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Neu-Laxova Syndrome, an Inborn Error
of Serine Metabolism, Is Caused by Mutations in PHGDH

Ranad Shaheen,1 Zuhair Rahbeeni,2 Amal Alhashem,4 Eissa Faqeih,3 Qi Zhao,5 Yong Xiong,5

Agaadir Almoisheer,1 Sarah M. Al-Qattan,1 Halima A. Almadani,8 Noufa Al-Onazi,4 Badi S. Al-Baqawi,6

Mohammad Ali Saleh,3 and Fowzan S. Alkuraya1,7,*

Neu-Laxova syndrome (NLS) is a rare autosomal-recessive disorder characterized by severe fetal growth restriction, microcephaly, a

distinct facial appearance, ichthyosis, skeletal anomalies, and perinatal lethality. The pathogenesis of NLS remains unclear despite exten-

sive clinical and pathological phenotyping of the >70 affected individuals reported to date, emphasizing the need to identify the

underlying genetic etiology, which remains unknown. In order to identify the cause of NLS, we conducted a positional-mapping study

combining autozygosity mapping and whole-exome sequencing in three consanguineous families affected by NLS. Surprisingly, the

NLS-associated locus identified in this study was solved at the gene level to reveal mutations in PHGDH, which is known to be mutated

in individuals withmicrocephaly and developmental delay. PHGDH encodes the first enzyme in the phosphorylated pathway of de novo

serine synthesis, and complete deficiency of its mouse ortholog recapitulatesmany of the key features of NLS. This study shows that NLS

represents the extreme end of a known inborn error of serine metabolism and highlights the power of genomic sequencing in revealing

the unsuspected allelic nature of apparently distinct clinical entities.
Neu-Laxova syndrome (NLS [MIM 256520]) is a term

coined by Lazjuk in 1979 to unify the independent reports

by Neu and Laxova on a lethal multiple-congenital-

anomaly syndrome.1–3 The main features of NLS involve

defective somatic growth and CNS and skin development,

in addition to many other anomalies that might represent

primary malformations or a malformation sequence.

Growth restriction is a constant feature that is usually

apparent in the second trimester, and it could be argued

that NLS could be classified as a primordial dwarfism dis-

order, especially given that frank skeletal dysplasia is un-

common in this condition.4 Another constant feature is

abnormal brain development, most commonly in the

form of profound microcephaly; a head circumference of

20 cm at term has been reported.5,6 Most of the case reports

that describe detailed brain examination by imaging or on

autopsy converge on a highly characteristic phenotype of

the brain. In addition to being extremely small in volume,

the brain has a distinctive pattern of lissencephaly, which

some label as lissencephaly type III to differentiate it from

type I, seen in Miller-Dieker syndrome (MIM 247200), and

the cobblestone type II, seen inWalker-Warburg syndrome

(MIM 236670) and related disorders of glycosylation. The

cerebellum is often hypoplastic, and complete absence of

the vermis has frequently been reported. In addition, the

corticomedullary tracts are often small or absent in the

brainstem and spinal cord.5 It has been proposed that in

view of the severity of CNS involvement, the skeletal

manifestations in the form of contractures and syndactyly
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represent a sequence that is initiated by the brain malfor-

mation labeled as cerebroarthrodigital (CAD) sequence.7

Contractures, which are common in NLS and sometimes

accompanied by pterygium formation, are associated

with hypoplasia of the skeletal muscles. Syndactyly of

the hands and feet often takes an unusual form of severe

swelling and rudimentary digits that are sometimes un-

discernible.8 The skin is usually ichthyotic with marked

hyperkeratosis and can resemble the colloidon membrane

appearance of other ichthyotic disorders.9 The face is

highly characteristic with proptotic eyes, ectropion, ecla-

bion, and a severely hypoplastic nose. Most affected chil-

dren die shortly after birth, although survival beyond

10 months has been reported and presumed to represent

a milder phenotype.10

The nature of this extremely severe multiple-congen-

ital-anomaly syndrome has been debated for decades. In

addition to the CAD sequence theory above, another

proposal is that NLS might represent an inborn error of

fat metabolism.8 The latter was prompted by the often

reported finding of significant accumulation of fat and

myxoedematous material in the dermis throughout the

body; this accumulation gives the typical edematous

appearance of affected fetuses, who are sometimes

referred to as being ‘‘hydropic.’’11 In this study, we took

advantage of the powerful tools of autozygosity mapping

and whole-exome sequencing to show that NLS is in fact

an inborn error of serine metabolism and that a mouse

model recapitulating key neurological and other features
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Figure 1. Pedigrees and Clinical Images of the Study Families
The index individual is indicated in each pedigree by an arrow, and asterisks denote individuals whose DNA was available for analysis.
Abbreviations are as follows: NND, neonatal death; and SB, stillbirth.
(A) A babygram imaging of the index individual from family 2 shows small distorted calvarial bones without gross vertebral or tubular
bone deformity.
(B) A photograph of the index individual from family 3 shows microcephaly, generalized colloidon-like ichthyosis, a sloping forehead, a
broad nose, large ears, a short neck, spastic long fingers, and fixed contractures of the extremities.
(C andD) Axial (C) and sagittal (D)MRI of the index individual from family 3 shows amarkedly atrophic and small brain with significant
ventriculomegaly but normal appearance of the brainstem.
of this disorder can provide insight into its molecular

pathogenesis.

Three affected individuals from three families were

enrolled under a protocol approved by the institutional

review board at King Faisal Specialist Hospital and Research

Center (research approval committee 2080006) after

signing written informed consent. Blood samples were

collected from the affected individuals, their parents, and

unaffected siblings when applicable. Family 1 consists of

double-first-cousin Saudi parents with one healthy

daughter, two spontaneous abortions, and one daughter

who died immediately after birth and is said to have had

the same phenotype as the index individual. This index

individual (II:3 in family 1, Figure 1), a full-term female

born vaginally, died immediately after birth. She was

very small for her gestational age and had severe micro-

cephaly (records of actual growth parameters at birth could

not be retrieved), micrognathia, bulging eyes with absent

eyelids, severe ichthyosis of the skin, cleft lip and palate

on the right side, a very flat nose, a very short neck, and

generalized edema. She also had extremely abnormal limbs

with hypoplastic forearms and no discernible digits in the

upper or lower limbs (Figure S1A, available online).

Family 2 consists of first-cousin parents and two healthy

daughters. The index individual (II:4 in family 2, Figure 1)

was born preterm at 29 weeks after an uneventful vaginal

delivery. Antenatal ultrasounds at both 19 and 24 weeks

of gestation showed polyhydramnios, curved vertebrae,
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protruded eyes, an open mouth, low-set ears, a short and

broad neck, microcephaly, generalized skin edema (espe-

cially of the trunk and scalp), abnormally flexed hands,

extended crossed feet with a rocker-bottom appearance,

and fetal akinesia. Postnatal screening for congenital infec-

tion was inconclusive. Postnatal examination revealed

massive body swelling and marked disfigurement of the

face and limbs, which appeared engulfed by a thin and

shiny membrane (Figure S1B). The eyes were small, fixed,

and widely spaced and showed supraorbital massive cystic

swelling bilaterally. The nose was completely flat and oblit-

erated, and the mouth was large and fixed open with

massively swollen lips. The neck was extremely short.

The ear lobules were edematous with tight overlying

skin. The trunk was short and shiny with visible veins.

The baby exhibited a fixed-flexion appearance with gener-

alized contractures. The massively edematous hands and

feet had no discernible digits. A skeletal survey showed

defaced and overlapping cranial bones with severe soft-

tissue edema. Thoracic, vertebral, pelvic, and other tubular

bones had no major skeletal defects (Figure 1).

Family 3 consists of first-cousin parents with one

healthy daughter and one affected boy (index) who died

at the age of 1 month. The index individual (II:1 in family

3, Figure 1) was delivered vaginally at term with thick

meconium-stained liquor. Birth weight was 2.24 kg. The

baby was evidently jaundiced with generalized colloidon-

like ichthyosis. He was microcephalic (head circumference
erican Journal of Human Genetics 94, 898–904, June 5, 2014 899



Figure 2. Identification of a NLS-Associated Locus on Chromosome 1
(A) AgileMultiIdeogram showing the chromosome 1 ROH (dark blue) shared among the index individuals from each of the three
families.
(B) Combined genome-wide linkage analysis of the three families revealed a single maximal peak (LOD score ¼ ~3.9) on chromosome 1,
and AutoSNPa output shows the critical interval at chr1: 119,695,451–120,492,822 (boxed in blue) within the shared ROH. The identical
haplotype between individual II:1 in family 1 and individual II:4 in family 2 is denoted by black lines, whereas the red lines in individual
II:1 from family 3 denote divergence in haplotype.
(C) Upper panel: sequence chromatogram of the two missense mutations (control tracing is shown for comparison, and the location of
each mutation is denoted by an asterisk). Lower Panel: schematic of PHGDH and the locations of the two homozygous missense
substitutions identified in the three families (previously reported substitutions in individuals with PHGDH deficiency are shown in
blue for comparison).
of 27.5 cm) with a sloping forehead, a broad nose, large

ears, a short neck, spastic long fingers, and fixed con-

tractures of the extremities (Figure 1). He succumbed to

pneumonia and pseudomonas sepsis and died at 1 month

of age.

Autozygome analysis was performed on all affected

individuals with the Axiom SNP platform (Affymetrix)

and was followed by AutoSNPa genome-wide determina-

tion of runs of homozygosity (ROHs) as surrogates of

autozygosity essentially as described before.12,13 Auto-

zygomes of the index from the three families overlapped

on a single chromosome 1 locus corresponding to the

genomic region chr1: 117,058,389–159,754,449 bp (hg19

assembly, UCSC Genome Browser; Figure 2 A). Linkage

analysis revealed a single peak (LODof ~3.9) corresponding

to the same critical ROH highlighted by autozygome anal-
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ysis (Figure 2B). Within the shared ROH, a region with an

identical haplotype (chr1: 119,695,451–120,492,822,

spanning 11 RefSeq genes) between the two index individ-

uals in families 1 and 2 was identified, further narrowing

the critical interval (Figure 2B). Exome sequencing of the

index individual in family 1 revealed a missense variant

(c.418G>A [p.Gly140Arg], RefSeq NM_006623.3) in

PHGDH as the only homozygous coding or splicing variant

absent from public databases within that critical interval.

Consistent with their shared haplotype, targeted Sanger

sequencing uncovered the same variant in the index indi-

vidual in family 2 (Figure 2C). We then fully sequenced

PHGDH in the index individual (II:1) in family 3 and iden-

tified another homozygous missense mutation (c.488G>A

[p.Arg163Gln], RefSeq NM_006623.3) (Figure 2C). Both

variants were absent in 450 Saudi exomes, the 1000
014



Figure 3. The Two Substituted Amino
Acid Residues Are Located in an Impor-
tant Region of PHGDH
(A) Gly140 (G140, red sphere) and Arg163
(R163, green stick) are located at the
PHGDH dimer interface (molecule 1 in
salmon,molecule 2 in cyan, two substrates
in sticks). The dimer is important for
the optimal function of PHGDH. Details
of the boxed regions are shown in (B)
and (C).
(B) The p.Gly140Arg (Gly140 in red, Arg in
purple) substitution would cause steric
clash (marked by a ‘‘X’’) and introduce
extra positive charge at the dimer inter-
face, which would most likely weaken
the dimerization by steric hindrance and
electrostatic repulsion from two nearby
positively charged residues (Lys289
[K289] and Arg230 [R230] in sticks).
(C) Arg163 (R163) participates in a water
(HOH)-coordinated hydrogen-bonding
and salt bridge network at the dimeriza-
tion interface (Glu108 [E108], Glu159
[E159], and Phe167 [F167] are shown as
sticks, and the interaction network is
shown as black dashed lines). The
p.Arg163Gln substitution might be detri-
mental to the integrity of this network
and weaken dimerization. Also, the loss
of the positive charge by the Arg-to-Gln
substitution would perturb the surface
charge distribution.
(D) Arg135 (R135, purple; involved in the
previously reported p.Arg135Trp substitu-
tion in PHGDH deficiency) and Arg54
(R54, pink sticks) interact with the tail of
the substrate malate (MLT, pink sticks) by
providing two salt bridges (black dashed

lines). The p.Arg135Trp substitution (gray sticks) would eliminate one of the salt bridges and weaken the overall electrostatic attraction.
Some activity presumably remains given that Arg54 might still hold the MLT substrate in position. Furthermore, Arg135 does not
interact with other protein side chains, and there is enough space to accommodate a Trp substitution, so the p.Arg135Trp substitution
might not perturb the overall protein structure and function significantly.
(E) Multisequence-alignment orthologs of the two missense substitutions. The affected glycine and arginine residues (boxed in red) are
absolutely conserved across species down to C. elegans and plant.
Genomes Project, and the NHLBI Exome Sequencing

Project Exome Variant Server. In addition, 3D modeling

of the two variants revealed their localization within the

NAD (P) binding domain and specifically at the PHGDH

dimer interface, which is important for the optimal func-

tion of PHGDH (Figures 3A–3C).14 Furthermore, the two

missense variants affect two absolutely conserved residues

down to plant, and both SIFTand PolyPhen predict them to

be highly pathogenic (PolyPhen: probably damaging [1];

SIFT: deleterious [0]) (Figure 3E). Finally, a dried blood

spot from an affected individual in family 3 was analyzed

by tandemmass spectrometry,15 and the amino acid profile

was significant for low concentrations of serine

(50 nmol/ml; reference range 74–448) and glycine

(105 nmol/ml; reference range 180–709). These findings

are also consistent with a biochemical diagnosis of PHGDH

deficiency. These data strongly suggest that each of the two

alleles in PHGDH is disease causing in the respective fam-

ilies in the homozygous state.
The Am
The realization that the distinction between metabolism

and dysmorphology is artificial is not new, and muco-

polysaccharidoses (MIM 252700), Smith-Lemli-Opitz

syndrome (MIM 270400), and peroxisomal biogenesis dis-

order (MIM 214100) are among the earliest examples of

metabolic disorders with a significant dysmorphology

profile.16 However, the historical branching of clinical

genetics into inborn errors of metabolism and dysmor-

phology continues to hamper the exchange of pheno-

typing expertise, which in turn can delay the proper

molecular classification of disorders, as has been shown

recently in the case of congenital disorder of glycosylation

type IIa (MIM 212066).17,18 Fortunately, the recent

availability of genomic tools that are largely unaffected

by this problem of phenotyping bias has ushered in a

new era of molecular diagnostics and revealed many

surprises as a result. Interesting in this regard is the fact

that the first Mendelian disorder to be solved by

whole-exome sequencing—Miller syndrome—is a classic
erican Journal of Human Genetics 94, 898–904, June 5, 2014 901



dysmorphology syndrome that was found to be an inborn

error of pyrimidine metabolism.19 Thus, our surprising

finding that NLS is an inborn error of metabolism should

be viewed in the context of a trend where whole-exome

sequencing is demolishing arbitrary distinctions. In addi-

tion, we note that whole-exome sequencing has confirmed

allelism between NLS and PHGDH deficiency, a surprising

finding that could not have been predicted on clinical

grounds.

PHGDHdeficiency, an inborn error of serinemetabolism,

was first described by Jaeken et al. in 1996.20 Although

serine can be synthesized with alternative pathways,

reports of PHGDH deficiency were viewed as evidence

that PHGDH and the pathway in which it serves are the

major source of this nonessential amino acid because

affected individuals have low serine levels in plasma and

CSF despite the intact nature of those alternative pathways.

These individuals are almost uniformly microcephalic and

delayed in their development, and epilepsy and intrauter-

ine growth retardation are common features.21

Our finding that NLS and PHGDH deficiency are allelic

disorders raises an obvious question: why do the pheno-

types of these two disorders differ significantly? There are

several possible explanations for this discrepancy. First,

ascertainment bias makes it possible that only individuals

at the mild end of the PHGDH spectrum present to meta-

bolic specialists with the common referring diagnosis of

nonspecific intellectual disability and epilepsy, whereas

those with more severe deficiency present with structural

anomalies and are referred instead to dysmorphologists,

who are less likely to conduct a detailed metabolic assess-

ment. We are not aware of any previously published NLS

report that explicitly describes results of plasma amino

acid measurements. Second, a closer look at the literature

suggests that a spectrum does indeed exist such that it is

conceivable to view NLS and PHGDH deficiency as part

of a spectrum, as illustrated by the previously reported

10-month-old infant with a mild form of NLS. Third, it is

possible that the mutations that cause NLS exert a more

detrimental effect on the protein function than do those

previously reported in PHGDH deficiency. For example,

3D modeling suggests that the previously reported

p.Arg135Trp (c.403C>T) (RefSeq NM_006623.3) substitu-

tion in PHGDH deficiency is likely to affect the protein

more mildly than the adjacent p.Gly140Arg, which we

report here (Figure 3). Fourth, mice that completely lack

themurine ortholog of PHGDH display a universally lethal

phenotype that recapitulates key pathogenic features of

NLS.22 The embryos do not usually survive beyond

13.5 days postcoitus, are extremely small in size, and

have a limb phenotype (where the terminal limb bud is

swollen and fails to digitize) that is remarkably similar to

that of NLS. Moreover, the brains of these embryos are

small and show evidence of abnormal development, as

seen in NLS individuals.

Given the above features, Phgdh�/�micemake a valuable

NLS disease model and provide insights into the molecular
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pathogenesis of NLS. Serine is required for the synthesis of

key brain lipids, including sphingolipids and gangliosides,

and these are indeed markedly deficient in the brains of

Phgdh�/� embryos.22 These mice have also been shown

to have reduced aminophospholipids (e.g., phosphatidyl-

serine and phosphatidylethanolamine) in addition to a

documented repression of protein translation initia-

tion.23 Interestingly, PHGDH is highly expressed in neuro-

progenitor cells during embryogenesis and is expressed in

glial cells of postnatal brains.24,25 Indeed, complete defi-

ciency of PHGDH is associated with a marked proliferation

defect of neuroprogenitors of Phgdh�/� brains, which can

explain the severe microlissencephaly, a phenotype that

has been previously shown to result from a mitosis defect

of neuroprogenitors.26 On the other hand, heterozygous

Phgdhþ/� mice are completely normal, so it is conceivable

that residual activity of PHGDH in previously published

individuals with PHGDH deficiency (range 12%–25%)

might have provided sufficient serine to overcome a partic-

ular threshold below which the major developmental

defects of NLS take place. It is worth mentioning here

that another serine-metabolism-related knockout mouse

(Psid�/�) in which phosphatidylserine decarboxylase defi-

ciency results in decreased synthesis of phosphatidyletha-

nolamine is also characterized by embryonic lethality.27

Our direct observation of serine depletion in NLS and

the encouraging results of serine supplementation to treat

individuals with PHGDH deficiency raise interesting possi-

bilities about the potential benefit of serine supplementa-

tion during pregnancy to treat NLS or at least mitigate

the severity of its associated developmental defects.28

The practicality of such an approach will most likely be

limited by the inability to identify this very rare disorder

sufficiently early in pregnancy, but it can theoretically be

attempted in families with high recurrence risk, such as

the families studied here.

In summary, we report on the identification of homo-

zygous mutations in PHGDH and serine deficiency in indi-

viduals with NLS. This disorder thus seems to be an

extremely severe expression of PHGDH deficiency. Our

finding that NLS is an allelic disorder of the much milder

PHGDH-deficiency phenotype highlights the additional

layer of complexity in linking genes to human diseases

in that although genes are limited in number, their patho-

genic alleles are not, and each of these alleles can have its

own phenotypic consequences. Genomic sequencing is a

powerful tool in tackling this challenge.
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