control limbs of either

genotype (Figure 5C). While monocyte/macrophage infiltration was significantly induced by

ischemia at day 7 in SM sections, it was less robust than in GC muscle, and there were no

differences between WT and MKP-1 KO mice (Figure 5I). T-lymphocyte staining in SM

sections was minimal and exhibited no differences between genotypes (Figure 5L).

Next, we quantified the time course of VEGF protein expression in GC and SM muscles of

control and ischemic hindlimbs of WT and MKP-1 KO mice. In the GC muscle, VEGF

expression was induced by ischemia in WT mice, though expression did not differ

significantly from KO levels (Figure 5D, E). There were no differences at days 14 or 28. In

WT SM muscle, VEGF was significantly induced by hindlimb ischemia at day 7 and

decreased through day 28, while in KO mice VEGF expression was not elevated at day 7 but

increased over time (Figure 5F). VEGF expression levels were lower in SM than in GC

muscles for both genotypes.

Fractalkine is a potent chemotactic agent for inflammatory leukocytes25–27, so to evaluate

the role of MKP-1 in the time course of inflammation, GC and SM sections from WT and

MKP-1 KO mice were probed for monocytes/macrophages (CD68, Figure 5G–I), and T-

lymphocytes (CD3, Figure 5J–K) at 7, 14, and 28 days. In GC muscle, monocyte/

macrophage and T-lymphocyte infiltration was minimal in control limbs and in ischemic

limbs of KO mice, but was significantly elevated in ischemic limbs of WT mice at all time

points evaluated (Figure 5G, H, J, K). In contrast, in SM muscle, monocyte/macrophage

infiltration was elevated at day 7 in both WT and KO mice, and diminished to negligible

levels by day 28. T-lymphocyte staining was minimimal in all groups at all time points in

SM sections. Immunofluorescence specificity was demonstrated in positive and negative

controls (Supplemental Figure V).

Finally, to test whether delivery of recombinant fractalkine would rescue the effect of

MKP-1 deletion, WT and MKP-1 KO mice (N = 6 per genotype) received hindlimb

ischemia and were then injected intramuscularly immediately after surgery with 5μg
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recombinant mouse fractalkine, divided evenly between GC and SM muscles, as described

previously in rats28. While FKN delivery unexpectedly had no effect in WT mice, perfusion

recovery of MKP-1 KO mice was restored to WT untreated levels (data reproduced from

Figure 1 in gray), with no significant differences between WT untreated, WT treated, or KO

treated groups at any time point (Figure 6A, B). Exponential curve-fit analysis revealed no

differences in characteristic time scales between fractalkine-treated WT and fractalkine

treated KO mice (τWT = 9.29 days, τKO = 8.03 days; p = 0.83). GC and SM muscles at day 7

post-ischemia (N = 3 per group) were sectioned and immunostained for capillaries (Figure

6C), arterioles (Figure 6D), fractalkine (Figure 6E), monocyte/macrophages (Figure 6F), and

T-lymphocytes (Figure 6G). For each measure, there were no differences between WT or

MKP-1 KO mice.

Discussion

In this study, we evaluated the role of the nuclear phosphatase, MKP-1, in

neovascularization using hindlimb ischemia as a model system to evaluate angiogenesis,

arteriogenesis, and vascular remodeling. We found that MKP-1 was transiently induced by

hindlimb ischemia and positively mediated neovascular growth in vivo and in vitro, in part

through regulation of the angiogenic and inflammatory chemokine, fractalkine.

Hindlimb ischemia recovery can be characterized as an under-damped feedback control

system with a biphasic response profile featuring an initial phase of vessel growth peaking

above contralateral controls and a later phase of vessel rarefaction and remodeling in which

unnecessary and inefficient vessels are pruned away without changes in functional

perfusion29. In this study, WT mice followed this under-damped biphasic profile, with

vascular parameters elevated above contralateral controls at day 7, and normalized by day

28. In contrast, MKP-1 KO mice responded as an over-damped system, failing to supersede

control values at any time point.

These data demonstrate a critical role for MKP-1 in the early growth phase of neovascular

growth, attributable to a combination of angiogenesis and arteriogenesis. These processes

can be evaluated by 3D vascular network analysis and immunostaining for both capillary

and arteriole formation. MKP-1 deletion inhibited hypoxia-induced angiogenesis in the

distal hindlimb, but did not affect arteriole formation in this region. In the proximal

hindlimb, MKP-1 KO limbs did not show differences in capillary density, but exhibited

transiently reduced arteriogenesis, as measured by arteriole staining. The MKP-1-associated

defect in arteriogenesis was largely limited to the microvasculature as microCT angiography

did not detect differences in vascular network parameters besides connectivity. However, of

the microCT-based parameters, connectivity has been shown to correlate best with

functional perfusion21, suggesting a potential functional importance of MKP-1 in

arteriogenesis. Together, these data implicate MKP-1 as an important regulator of the early

response to ischemia, with downstream effects mirroring the kinetics of MKP-1 expression

in the ischemic limb. These data are consistent with reports that MKP-1 is induced in

ischemic tumor microenvironments30 and is required for VEGF expression and maintenance

of vascular density in hypoxia-exposed lung30. Importantly, the early angiogenic response is

critical for prevention of irreversible myocardial necrosis in ischemic heart disease and is an
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indicator of functional outcome32–33, and mediates revival of tumor cells from dormancy34,

highlighting the relevance of these findings beyond accelerated recovery from peripheral

artery disease.

To evaluate the molecular mechanisms by which MKP-1, a negative regulator of MAPK,

may serve a positive role in angiogenic function of endothelial cells, we evaluated the effect

of MKP-1 depletion/deletion on HUVEC/MAEC angiogenesis in vitro. We found that

endothelial MKP-1 is required for VEGF-induced migration and tube formation, and

positively contributed to EC proliferation independently of VEGF. Initially, these data

appear to conflict with a recent report that MKP-1 overexpression reduced endothelial cell

motility and proliferation35. In those experiments, however, MKP-1 was expressed to supra-

physiological levels, which may lead to non-physiological outcomes. Indeed, in that report,

depletion of MKP-1 reduced VEGF-stimulated proliferation, consistent with the pro-

angiogenic role described here. These data are consistent with our prior observations that

MKP-1 is required for VEGF-induced EC migration and aortic ring sprouting18. Together,

this study implicates MKP-1 as an important regulatory molecule in angiogenesis and

suggests that tight control of MKP-1 levels is required for proper EC function.

Our prior discovery that MKP-1 is an H3S10 phosphatase19, led us to hypothesize that

MKP-1 may regulate EC function through chromatin modification. Using ChIP, we

identified MKP-1 association with exon 3 of the angiogenic chemokine fractalkine and

found that MKP-1 dephosphorylated H3S10 on this DNA locus and was required for

fractalkine induction by VEGF. This histone modification occurred in exonic DNA,

immediately proximal to the stop codon, rather than in the promoter region, suggesting that

MKP-1 may regulate transcriptional arrest and progression rather than initiation. These data

support the hypothesis that histone tail modifications downstream of the promoter also

contribute to the histone code, regulating not only transcription initiation & transcription

factor recruitment, but also elongation and propagation of chromatin disruption36. Such

coding region histone modification for gene regulation has been reported previously. For

example, H3 and H4 acetylation within the coding region of the angiogenic VEGF-cofactor,

CCN1, mediate chromatin folding and transcription37. In addition, H3S10 phosphorylation

is required for the initiation of chromatin condensation during mitosis38,39 as well as

priming H3 for subsequent Lys14 acetylation40, a switch between permissive and repressive

chromatin41, consistent with the observations seen here. Further, H3S10 phosphorylation

within the FOSL1 enhancer has been shown to trigger a cascade required for transcription

elongation42. Thus, MKP-1 dephosphorylation of H3S10 may alter chromatin structure and

accessibility to transcriptional machinery, allowing transcriptional progression and gene

expression; however, in the absence of MKP-1, chromatin may be closed and transcription

arrested. Consistent with these molecular signaling links, treatment of both HUVEC and

MAEC with recombinant fractalkine rescued the migratory deficit caused by MKP-1

depletion/deletion, demonstrating the importance of this factor in MKP-1 mediated

endothelial cell activation.

Given the ubiquity of histone H3, fractalkine may be representative of more general gene

regulation by MKP-1. We therefore explored gene regulation of fractalkine as a prototype

for MKP-1-mediated angiogenic gene expression. Fractalkine43 is a multifunctional
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chemokine, expressed primarily by endothelial cells, that exists in both membrane-bound

and soluble forms, the latter derived by proteolytic cleavage25. It exerts its angiocrine effect

through cleavage from the endothelial surface and signaling through its receptor, CX3CR1

on nearby endothelial cells10,25–28. In the context of hindlimb ischemia, activated CX3CR1

induced HIF-1a expression, VEGF production, and signaling through VEGFR228, consistent

with the timecourse and MKPO-1-dependence of VEGF expression in the present study.

Fractalkine mRNA has been shown to be upregulated in ischemic hindlimbs, peaking at 1–3

days post-surgery, and, in that study, delivery of recombinant fractalkine stimulated

hindlimb recovery in a rat hindlimb ischemia model28. In a separate study, fractalkine

induced angiogenesis in the chick chorioallantoic membrane and mouse subcutaneous

pocket models with similar strength as recombinant VEGF42. In the present study, we found

that MKP-1 KO mice exhibited reduced fractalkine expression associated with deficient

neovascularization, and fractalkine treatment rescued the effect of MKP-1 deletion, with no

differences in functional perfusion recovery or day 7 microvascularity. However, in contrast

to the rat study, exogenous fractalkine delivery failed to enhance perfusion recovery in WT

mice, suggesting that in ischemic mice, endogenous fractalkine levels are sufficient to

mediate neovascular recovery. Together, these data confirms the role of fractalkine in

MKP-1-mediated neovascularization.

In addition to its angiogenic functions, fractalkine also mediates chemotaxis and firm

adhesion of monocytes and T-lymphocytes to activated endothelium25–27, cells which play

important roles in recovery from hindlimb ischemia45–48. Consistent with these

observations, we found MKP-1 deletion dramatically reduced both monocyte/macrophage

and T-lymphocyte invasion in the distal hindlimb. In the proximal hindlimb, however,

inflammatory cell invasion was less than in the distal limb, and there were no differences

between genotypes, which may partially explain the merely modest effect of MKP-1

deletion on arteriogenesis in that region of interest. Upon fractalkine delivery, there were no

differences between genotypes in monocyte/macrophage or T-lymphocyte invastion in either

region of interest, suggesting this effect is mediated, at least in part, by MKP-1-regulated

fractalkine expression.

Together, these data implicate a dual role for MKP-1 in neovascularization: through

endothelial cell migration, proliferation and tube formation, and through inflammatory cell

infiltration. This is consistent with our previous findings in the ApoE−/− background that

MKP-1 mediates macrophage activation21. In that study, MKP-1 null mice featured

decreased atherosclerotic lesion size, decreased inflammatory cytokines (IL1α, TNFα) and

increased levels of anti-inflammatory IL10 in the circulation, as well as impaired

macrophage spreading, migration, and tissue infiltration21. Mechanistically, defective

ERK1/2 signaling was implicated in the reduced migration of MKP−/−;ApoE−/−

macrophages through pharmacologic Mek1/2 kinase inhibition21. Thus, MKP-1 may play

dual roles in recovery from hindlimb ischemia, involving both its canonical function as a

MAPK phosphatase in inflammatory cells and its chromatin modifying function in

endothelial cells.
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In addition, increasing evidence suggests that chemokine pathways such as CCL2/CCR2 and

fractalkine/CX3CR1 control imflammatory cell mobilization from the bone marrow to the

bloodstream49,50. For example, Conchain et al. showed that while the CCL2/CCR2 axis

regulated recruitment of Ly6Chi monocytes to the circulation and contributed to hindlimb

ischemia recovery, CX3CR1−/− mice exhibited a reduction in only Ly6Clo monocytes and

did not present a deficit in hindlimb neovascularization50. Future studies will evaluate the

role of MKP-1 in regulation of other chemokine pathways and MKP-1/chemokine-mediated

monocyte mobilization and their role in neovascularization.

These data do not rule out the possibility that canonical MAPK deactivation may contribute

to the functional effects observed here as numerous studies have verified the MAPK

phosphatase activity of MKP-1 in endothelial cells18,51,52. Indeed, we have previously

shown that VEGF induction of MKP-1 is JNK MAPK dependent, and VEGF-induced

MKP-1 regulates phosphorylation of both JNK and p38, but not ERK1/2, in HUVEC18.

Thus, the observations described here may result from a combination of these various

MKP-1 substrates, which may explain the blunted angiogenic growth phase concurrent with

decreased fractalkine expression but eventual recovery, perhaps due to prolonged MAPK

activation.

Together, these data reveal a novel role for MKP-1 in angiogenic gene expression and

neovascularization in vivo, identify a putative epigenetic mechanism for MKP-1-mediated

gene regulation in endothelial cells, and validate MKP-1 as a potential therapeutic target that

can be activated specifically through combinatorial growth factor stimulation51,53.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Non-standard abbreviations

MKP-1 mitogen-activated protein kinase phosphatase

MAPK mitogen activated protein kinase

H3S10 histone H3 serine 10

LDPI laser Doppler perfusion imaging

CS-MKP-1 MKP-1 C259S mutant
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ERK Extracellular related kinase

JNK c-Jun N-terminal kinase

VEGF vascular endothelial growth factor

KO knockout

WT wildtype

EC endothelial cell

HUVEC human umbilical vein endothelial cell

MAEC murine aortic endothelial cell

GC gastrocnemius muscle

SM soleus muscle
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Significance

Angiogenesis is critical to many physiological and pathophysiological processes, and

despite intense study, the regulatory mechanisms controlling this process remain

incompletely understood. MKP-1 is typically considered an off-switch for the mitogen

activated protein kinases (MAPK), signaling molecules that promote angiogenesis. Here,

however, we show in the hindlimb ischemia model that MKP-1 positively mediates the

early growth phase of neovascularization, a process critical in diseases such as

myocardial ischemia and tumor revival. We show that MKP-1 binds to DNA of the

angiogenic chemokine, fractalkine, dephosphorylates histone H3 on this DNA locus, and

is required for expression of this gene in vitro and in vivo. Finally, the deficit in

neovascular recovery from hindlimb ischemia in MKP-1 KO mice is rescued by in vivo

fractalkine delivery. Together, these observations identify MKP-1 as a potential

therapeutic target in vascular regeneration and disease.
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Figure 1. Ischemic limb recovery in WT and MKP-1 KO mice
Mice (N = 11–20 per time point per genotype) received surgical induction of ischemia in L

hindlimbs, with R limbs evaluated as contralateral controls. Shown are representative

images (A) and quantification (B) of laser Doppler perfusion to ischemic foot, normalized

by contralateral control. Data were fit to an exponential recovery curve, y = S e−t/τ+P;

MKP-1 knockout mice had a significantly longer time constant, τ, but recovered to the same

plateau, P, by day 28. (C–G): MicroCT angiography generated 3D reconstructions of WT

and KO vascular structures in the calf region at day 7 (A,C) and day 28 (B,D) (N = 4–9 per

time point per genotype). Quantification of vascular network parameters (E) revealed

significantly greater angiogenic network formation in ischemic limbs of WT mice at d7

compared to ischemic limbs of KO mice (*p ≤ 0.05 vs. KO at same time point) and

contralateral controls (dotted lines, #p ≤ 0.05 vs. control at same time point). By day 28,

there were no significant differences between genotypes or compared with controls.

Ischemic limbs of KO mice did not differ from controls at either time point.
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Figure 2. Immunofluorescent evaluation of microvascular capillaries and arterioles
Shown are representative micrographs and quantification of endothelial cell (BS-1 lectin, A–

D), and arteriole (αSMA+, BS1-lectin+, E–H) staining in transverse sections of

gastrocnemius (GC; calf) and soleus (SM; thigh) muscles of ischemic limbs of WT and

MKP-1 KO mice (N = 3–8 per time point per genotype). Capillary density was significantly

lower in GC muscles of KO mice at day 7 and 14, but equivalent to WT at day 28, while

arteriole density was lower in SM muscles of KO mice at day 7. *p ≤ 0.05 vs. KO at same

time point. Scale bar: 25 μm.
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Figure 3. Effect of MKP-1 depletion on in vitro angiogenesis
HUVEC were depleted of MKP-1 by siRNA (A) and serum starved 2hrs prior to treatment

with 50 ng/ml VEGF. VEGF-induced migration (B, C), proliferation (D) and tube formation

(E, F) were evaluated using the scratch wound, BrdU, and Matrigel assays, respectively.

Representative migration images in (B) show initial wound (top) and migration over 11 hrs

(bottom) in VEGF-treated samples. Representative tube formation images in (E) show tube

formation over 6 hrs after VEGF treatment. MKP-1 depletion abrogated VEGF-induced

migration and tube formation and reduced overall proliferation but did not block the pro-

proliferative effect of VEGF. *p ≤ 0.05, **p ≤ 0.01, NS = not significant. Scale bars: 100

μm.
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Figure 4. MKP-1-chromatin interactions & fractalkine regulation
HUVEC were transfected with substrate trap mutant CS-MKP-1 (myc-tagged), and treated

10 min with 50ng/ml VEGF or vehicle; chromatin was immunoprecipitated using an anti-

myc antibody, and associated DNA were cloned and sequenced. In VEGF-treated samples,

three independent clones were identified overlapping exon 3 of the angiogenic chemokine,

fractalkine, as illustrated (A). Vehicle treated samples had no DNA binding. HUVEC

depleted of MKP-1 by siRNA were treated with 50ng/ml VEGF over a 90 minute time

course, and chromatin was immunoprecipitated using antibodies against phospho-histone

H3S10 (B) or H3 (C) on this DNA locus. MKP-1 depletion enriched the DNA for p-H3S10

at 0 and 30 minutes after VEGF treatment, but had no effect on total H3 binding. Fractalkine

mRNA (D) and protein (E) expression were induced under control conditions, but

completely ablated when MKP-1 was depleted. HUVEC depleted of fractalkine (F)

exhibited a blunted migratory response to VEGF (G), but treatment with recombinant

fractalkine rescued the migratory deficit of MKP-1-depleted cells (H). *p ≤ 0.05, **p ≤ 0.01

NS = not significant.
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Figure 5. MKP-1 regulation of fractalkine & VEGF expression and inflammation in vivo
Shown are representative micrographs of transverse GC sections (A, D, G, J) and area

density quantification of fractalkine (B,C), VEGF (E, F), monocyte/macrophage (CD68; H,

I), and T-lymphocyte (CD3; K, L) staining in transverse sections of both GC and SM

muscles of WT and MKP-1 KO mice (N = 3–8 per time point per genotype). Fractalkine

expression in GC tissue was significantly elevated in ischemic limbs of WT, but not

knockout mice, at day 7 (B). Fractalkine was not elevated in SM sections for either genotype

(C). VEGF was transiently elevated at day 7 in WT GC and SM sections (E, F,

respectively). In GC sections, monocyte/macrophage and T-lymphocyte infiltration was

significantly elevated at all time points in WT mice over MKP-1 KO (H, K), but was not

different between genotypes in SM sections (I, L). *p ≤ 0.05 vs. KO at same time point.

Scale bars: 50 μm.
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Figure 6. Rescue of MKP-1 phenotype by recombinant fractalkine delivery
Ischemic WT and MKP-1 KO mice (N = 6 per group) were intramuscularly injected

immediately post-surgery with 5 μg recombinant mouse fractalkine, divided evenly between

GC and SM muscles. Recovery over 14 days was evaluated by LDPI (A, B), and GC and

SM muscles at day 7 (N = 3 per group) were immunostained for capillaries (C), arterioles

(D), fractalkine (E), monocytes/macrophages (F), and T-lymphocytes (G). Fractalkine

delivery rescued the effect of MKP-1 deletion on perfusion recovery, and there were no

differences in fractalkine treated samples between genotypes for immunostained parameters.
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