
Unraveling the mechanisms responsible for the comorbidity
between metabolic syndrome and mental health disorders

Elizabeth K. Nousena, Juliana G. Francoa, and Elinor L. Sullivana,b

aDivision of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center,
Beaverton, OR, USA

bDepartment of Biology, University of Portland, Portland, OR, USA

Abstract

The increased prevalence and high comorbidity of metabolic syndrome and mental health

disorders have prompted investigation into the potential contributing mechanisms. There is a

bidirectional association between metabolic syndrome and mental health disorders including

schizophrenia, bipolar disorder, depression, anxiety, attention deficit/hyperactivity disorder, and

autism spectrum disorders. Medication side effects and social repercussions are contributing

environmental factors, but there are a number of shared underlying neurological and physiological

mechanisms that explain the high comorbidity between these two disorders. Inflammation is a

state shared by both disorders, and it contributes to disruptions of neuroregulatory systems,

including the serotonergic, dopaminergic, and neuropeptide Y systems, as well as dysregulation of

the hypothalamic-pituitary-adrenal axis. Metabolic syndrome in pregnant women also exposes the

developing fetal brain to inflammatory factors that predispose the offspring to metabolic syndrome

and mental health disorders. Due to the shared nature of these conditions, treatment should address

aspects of both mental health and metabolic disorders. Additionally, interventions need to be

developed that can interrupt the transfer of increased risk of the disorders to the next generation.
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Introduction

Interest in the common mechanisms between metabolic and mental health disorders (MHDs)

is rising due to increasing prevalence and comorbidity of both. Metabolic syndrome (MetS)

is both preventable and deadly. It is currently defined as a set of chronic and associated

features that increase risk of cardiovascular disease and type 2 diabetes mellitus, including

central obesity, atherogenic dyslipidemia, insulin resistance, and endothelial dysfunction [1,

2]. There are several definitions of childhood MetS, but all contain features of obesity,

dyslipidemia, high blood pressure, and impaired glucose metabolism [3]. These childhood
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features are better correlated with waist circumference than BMI, and the cardiovascular risk

factors persist to adulthood unless changes in nutrition and physical activity are made [4].

Metabolic and mental health conditions are both impacted by numerous environmental and

genetic factors, but this review will focus on the overlapping mechanisms between MetS and

MHDs that contribute to the recent increases in prevalence and may explain their

comorbidity.

Increased Prevalence and Common Occurrence of both Metabolic Diseases

and Mental Health Disorders

The prevalence of MetS and its components is widespread and continuing to rise.

Overweight and obese people have an increased risk of developing MetS [1]. In 2010, every

state in America had a prevalence of obesity above 20% [5], and one third of the nation is

obese [6]. Though rates are plateauing in women, they continue to increase in men and

adolescents [7, 8]. Type 2 diabetes is the seventh leading cause of death in the United States

[9], and if current trends persist, its incidence will increase to 1 in every 3 by 2050 [10].

Evidence also indicates that maternal obesity and high fat diet consumption during the

perinatal period predispose offspring to MetS [11].

MHDs are common: approximately 25% of American adults have a mental health disorder

[12]. When delineated further, about 7% of adults suffer from major depressive disorder,

about 3% have generalized anxiety disorder, and approximately 4% have attention deficit/

hyperactivity disorder (ADHD) [12]. In children, developmental disabilities have increased

dramatically (17%) in the last decade, driven largely by increases in ADHD and autism

spectrum disorders (ASD) [13]. This increased prevalence has lead to numerous

investigations into the environmental risk factors contributing to this recent and rapid rise in

childhood neurodevelopmental disorders. Interestingly, the rise in the prevalence of

childhood developmental disabilities parallels the increase in adult obesity and several lines

of evidence suggest that maternal obesity increases offspring risk for both MetS and MHDs

[11, 14, 15].

Metabolic Syndrome and Mental Health Comorbidity

Both MetS and obesity are comorbid with MHDs in 45% of cases [16]. Individuals with

schizophrenia, bipolar disorder, depression, anxiety, ADHD, and ASD have a higher

prevalence of both obesity and MetS compared to the general population [17, 18]. Evidence

linking MetS to specific MHDs will be further outlined in the following sections.

Schizophrenia and Bipolar Disorder

MetS is more prevalent in patients with bipolar disorder or schizophrenia than in the general

population. Individuals with bipolar disorder have the highest rates of MetS [17, 19] as well

as increased risk for obesity [20] and other metabolic complications [21]. This association is

controversial as both typical [22] and atypical [22, 23] antipyschotics are reported to

contribute to the increased body weight and MetS. These medications are likely not fully

responsible for the association because increased weight and adiposity is also seen in drug-

naïve individuals [24] and patients diagnosed with their first-episode of psychosis were also
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reported to have increased frequencies of hypertension, diabetes and metabolic syndrome

[25].

Depression and Anxiety

Childhood [26, 27] and adult obesity are associated with an increased risk of depression

[28–32] and anxiety [28, 29, 31]. Though body weight is a stronger predictor of depression

than diabetes [33], evidence shows that diabetes, independent of weight status, is linked with

higher rates of depression [33, 34]; some studies report a four-fold risk increase in diabetic

patients [35] that increases with symptom severity [34, 36, 37]. Interestingly, a recent study

indicates that obesity may only be linked to depression in individuals with a higher

socioeconomic status, and depressive symptoms were associated with increased BMI only in

Hispanic women [38]. This report and other conflicting reports of the association between

affective disorders and obesity indicate that the association is quite complex and is

influenced by factors such as socioeconomic status and ethnicity.

ADHD

Children [39], adolescents [39], and adults [40] with ADHD are more likely to be

overweight or obese than the general population. Similarly, ADHD is more common in

obese teenagers [27, 41, 42]. Bariatric surgery is prescribed to promote weight loss in

morbidly obese individuals, and pre-operative evaluations showed rates of ADHD double

that of the general population [43].

ASD

Several studies show that obesity is twice as likely in adolescents with ASD [42, 44].

However, others report that the lower nutrient intake experienced by children with ASD is

severe enough to counter their obesity and may eventually result in underweight status [45].

Disordered Eating

Obesity and mental health issues are often comorbid in compulsive eating disorders such as

night-time eating syndrome and binge eating. Binge eating disorder [46] and night eating

syndrome [47] are widespread in the obese population, and night eating syndrome is

associated with obesity [48], anxiety [49], and depression [46, 48–50]. Furthermore, obese

individuals with ADHD display abnormal eating habits compared to obese patients without

ADHD [51], and this is also observed in children with ADHD [41] and ASD [52].

Sex-Dependent Evidence

Many relationships between MetS and MHDs are sex-dependent. There is a stronger

association between obesity and psychopathologies in women [29, 53]; only morbidly obese

men display an increased risk of depression [54]. Overweight and obese females have

increased prevalence of anxiety [53], major depressive disorder [53, 55–62], and both

childhood and adult ADHD [63], while obese men did not show the same trends [53, 56, 58,

61]. The risk for generalized anxiety disorder and major depressive disorder is increased six-

fold in obese females [64]. Morbidly obese women seeking bariatric surgery were also more
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likely to have a history of mood and anxiety disorders [65], and women with type 2 diabetes

have higher risk of depression than men [33, 66].

Metabolic Syndrome Increases Risk of Psychopathologies

Beyond comorbidity, several studies highlight that MetS increases the likelihood of

developing affective disorders [53], such as depression [67–72] and bipolar disorder [69],

due to similar underlying mechanisms. Obesity is not found to increase risk of depression in

the general population, but the subset of obese individuals with high socioeconomic status

have a doubled risk of depression [38]. The relationship between diabetes and later

depressive symptoms has been reported to be modest [73] or weak [74], but the strength of

the relationship depends on whether the study used self-reported or diagnostic depressive

symptoms [75].

Societal discrimination and stigma against obesity may also increase risk of MHDs [57].

Diabetes may contribute to depression through the fear and lifestyle restriction potentially

associated with receiving this diagnosis [73, 75], as well as symptoms like hyperglycemia-

induced fatigue [75]. Indeed, there is a peak in antidepressant use after a diagnosis of

diabetes [76] and when treatment begins [77].

Psychopathologies Increase Risk of Metabolic Syndrome

Evidence supports the bidirectionality of this association between MetS and MHDs. Adults

with ASD have higher risk of developing diabetes [78], and male children with ADHD have

a higher risk for adult obesity [79]. Depression similarly increases likelihood of developing

diabetes [73] and obesity [68]. Men with depressive symptoms had higher likelihood of

developing obesity or MetS in the next decade [80]. Depression during adolescence predicts

a higher BMI later in life [61]. This data is not conclusive, however, as other studies do not

see an increased risk of obesity with depression [67].

Explanations for this relationship are often accredited to medication side effects or disease-

induced lifestyle modifications. Typical and atypical antipsychotics and antidepressants

cause dyslipidemia [17], weight gain [22, 81], and glucose dysregulation [81].

Correspondingly, individuals with schizophrenia and bipolar disorder have higher risk for

components of MetS [17]. Selective serotonin reuptake inhibitors (SSRIs) do have short-

term benefits for glucose regulation, but tricyclics and noradrenergic antidepressants worsen

the metabolic state [82]. Indeed, female patients taking antidepressants have higher risk of

developing type 2 diabetes than unmedicated patients [66].

Environmental factors increasing risk of MetS may be specific to populations with high risk

of MHDs. Reduced access to healthcare in patients with schizophrenia or bipolar disorder

may contribute to the development of MetS [17]. The increased sugar and saturated fat

intake seen in women with depression and obesity [83] increases the likelihood of weight

gain and MetS. Furthermore, depression and emotional dysregulation commonly accompany

a preference for sweet and fatty food [84], higher caloric consumption [85], and sedentary

behavior [85]. Therefore, MHDs may contribute to developing and maintaining an obese

state and may also increase resistance to treatment.
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Changes in Metabolic Status Impact Mental Health

Psychopathologies are observed in over half of individuals seeking bariatric surgery [86],

but symptomology ratings improve after successful surgery in adults [62, 87, 88] and

adolescents [89]. These improvements continue years afterward and are greater in women

[90]. An inpatient weight loss program also reported improvements in depression after

successful weight loss [55].

In stark contrast, a systematic review of bariatric surgery found an increased risk for suicide

completion in patients compared to the general public [91]. Another systematic review

found that obese people have lower rates of suicide completion despite higher reports of

suicidal ideation [58, 92] and attempts in obese women [92]. Thus, it may be that many

bariatric surgery patients have improvements in depressive symptoms, but those that do not

are more likely to act on their intrusive thoughts.

Conversely, there is limited evidence that successful treatment of psychiatric disorders

improves metabolic functioning. One study reports that glucose metabolism improves after

treatment for depression [81].

Maternal Metabolic Disorders and Offspring Mental Health

Maternal metabolic status impacts the neurophysiology of developing offspring; predictably,

a relationship between maternal obesity and offspring psychopathology has been observed.

Obese mothers are 67% more likely to have a child with ASD [93]. Several studies also

identify maternal diabetes as a risk factor for ASD [94, 95] and developmental delays [93].

Additionally, maternal obesity is associated with affective problems in children [96, 97] and

adolescents [97], as well as increased ADHD behaviors [98, 99]. Similarly, children with

ADHD are twice as likely to have a mother who is obese [100].

Diet-induced maternal obesity in animals shows similar metabolic and behavioral

impairments in offspring. Perinatal consumption of a high fat diet leads to mouse offspring

with deficits in spatial learning and memory [101] as well as increased aggression and

hyperactivity [102]. Rodent [103, 104] and non-human primate [105] offspring from

mothers fed a high fat diet show increases in anxious behavior.

Similarly, mouse offspring of depressed mothers have compromised memory, higher

emotionality, and decreased neurogenesis [106]. This data provides compelling evidence

that maternal metabolic status, and potentially maternal mental health, impacts the outcome

for offspring.

Potential Mechanisms for Comorbidity of Mental Health Disorders and

Metabolic Syndrome Inflammation

High fat diet consumption and consequent obesity elicit an inflammatory response [107],

and key inflammatory cytokines, such as C-reactive protein (CRP), tumor necrosis factor-α

(TNF-α), interferon-γ, and interleukin (IL)-6 and -8, are also involved with mood disorders.
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IL-6, for example, influences both stress and feeding behaviors [108] and inhibits

hippocampal neurogenesis [109], which is involved in schizophrenia and depression [110].

Schizophrenia and Bipolar Disorder

A hypothesis of cytokine-stimulated immune response leading to abnormal brain

development is generally accepted for schizophrenia [111]. IL-6 and TNF-α levels are

markedly increased in patients with schizophrenia [112–114], and TNF-α is considered a

trait marker of the disease [114]. Pathways regulating inflammatory response show

alterations in 40% of people with schizophrenia [115]. The cytokine release induced by a

toll-like receptor agonist was higher in whole blood from patients with schizophrenia and

bipolar disorder [113]. Bipolar patients also show an elevation in IL-6 levels [113].

Inflammation plays such an important role in schizophrenia that this disease is often

modeled in rodents by dispensing cytokines and other inflammatory agents to neonates; this

results in behavioral abnormalities consistent with human schizophrenia symptoms, and

these symptoms respond to antipsychotics [116, 117].

Depression

Increased levels of IL-6 correspond with symptoms of major depressive disorder [112, 118].

Male patients with a history of depression [119] or currently in a depressive episode [120]

had higher levels of CRP; this association remained after correction for BMI [120].

Studies examining elderly patients report an association between depression and increased

levels of TNF-α [121], CRP [121], and IL-6 [122, 123], though the relationship with IL-6 is

stronger in men [121]. Risk for depression in elderly individuals is associated with elevated

levels of two of the following pro-inflammatory factors: TNF-α, CRP, and IL-6 [121].

ADHD

Many studies have identified inflammation as a contributing factor for increased risk of

ADHD [124]. The brains of individuals with ADHD show higher rates of T cell-induced

apoptosis, which is activated by exposure to pro-inflammatory cytokines [125].

ASD

Individuals with ASD present elevated levels of TNF-α [52], IL-1 [52], IL-6 [52, 126], and

interferon-γ [127]. Animal studies reveal that overexposure to IL-6 in the brain results in

both cellular abnormalities (poor adhesion and migration [126], over-formation of excitatory

synapses [126, 128], and abnormal dendritic spines [128]) and behavioral disturbances

(learning deficits, low social interaction, and abnormal features of anxiety and habituation

[128]) consistent with ASD.

Brain-derived Neurotrophic Factor

Similar to inflammatory cytokines, growth factors such as brain-derived neurotrophic factor

(BDNF) are potential mediators of the comorbidity between MetS and MHDs. BDNF is

critical in neuron development, differentiation, synaptogenesis, regulation, and survival in
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systems critical in regulating cognition and behavior (dopamine and serotonin [129]) and

food intake and body weight (pro-opiomelanocortin and agouti-related protein [130, 131]

(discussed in the next section). In humans, polymorphisms of BDNF are associated with

schizophrenia [132–134], depression [135], anxiety [135, 136], and other mood disorders

[136] as well as with obesity [137–140]. Moreover, mice deficient in BDNF display

behavioral abnormalities including increased aggression and hyperactivity [141] in addition

to obesity [142]. Interestingly, in a mouse model, maternal obesity was associated with

decreased hippocampal BDNF and impaired spatial cognitive function [101].

Perturbations in Pathways that Regulate Behavior and Metabolic Status

Perturbations in common neuroregulatory pathways likely contribute to the comorbidity of

MetS and MHDs. Neuropeptide systems involved in regulating mental health and metabolic

status, such as the serotonin, dopamine, neuropeptide Y (NPY), corticotropin-releasing

hormone (CRH), and endocannabinoid systems [143], are likely candidates.

Serotonin

Serotonin is best known for regulating mood and behavior. A suppression of central

serotonin synthesis is consistently reported in humans with anxiety [144], depression [145,

146], ADHD [147], and ASD [148, 149]. Serotonin 1A receptors have been identified to

play a role in anxiety [144, 150]. Mood disorders are commonly treated with SSRIs, which

increase the levels of available serotonin.

The brain serotonin system has also received substantial attention for regulating energy

balance. Reduction of serotonin system activity increases food intake [151–154], while

drugs that stimulate serotonin release reduce food intake in rats [155, 156], baboons [157],

and humans [158, 159]. Of the fourteen subtypes of serotonin receptors, the 1B and 2C

subtypes are most strongly implicated in modulating feeding and body weight. These

receptors are expressed in hypothalamic regions involved in food intake regulation [160–

163]. Furthermore, both 1B and 2C receptor agonists suppress feeding in rodents [164–166],

and 2C receptor knockout mice display chronic hyperphagia and obesity [167, 168]. On the

other hand, obesity is associated with alterations in the metabolism of tryptophan, the

precursor for serotonin synthesis [169].

Dopamine

Recent neuroimaging studies indicate that dopamine synthesis and release is altered in

individuals with schizophrenia [170], depression [171, 172], social anxiety [173], ADHD

[174], and ASD [175, 176]. Polymorphisms in dopamine transporter are associated with

depression [177], social anxiety [178], ADHD [179, 180], and ASD [181]. Also, a

polymorphism in dopamine 3 receptors is associated with repetitive behavior in children

with ASD [182]. Pharmacological treatment of many MHDs involves modulation of the

dopamine system: typical antipsychotic drugs work by blocking dopamine 2 receptors

(D2Rs), ADHD is treated using psychostimulants that increase dopamine levels [183], and

treatment with a dopamine agonist produces antidepressant effects in treatment-resistant

patients with major depressive disorder [184].
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Neuroimaging studies provide compelling evidence of the dopamine system’s involvement

in eating behavior and obesity [185] particularly via dopaminergic projections from the

ventral tegmental area to the nucleus accumbens [186]. Additional routes of food intake

regulation are dopaminergic projections from the nucleus accumbens to the hypothalamus

[187] and dopaminergic neurons in the ventral tegmental area that are impacted by the

hormone leptin, which exerts a neurotrophic influence in the development of hypothalamic

circuits regulating food intake [186]. Cues associated with food increase dopamine levels

[185]. Obese subjects exhibit reduced D2R availability, which likely increases eating in

these individuals in order to acutely stimulate underactive reward circuits [188]. This

reduction of D2Rs is associated with suppressed metabolism in brain areas involved in self-

control and increased metabolism in regions involved in sensory processing of palatability

[185, 189]. Interestingly, a recent imaging study of patients recovered from anorexia nervosa

indicates that their eating-induced dopamine release may produce anxiety instead of the

typical pleasurable response [190].

Mice that lack the gene encoding tyrosine hydroxylase, the enzyme responsible for

dopamine synthesis, initially gain weight and feed normally, but, unless dopamine is

supplemented, they will stop feeding and die from starvation [191]. Dysfunctional

processing of reward-based feeding through the dopaminergic system is a potential

contributor to the obesity epidemic and likely contributes to the comorbidity of metabolic

and psychiatric disorders.

Hypothalamic Neurotransmitters

Neurons producing NPY/ agouti-related protein and alpha-melanocyte stimulating hormone

in the arcuate nucleus are key regulators of body weight and food intake [192]. NPY is also

implicated in behavioral regulation, and NPY expression is reduced in schizophrenia [193,

194], bipolar disorder [193–195], and depression [193, 196] and elevated in children with

ADHD [197]. Application of a NPY 1 receptor antagonist in rats produces increased anxiety

and decreased social interaction [198], and mice given central administration of NPY [199,

200] or lacking NPY 2 receptors display decreased anxiety.

Dysregulation of the Hypothalamic-Pituitary-Adrenal Axis

The role of the HPA axis in MetS is well established. Obese humans with insulin resistance

exhibit elevated cortisol [201]. Furthermore, hyperactivation of the HPA axis may increase

adiposity by promoting hyperphagia and consumption of palatable foods [84]. Consumption

of these “comfort foods” inhibits the HPA axis; thus, overeating may be a compensatory

response to temporarily reduce chronic stress [202]. Animal studies demonstrate an acute

reduction in anxiety and depressive-like behavior after consumption of palatable food [203].

Cortisol exposure may also impact the reward value of a food item by influencing factors

such as leptin, insulin, and NPY [202].

It is also well documented that MHDs are associated with dysregulation of the HPA axis.

CRH expressing paraventricular neurons [204] and cerebrospinal fluid CRH levels are

increased in individuals with depression [205, 206]. Postmortem analysis of suicide victims

reveals a reduction in CRH receptor density [207], which occurs via negative feedback to
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compensate for CRH overexposure. There is also evidence that depressed individuals have

chronically elevated cortisol that is responsible for increasing MetS symptoms [61, 85].

Mice that overexpress CRH display symptoms of MHDs and MetS including hyperphagia,

insulin resistance, increased anxiety, and impaired coping to stress [208–210].

Pharmacological agents used to treat both MetS and MHDs modulate HPA axis activity

[211].

Reduction of the Heart Rate Variability

Heart rate variability (HRV) is a non-invasive measurement of cardiac autonomic function

that has been considered a valid tool for diagnosis and management of cardiovascular

disease [212]. As a number of studies suggest that MetS negatively affects autonomic

cardiac control [213, 214], autonomic dysfunction could contribute to an increased risk of

subsequent cardiovascular events in individuals with MetS. In general, MetS patients have

reduced HRV, suggesting decreased parasympathetic and/or increased sympathetic

modulation of the heart [212, 214–217].

This autonomic dysregulation has also been suggested as a possible contributor to the

increased cardiovascular risk in patients with psychiatric disorders [218, 219]. Decreased

HRV values were found in subjects with depression [220, 221] or schizophrenia [222].

Decreased vagal stimulation was also found in children with ADHD [223]. However, it

remains unclear whether mood disorders or medications are driving the autonomic

dysregulation found in patients with MHDs. Tricyclic medications and SSRIs were also

associated with reduced HRV [224, 225] while non-pharmacological therapies such as

physical exercise, meditation, smoking cessation, and dietary changes are associated with

increased HRV [224].

Heart rate variability is not the only measurement that highlights the link between

components of MetS and MHDs; non-invasive brain stimulation strategies can improve

depressive symptoms in patients with depression or bipolar disorder [226] and may be

effective in reducing HPA activity [227].

Maternal Metabolic Health Programs Offspring

The mechanisms previously discussed are compounded by the effect of maternal metabolic

status. The placenta transfers maternal inflammation to the developing fetal brain, so

maternal MetS has additional consequences for offspring metabolic and mental health. In

fact, in animal models, perinatal exposure to maternal obesity and a high fat diet has been

demonstrated to alter the serotonergic [105] and dopaminergic [228] systems of offspring.

Placental Dysfunction

The placenta is highly sensitive to maternal metabolic status; gestational diabetes [149, 229,

230] and obesity are associated with an inflammatory response in this organ [149, 229–231].

Large animal studies report negative effects of obesity and over-nourishment on the

placenta: decreased mass [232], reduced capillary density [232], and reduced uterine blood

flow [232, 233].
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Poor placental functioning is compounded by the transmission of inflammatory factors.

Pregnant women who are obese have system-wide inflammation [229], and increased

circulating cytokines further impair placental function [234, 235].

Gestational Exposure to Inflammation

Fetal brain development and neurotransmitter systems essential for behavioral regulation are

sensitive to elevated circulating cytokines [236]. Pro-inflammatory factors initiate extensive

neuronal plasticity and growth in the fetal brain and contribute to a state of chronic fetal

inflammation [237]. Many symptoms of ASD are proposed to result from this early

exposure to elevated inflammatory cytokines [237].

High fat diet-induced inflammatory factors are present in both obesity and MHDs. The

structural differences of fetal brains exposed to high levels of IL-8 correspond with brain

alterations seen in patients with schizophrenia [238]. Additionally, IL-6 has a critical

influence on ASD risk in offspring [239]. IL-4 and IL-5 are elevated in mothers of children

with ASD [240]. Over-nutrition results in increased levels of inflammatory factors that are

also elevated in children with ASD [241, 242].

Alternate Mechanisms of Maternal Programming

Offspring exposed to maternal obesity and high fat diet consumption are exposed to excess

levels of nutrients and hormones that are postulated to impact fetal brain development [11].

Maternal glucose passes through the placenta [243], and the pancreatic beta cells of the fetus

respond by increasing insulin secretion. As insulin is a critical neural growth factor [244],

this hyperinsulinemia during development of neural pathways may predispose the offspring

of obese mothers to MetS. For example, rodent studies indicate that insulin administration

during development produces obesity [245–247] and risk for diabetes [247] in offspring. In

addition, offspring of obese mothers are exposed to elevated levels of leptin [244].

Conclusion

Recent scientific research has identified an association between components of MetS and

MHDs, and common underlying mechanisms are credited. A number of lifestyle factors and

neurological alterations increase vulnerability to both MetS and MHDs, but the overlapping

neurological mechanisms that are implicated in both conditions include changes to

neuroregulatory brain pathways, dysregulation of the HPA axis, and a chronic state of

inflammation. Additionally, placental dysfunction allows mothers with MetS to transfer the

inflammatory state and consequent brain alterations to their developing fetuses.

Psychopathologies have a high comorbidity with obesity and MetS, especially in women,

and thus treatment for high body weight should include a therapeutic aspect that is specific

to the presented disturbances in the patient. Beyond this holistic approach, it is imperative to

prevent transferring these syndromes to the next generation by developing intervention

strategies.
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Fig. 1.
The bidirectional relationship and overlapping mechanisms of MetS and MHDs.
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