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Abstract Neuromodulation shows increasing promise in the
treatment of psychiatric disorders, particularly obsessive–
compulsive disorder (OCD). Development of tools and tech-
niques including deep brain stimulation, transcranial magnetic
stimulation, and electroconvulsive therapy may yield addi-
tional options for patients who fail to respond to standard
treatments. This article reviews the motivation for and use of
these treatments in OCD. We begin with a brief description of
the illness followed by discussion of the circuit models
thought to underlie the disorder. These circuits provide targets
for intervention. Basal ganglia and talamocortical pathophys-
iology, including cortico-striato-thalamo-cortical loops is a
focus of this discussion. Neuroimaging findings and historical
treatments that led to the use of neuromodulation for OCD are
presented. We then present evidence from neuromodulation
studies using deep brain stimulation, electroconvulsive thera-
py, and transcranial magnetic stimulation, with targets includ-
ing nucleus accumbens, subthalamic nucleus inferior
thalamic peduncle, dorsolateral prefrontal cortex, supplemen-
tary motor area, and orbitofrontal cortex. Finally, we explore
potential future neuromodulation approaches that may further
refine and improve treatment.
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Introduction: Obsessive–Compulsive Disorder

Obsessive–compulsive disorder (OCD) is a potentially dis-
abling disorder and a leading cause of morbidity world-
wide that occurs in approximately 1–3% of the population
[1, 2]. This disorder is characterized by obsessions and
compulsions [3]. Obsessions, which include persistent,
distressing thoughts, images, or impulses that affected
people generally recognize as products of their own
minds, cause substantial anxiety and distress. Patients with
OCD attempt to neutralize the anxiety and discomfort
from the obsessions with compulsions, repetitive behaviors
intended to reduce or prevent distress and undesirable
situations or events. Recent changes in diagnostic criteria
have involved reclassification of OCD from being an
“anxiety” disorder to a new group of “obsessive–compul-
sive and related disorders” with a focus on repetitive
behaviors [4]. This change is potentially important when
considering the underlying neurocircuitry and potential
treatments in OCD.

Unfortunately, inadequate animal models for OCD limit
the development of therapeutics. In humans, inadequate
pharmacological treatments have motivated circuit-based
treatments in refractory patients. These approaches original-
ly focused on ablative surgery, in which a variety of tech-
niques have been used to destroy brain tissue, producing an
irreversible lesion. More recently, interest has grown in
therapeutic neuromodulation, where electricity is adminis-
tered to elicit changes in neuronal function. Building on the
history of lesion-based neurosurgical treatments in OCD,
surgical neuromodulation or electricity delivered by im-
planted devices, has been used as a favorable alternative to
ablative surgery. Less invasive techniques that do not re-
quire surgery, including currents applied to the scalp and
magnetic fields, have also been investigated as potential
treatments for OCD.
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Neurocircuitry of OCD

Circuit Models

Following decades of research, the neurocircuitry of OCD
remains a topic of active investigation. Cortico-striato-
thalamo-cortical (CSTC) loops have been implicated in the
pathophysiology of a variety of psychiatric symptoms (Fig. 1).
The development of Parkinsonism in abusers of 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine provided early evidence for
the importance of these loops [5, 6]. Based on evidence from
labeling, lesion, and single-cell recording studies, in the mid-
1980s Alexander et al. [7] proposed at least 5 parallel but
functionally segregated basal ganglia-thalamocortical circuits.
While additional data has led to revision of the model of
Alexander et al. [7], including less segregated loops and
additional brain regions, it remains conceptually important
[8]. In this model, the cortical areas involved determine the
names of the circuits, and each circuit functions independently
to facilitate unique physiological functions. These circuits
remain distinct through the basal ganglia and have individual
cortical projections via both “direct” and “indirect” pathways
[9]. The “direct” pathway includes two excitatory and two

inhibitory connections, forming a positive feedback loop in
which cortical activity disinhibits the thalamus to activate the
cortex. Because the “indirect” pathway has one excitatory and
three inhibitory connections, cortical activity results in inhibi-
tion of both thalamus and cortex; therefore, the pathway
functions as a negative feedback loop. The “motor” circuit
hinges primarily on the putamen, which receives projections
from the motor and somatosensory cortices. The putamen
projects reciprocally to the cortex and also to the globus
pallidus and substantia nigra, which, in turn, project to the
thalamus. Other loops include “oculomotor”, “dorsolateral
prefrontal”, “lateral orbitofrontal”, and “anterior cingulate”
cortices.

The model of Alexander et al. [7] contributed to the devel-
opment of surgical neuromodulatory interventions for
Parkinson’s disease, and has supported the use of surgical
interventions in OCD. In OCD, CSTC functions have been
strongly implicated to mediate symptoms and treatment re-
sponse. Evidence suggesting that pharmacological treatments
reduce caudate hypermetabolism when they improve symp-
toms indicates the importance of the dysregulation of this
circuit in OCD [11]. Several additional lines of evidence
support CSTC involvement in this disorder. Common features

Fig. 1 Neurocircuitry: cortico-striato-thalamocortical loops. Pathways in
motor, associative, and limbic circuitry. (a) Motor circuit. Neurons from
the sensorimotor cortex project to the posterolateral putamen (Put),
which, in turn, projects to the posterolateral region of the target nuclei:
(i) the direct circuit to the globus pallidus pars interna (GPi) and (ii) the
indirect circuit connecting the posterior putamen (Put) to the globus
pallidus pars externa (GPe), the subthalamic nucleus (STN) and the
GPi. The GPi is the primary output nucleus of the basal ganglia to the
cortex via the ventrolateral thalamus. (b) Associative circuit. This circuit
originates in the dorsolateral prefrontal and lateral orbitofrontal cortices;

projections include the striatal caudate nucleus (Cn) and anteromedial
portion of the Put, and subsequently projections to the dorsomedial region
of the GPi, and anteromedial portions of the GPe and STN. These, in turn,
project onto the GPi and back to the cortex via the ventral anterior nuclei
of the thalamus. (c) Limbic circuit. Here, the hippocampus, amygdala,
paralimbic and limbic cortices project to the ventral striatum (ventral
portion of the caudate and putamen, including nucleus accumbens). The
ventral striatum projects to the limbic portion of the GPe, medioventral
STN, ventral GPi, and to the cortex via the mediodorsal nucleus of the
thalamus. Reproduced with permission from Krack et al. [10]
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and neural substrates are shared between OCD and movement
disorders; neuronal areas involved in motor function have
been implicated inOCD pathogenesis since early observations
of the illness. Tourette’s disorder, associated with both motor
tics and OCD-like symptoms, supports the idea that a single
neural substrate can produce both motor and psychiatric ill-
ness. Tourette’s and OCD exhibit significant comorbidity and
genetic associations, highlighting the etiological importance
of the basal ganglia in OCD symptoms [12–14]. Basal ganglia
circuit dysfunction is thought to play a role in the generation
of both motor and OCD symptoms in Tourette’s syndrome
[15, 16].

The efficacy of serotonergic pharmacotherapies [e.g., se-
lective serotonin reuptake inhibitors (SSRIs)] also supports a
role for CSTC loops in the pathogenesis of OCD [17]. High
levels of 5-hydroxytryptamine receptor 2A and 5-
hydroxytryptamine receptor 2C expression in the striatum
offer a mechanism by which serotonergic agents could influ-
ence CSTC circuit function [18]. Other neurotransmitters in
CSTC circuits are also likely to influence OCD susceptibility,
chronicity, severity, and treatment response. Dopaminergic
dysfunction has been particularly implicated [19]. Higher
basal ganglia dopamine transporter binding ratios have been
reported in OCD [20], and decreased caudate D2 binding [21],
suggesting alterations of synaptic dopamine in the basal
ganglia.

Other CSTC neurotransmitter systems that may have path-
ophysiological importance include glutatmate, substance P,
acetylcholine, and endogenous opioids [22]. Of these, gluta-
mate dysfunction has been most strongly suggested. Magnetic
resonance spectroscopy has identified abnormalities of cau-
date glutamate in patients with OCD, and SSRI treatment
corrects these abnormalities [23]. These measurements in-
clude both intracellular and synaptic glutamate, and are con-
sistent with increased caudate activity previously reported in
OCD. Gene linkage analyses of patients with OCD and their
families also support a pathophysiological role for glutamate
[24–27]. Also, preliminary evidence suggests that glutamater-
gic agents such as riluzole and ketamine may be useful in
OCD [28–31].

It is clear that no single anatomic or physiological
defect will likely be identified to be responsible for the
pathogenesis of complex psychiatric symptoms (e.g., de-
creased dopamine in PD). More likely, OCD symptoms
may involve multiple neural circuits. A systems-based
approach is critical in assessing the clinical data to iden-
tify targets for neuromodulation. The multicircuit model
hypothesizes that the primary pathogenic mechanism is
dysregulation of the basal ganglia/limbic striatal circuits
that modulate neuronal activity in and between the
orbitofrontal and anterior cingulate cortex (ACC), as well
as the medial, dorsomedial (DM), and anterior thalamic
nuclei [32]. This neuronal model of OCD includes 3

components. The first involves a reciprocal positive feed-
back loop between the orbital (OFC) and prefrontal cortex
(PFC) and the DM thalamic nucleus, via the anterior limb
of the internal capsule. The corticothalamic projection is
excitatory and mediated primarily by glutamate and as-
partate. The reciprocal thalamocortical pathway’s neuro-
transmitter is also thought to be excitatory, and likely
glutamatergic [32, 33].

The second component of this model involves the OFC/
PFC, the ventral caudate, the DM pallidum, and the
intralaminar, anterior, and DM thalamic nuclei [7]. Projections
from the ventral striatum to the DM pallidum use multiple
transmitters. However, the output of this pathway from the
DM pallidum to the thalamus is primarily inhibitory and
gamma-aminobutyric acid (GABA)-mediated [34, 35]. The
GABAergic inhibition is thought to modulate the excitatory
positive feedback loop described above. The importance of
dopamine and glutamate in this pathway has also been dem-
onstrated [36], and inhibitory serotonergic projections from
midbrain dorsal raphe nuclei to the striatum are also involved
in this model [37, 38].

The third component involves the limbic system and the
Papez circuit. In 1937, Papez [39] proposed that cerebral
cortical activity is essential for emotional experience and that
emotional expression relies on the integrative action of the
hypothalamus. Papez created a model to connect these struc-
tures based on his neuroanatomic observations. This connects
the hippocampal formation to the mammillary body, which
projects via the mammilothalamic tract to the anterior thalam-
ic nuclei; this then connects to the cingulate gyrus. In the OCD
model discussed previously, the DM nuclei and orbitofrontal
cortex connect extensively to the Papez circuit. Also, ACC
projections to the nucleus accumbens (NAc) may mediate
some of the emotional and anxiety components of OCD.

Functional Neuroimaging in OCD

Over the last several decades, neuroimaging techniques, such
as functional magnetic resonance imaging (fMRI) and posi-
tron emission tomography (PET), have been used to investi-
gate neurocircuit functioning in OCD; these studies provide
further support for pathophysiological circuit models. A role
for CSTC loops in OCD has been suggested in both neutral
(i.e., the baseline obsessional thoughts and compulsive behav-
iors of patients with OCD) and provoked (i.e., following
presentation of a stimulus that exacerbates the patient’s symp-
toms) states. PET and fMRI studies have shown that effective
treatments, including medications such as SSRIs and behav-
ioral therapy, correct the abnormally increased metabolism
seen in these areas [40, 41]. Endogenous activation patterns
also respond following surgical neuromodulatory treatments,
suggesting that efficacy is associated with metabolic normal-
ization [42].
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Neuromodulatory Approaches

Deep Brain Stimulation

Understanding of circuit and node dysfunction in OCD sug-
gests targets and approaches for intervention. Neurosurgical
stimulation initially targeted sites where lesioning or ablative
surgery suggested efficacy, though, clearly, neuromodulation
has significant advantages over ablative treatments. Stimula-
tion can be adjusted and reversed, while blinding in clinical
trials is facilitated by the ability to switch stimulation on or off
without the patient’s awareness. Still, DBS treatment has risks,
including the induction of hypomania, so frequent follow-up
is required. Importantly, DBS involves neurosurgical inter-
vention with craniotomy, and associated risks include infec-
tion, hemorrhage, and edema, which can lead to transient or
permanent neurological sequelae, or even death.

Early attempts to treat OCD symptoms using deep-brain
stimulation (DBS) often suffered from the lack of stringent
selection criteria, rigorous assessments, and optimal imaging.
Such studies may have limited value for assessing efficacy,
but can help guide future investigations. In 1979, low-
frequency (5 Hz) bilateral mediothalamic DBS was used for
control of phobias [43]. This ameliorated phobias and obses-
sional symptoms at 1-year follow-up. Also in the 1970s,
cerebellar vermis stimulation was the first procedure to use a
network approach rather than addressing a particular “target”;
it was designed to upregulate septal activity while downregu-
lating amygdala activity. At least a moderate response was
reported in 5/5 obsessional patients after 2.5 years [43]. Stim-
ulation of white matter around the cingulum was associated
with emotional responses following early trials in 135 patients
with a variety of psychiatric diagnoses [44].

Psychiatric and cognitive effects of DBS in movement
disorder surgery also indicated that modulation of the neural
systems underlying psychiatric illness can be accomplished
with electrical stimulation. DBS to the subthalamic nucleus
(STN), widely used in Parkinson’s disease, can affect limbic,
dorsolateral prefrontal, and orbitofrontal loops that all pass
through the STN. In addition to affecting motor function, STN
stimulation would be expected to alter neuropsychological
function [7]. Accordingly, mood and anxiety improvements
have been widely noted in patients receiving STN DBS for
Parkinson’s disease [45, 46]. The ventromedial and medial
portions of the STN, considered associative and limbic areas,
may have been involved, though surrounding or communicat-
ing structures such as the lateral hypothalamus or ventral
tegmental area may also contribute. Stimulation of either of
these structures may activate dopaminergic and serotonergic
structures related to the medial forebrain bundle, where direct
stimulation has been reported to induce feelings of pleasure
[47]. STNDBS also reduced obsessive and compulsive symp-
toms in patients with Parkinson’s disease with a Yale–Brown

Obsessive Compulsive Scale (Y-BOCS) decrease from 32 to 1
in one case, and 58% or 64% decreases in 2 others [48, 49].

However, STN DBS has also been associated with exacer-
bations of psychiatric symptoms, including stimulation-
dependent depressive symptoms [50, 51]. Mania, hypomania,
anxiety symptoms, and psychosis have also been reported
with STN DBS in Parkinson’s patients [52–55]. DBS of the
globus pallidus interna has elicited anxiolytic effects [56], and
has also been associated with the relief of depressive symp-
toms in a patient with dyskinesia [57]. Similarly, in patients
treated for comorbid Tourette’s disorder, globus pallidus
interna DBS resulted in improvement of OCD symptoms.

Although DBS is widely used in movement disorders,
fewer studies have been performed primarily in treatment of
psychiatric disorders [58, 59]. In OCD, based on a review of
90 published cases, response rates appear to exceed 50% [60].
A meta-analysis including DBS at all sites and targets (n=64)
found heterogeneity but demonstrated an overall significant
benefit with an average improvement in score reduction of
2.77 SDs (95% confidence interval 0.648–4.896) [61]. Cur-
rently, OCD is the only psychiatric disorder with US Food and
Drug Administration status for DBS; this treatment has been
granted a Humanitarian Device Exemption.

The first reports of DBS treatment primarily for psychiatric
conditions, OCD and Tourette’s syndrome, were published in
1999 [62, 63]. Stimulation of the anterior limb of the internal
capsule in “targets […] aimed for in capsulotomy” led to
symptomatic improvement in 3/4 patients with OCD (Fig. 2).
In another case series, 2/3 patients responded with improve-
ments in OCD symptoms following open-label treatment [64].
Another report included efficacy in a single patient with a 79%
reduction in scores on the Y-BOCS following 3 months of
stimulation [65, 66]. A case of ventral caudate stimulation also
led to sustained improvements in OCD symptoms, anxiety, and
depression [67, 68]. In 6 severely symptomatic patients with
OCD (baseline Y-BOCS>30) who received double-blinded,
bilateral internal capsular stimulation [69], 3/6 patients met the
response criteria—a 35% reduction in Y-BOCS. Responders
showed reductions in frontal metabolism, assessed by PET,
after 3 months of stimulation, and experienced worsening of
mood and OCD symptoms when stimulation was turned off.
These data were republished in 2008, with additional data from
2 subsequently implanted patients and further follow-up [70].
No infections, deaths, hemorrhages, or significant changes in
vegetative signs were reported. Mania was not observed,
though disinhibition occurred, which responded to stimulation
intensity decreases. Two additional cases also suggested a
benefit for depressive symptoms, as well as Y-BOCS improve-
ment [71]. Importantly, in 3 patients, no additional benefit was
gained by providing cingulotomy combined with ventral cap-
sule (VC)/ventral striatum (VS) stimulation [72].

Several international multicenter studies including 18 pa-
tients found that DBS to the VC/VS ameliorated OCD
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symptoms [73–75]. Later implantation dates were associated
with greater efficacy, with response rates nearing 80% and a
60% decrease in Y-BOCS score. Depression and anxiety also
improved significantly, though these studies included periods
of open-label treatment in addition to controlled assessments
[76]. Hypomania [77] and contralateral smiles have also been
elicited through stimulation at this site, suggesting engage-
ment with the reward circuitry [78]. These acute changes in
mood have been found to predict response [79, 80]. Serious
adverse events included 2 small hemorrhages without perma-
nent sequelae, seizure managed with phenytoin, wound infec-
tion managed with antibiotics, and lead/extension breakage
requiring replacement. Psychiatric adverse events occurred
with both active and sham stimulation [81]. Functional chang-
es detected using PET included stimulation-induced perfusion
increases in ACC, OFC, striatum, pallidum, and thalamus.
Similarly, electroencephalography (EEG) suggested dorsolat-
eral PFC (DLPFC) responses to stimulation, and fMRI indi-
cated blood flow changes in caudate, thalamus, and cingulate
cortex that were associated with beneficial effects of stimula-
tion in another case [82]. Importantly, stimulation discontinu-
ation following pulse generator failure led to worsening of
symptoms and adverse events, though in most cases symptoms
still remained improved from baseline [83]. Fewer side effects
were reported in open treatment protocols, which also demon-
strated efficacy in 8 patients with improvements in symptom
severity on the Y-BOCS (approximately 30% and 60%) and
the Hamilton Depression Rating Scale [84, 85]. Furthermore,
cognitive function has not been reported to decline and may
improve following stimulation at this site [86].

The NAc has been targeted by other groups. Though ini-
tially considered to be nearby but structurally distinct, further
analysis determined that in many patients receiving stimulation
targeted to NAc the electrodes providing benefit were actually
localized in the ventral anterior limb of the internal capsule
(VC) [87]. Reports of open treatments with small numbers of
patients (6 in total) suggested benefit in a high proportion of
patients following NAc stimulation [88, 89]. In a double-blind,
sham-controlled trial of unilateral DBS to the right NAc (n=
10), illness severity, assessed by the Y-BOCS, following active
stimulation differed significantly from baseline, but not from
sham; only 10% of patients experienced a > 35% reduction in
Y-BOCS score, while 40% experienced decreases between
25% and 35% over a 1-year period [90]. However, after 3
years, 4/8 patients experienced a > 35% reduction in Y-BOCS
score, while 2 additional patients experienced a reduction of
25–35% [91]. This group also reported fewer serious adverse
events, with only transient symptoms of dysesthesia, agitation,
anxiety, poor sleep, and suicidal thoughts in 1 patient [90].
Bilateral DBS of the NAc (i.e., 7 mm lateral to the midline,
3 mm anterior to the anterior commissure, and 4 mm inferior to
the intercommissural line) produced better results in a study
with open-label and sham-controlled phases [92], including
response (Y-BOCS score decrease of ≥ 35%) in 9/16 patients
and a 25% difference between active and sham treatments.
Reported adverse events were relatively mild, and most fre-
quently included hypomania (8 patients), numbness at incision
site, or feeling of leads (7 each), and 1 transient wound infec-
tion. Impulsivity has also been noted as a side effect in several
patients receiving NAc stimulation [93]. A follow-up report

Fig. 2 Three-dimensional illustration of deep brain stimulation (DBS) in
ventral capsule/ventral striatum. This model demonstrates leads and brain
structures on the axial plane 5 mm below the intercommisural plane as
viewed posterior to anterior. The trajectory of the leads follows the
anterior limb of the internal capsule. Each lead has 4 contacts, but only

3 are shown (contacts #0, #1, and #2); contact #3 is hidden by the caudate
nucleus. The most ventral contact (#0) is active, as represented by red
radiating stimulation fields. GPe = globus pallidus externus; GPi = globus
pallidus internus. Image courtesy of Kirk Finnis, Ph.D. [Medtronic Inc.,
USA]
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demonstrated associations between Y-BOCS score increases
following DBS discontinuation and urinary-free cortisol excre-
tion, a measure of hypothalamic–pituitary–adrenal axis activity
[94]. Although measures of anxiety and depression also wors-
ened following discontinuation, these did not correlate with
changes in cortisol excretion. Recently, long-term open data
from 16 patients were reported, and significant changes were
noted in quality of life measures [95].

A multicenter 10-month, double-blind, crossover study of
STN DBS was performed with 16 patients completing the
assessment period [96]. One additional patient in this study
developed infection requiring explantation prior to randomi-
zation and assessment. Relative to sham, active stimulation
resulted in superior outcomes: decreases in symptom severity
(>30% mean decrease on the Y-BOCS), and increases in
overall function (Clinical Global Impression and Global As-
sessment of Functioning scores). Because of placement vari-
ations, some patients who benefitted in this study were actu-
ally stimulated in the internal capsule (n=4), zona incerta (n=
4), substantia nigra (n=3), and H2 field of Forel (n=2). Fifteen
serious adverse events were reported, including hemorrhage
leading to permanent finger palsy in one patient and 2 infec-
tions, along with transient motor and psychiatric symptoms
that resolved. Some psychiatric symptoms reported as adverse
events also occurred during sham stimulation. A case series of
4 patients (2 from the prior study) reported 3 responders and 1
partial responder with > 60% mean improvement in Y-BOCS
score, though side effects were still common [97]. Benefits
associated with STN stimulation also correlated with the
normalization of cortical hypermetabolism [42]. Also, abnor-
malities in single-unit neuronal activity were suggested and
shown to reflect symptom severity while predicting response
to STN DBS [98, 99].

Following DBS to the inferior thalamic peduncle, 5/5
patients were reported to show meaningful response with
mean a Y-BOCS score reduction of approximately 50%
[100]. An open follow-up including patients with psychiatric
comorbidities (substance use disorders) found improvements
in OCD symptoms in 6/6 patients at 12months withmean a Y-
BOCS score improvement of > 50% [101].

Electroconvulsive Therapy

Electroconvulsive therapy (ECT) has a significantly lower risk
profile than DBS, though it requires general anesthesia and
has side effects, including memory loss. For many decades,
there has been inconsistency in reports and interpretation of
data regarding the efficacy of ECT in OCD treatment. One
early report included retrospective assessments of 31 patients
with obsessional disorder who received ECT; 16 of these were
improved at follow-up, though 10 stated that they thought
ECT was not responsible for their improvement, including 1
who reported being worse following ECT, but subsequently

improved [102]. Because only 3 of these patients “positively
stated the [ECT] had helped them”, the authors concluded that
ECT was not appropriate for treating “obsessional states”
without comorbid depression. Others reported that more than
two thirds of patients with severe OCD but without major
affective disorder referred to their clinic had been treated with
ECT; without presenting data on these cases, the authors state
that limited published reports of benefit in patients with OCD
receiving ECT suggests that the treatment is inappropriate for
this condition [103]. In contrast, another early report in pa-
tients with symptoms resembling OCD, obsessional neurosis,
who had been refractory to standard treatments, included a
response rate of approximately 40% in 80 patients following
treatment with ECT combined with medication treatment
seeking to increase sleep (narcosis) and antidepressants
[104]; these authors argued that this technique should be tried
prior to leukotomy. However, Jenike et al. [105] reported that
27/33 patients who received cingulotomy were previously
treated with ECT; of these, 7 received additional treatments
with ECT following surgery. Good symptomatic response to
ECT has more recently been reported in cases with atypical
clinical characteristics (e.g., acute and late onset) [106, 107] or
with catatonia [108]. Case reports of patients with OCD and
Tourette’s or other psychiatric comorbidities also suggest ef-
ficacy of ECT in reducing symptoms and maintaining im-
provement [109–116]. Additional cases of favorable response
to ECT in patients with medication-refractory OCD have been
reported, though others state that an undefined large number
of patients were referred to their clinic who had previously
failed to respond to ECT, arguing that the benefits derived
from ECT may be more related to comorbid psychiatric ill-
nesses [117]. Yet, an open trial found symptomatic benefit in
7/9 patients with no depressive symptoms prior to OCD who
received unilateral or bilateral ECT [118]. Symptom resolu-
tion in 1 responder was ultimately maintained using ECT,
without medications [119]. A retrospective analysis of 13
depressed and 19 nondepressed patients with OCD who re-
ceived ECT also demonstrated significant improvements in
obsessive–compulsive symptoms in both groups, independent
of improvements in depressive symptoms [120].

Transcranial Magnetic Stimulation

Transcranial magnetic stimulation (TMS) has a lower risk
profile than either of the techniques discussed above, with
side effects largely confined to sensations in the skin and
headaches, though seizures are a possible risk, and earplugs
are often provided to limit the risks of hearing damage. Re-
petitive TMS (rTMS) to the DLPFC has generally failed to
demonstrate superiority over sham. Despite initial reports
from open studies [121], multiple sham-controlled studies of
rTMS to the DLPFC at 1 or 10 Hz, 110% motor threshold
(MT), found no benefit of active treatment over placebo
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[122–124]. This lack of benefit was replicated in a group of 30
patients receiving active or sham rTMS of the right DLPFC
[125]. However, a sham-controlled trial of rTMS of the
DLPFC, at 80% MT with frequency defined based on the
patient’s intrinsic alpha EEG, found significant improvements
in obsessions but not compulsions, with decreases in Y-BOCS
scores, as well as symptoms of depression and anxiety [126].

Yet the supplementary motor area (SMA) appears to be a
more promising target. Open rTMS to the SMA was also
found to provide benefit in several reports with medication-
resistant OCD [127, 128]. This finding was replicated in 2
sham-controlled trials (n=22 and n=18, respectively) of
rTMS to the SMA. One demonstrated a 41% response rate
following active treatment and a mean reduction of 35% in Y-
BOCS score versus a 10% response rate following sham
treatment; the other reported a response rate of 67% following
active treatment compared with 22% following sham [129,
130]. Although effects on neuronal function and response
rates have been associated with symptomatic improvement,
significant differences between active and sham treatment in
all outcome measures have not been uniformly demonstrated
[131]. Ongoing studies of TMS at this site may address these
concerns (e.g., clinicaltrials.gov NCT00106249).

The OFC has also been suggested as a target for TMS. The
only identified published report of TMS at this target, a 23-
patient single-blind sham-controlled trial of rTMS to the left
OFC (1 Hz, 80% MT), failed to find a difference between
groups at 3 weeks but found significant differences between
groups in reduction of Y-BOCS score over 3 months follow-
ing 3 weeks of active treatment [132].

Other Methods

Avariety of other neuromodulatory treatments, includingmag-
netic seizure therapy (see NCT01596608), have also been
proposed, but data for OCD are not available. Prefrontal stim-
ulation using a TMS coil designed to reach deeper structures
(deep TMS) has also been piloted and an ongoing trial is
examining effects of prefrontal stimulation intended to also
affect the ACC (NCT01343732). Based on reports of anxio-
lytic effects in treatment trials for depression, a preliminary
study of VNS for anxiety disorders was initiated; this open trial
included 7 patients with OCD, 3 of whom were classified as
responders based on a ≥ 25% decrease in Y-BOCS score [133].
The authors suggested that double-blind trials may be warrant-
ed, but, to our knowledge, these have not been reported.

Conclusions

Important advances have been made in neuromodulation for
OCD. These include localized treatments, such as DBS, that are

reversible and can allow patients to serve as their own controls.
Advances in ECT reduce risk and may provide a less invasive
alternative to surgical modulation. Another neuromodulatory
option that is less invasive and can be feasibly and ethically
used in sham-controlled studies is TMS. Neuromodulation,
compared with medications, limits the risks of systemic side
effects and may provide advantages in “target engagement”.
Yet, challenges remain to reconcile current views of psychiatric
pathophysiology with the potential of anatomically localized
treatments. These localized treatments may work by altering
circuit function, and may act at a distance. For example, DBS
can elicit antidromic activation and can involve both
GABAergic and glutamatergic transmission [134].

Importantly, because emotion and behavior are likely not
localized to discrete centers, but rely on communication be-
tween multiple neuronal circuits, neuromodulatory ap-
proaches must be continually refined to affect more specific
regions that may be spatially distributed throughout the brain.
Though it is likely that local stimulation propagates up- or
downstream through brain circuits, the incomplete efficacy of
DBS treatment may relate to the spatially restricted effects of
focal treatments on larger circuits. However, the benefits of
ECT may be limited by effects on other brain functions, such
as memory. Similarly, TMS may be limited by its impact on
surrounding structures. Multiple stereotactic targets, closed-
loop systems that provide stimulation only when needed
[135], more portable noninvasive stimulation methods, or
combinations of neuromodulatory strategies may be required
to provide optimal benefit in circuit adjustment and symptom
resolution; patient-controlled temporal regulation of stimula-
tion has already been attempted in OCD patients receiving
DBS. Larger, well-controlled studies are needed to improve
understanding of the potential for neuromodulatory treatments
in OCD.

Growth in understanding of OCD has facilitated develop-
ment of our current treatments from more crude approaches.
Unfortunately, many patients with OCD remain ill and impaired
despite receiving currently state-of-the-art treatment [136]. In
this resistant group, TMS may provide an option with limited
risk. Also, ECT may be considered prior to more invasive
treatments. For highly-resistant patients, DBS may provide a
critical somatic alternative. Tools for understanding psychiatric
pathophysiology are also developing rapidly. Techniques such
as PET, fMRI, magnetic resonance spectroscopy, magnetoen-
cephalography, and quantitative EEG noninvasively illuminate
human brain function in vivo. Knowledge gained from these
techniques and ongoing research will facilitate novel treatment
development and targeting. This offers the promise of improv-
ing the lives of patients who suffer from OCD.
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