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ABSTRACT
The aim of this study was to determine the prevalence of amoebic infection in non-
human primates (NHPs) from six Zoological gardens in the United Kingdom. Ini-
tially, 126 faecal samples were collected from 37 individually identified NHPs at
Twycross Zoo, UK, and were subjected to microscopic examination. A subsequent,
nationwide experiment included 350 faecal samples from 89 individually identified
NHPs and 73 unidentified NHPs from a number of UK captive wildlife facilities:
Twycross Zoo (n = 60), Colchester Zoo (n = 3), Edinburgh Zoo (n = 6), Port
Lympne Wild Animal Park (n = 58), Howletts Wild Animal Park (n = 31), and
Cotswold Wildlife Park (n = 4). Samples were examined by PCR and sequencing
using four specific primer sets designed to differentiate between the pathogenic
E. histolytica, the non-pathogenic E. dispar, and non-pathogenic uninucleate cyst-
producing Entamoeba species. In the first experiment, Entamoeba was detected in
30 primates (81.1%). Six (16.2%) primates were infected with E. histolytica species
complex. The highest carriage of Entamoeba species was found in Old World Colobi-
nae primates. In the nationwide experiment, molecular analysis of faecal samples
revealed notable rates of Entamoeba infection (101 samples, 28.9%), including one
sample infected with E. histolytica, 14 samples with E. dispar, and 86 samples with
uninucleated-cyst producing Entamoeba species. Sequences of positive uninucleated-
cyst producing Entamoeba samples from Twycross Zoo clustered with the E. polecki
reference sequences ST4 reported in Homo sapiens, and are widely separated from
other Entamoeba species. These findings suggest a low prevalence of the pathogenic
Entamoeba infection, but notable prevalence of non-pathogenic E. polecki infection
in NHPs in the UK.

Subjects Parasitology, Taxonomy, Epidemiology, Infectious Diseases, Public Health
Keywords Entamoeba, Homo sapiens, Zoonosis, Public health, Phylogenetics, Prevalence, Zoos,
Nonhuman primates

INTRODUCTION
Entamoeba (family Entamoebidae) is a genus of diverse intestinal protists found in

humans, nonhuman primates (NHPs) and other animals. It encompasses several species,

including E. histolytica, E. dispar, E. moshkovskii, E. polecki, E. nutalli, E. chattoni, E. coli,

E. hartmanni, E. ecuadoriensis and E. Bangladeshi. NHPs harbour a number of Entamoeba

spp. of varied importance to human and domestic animal health. E. histolytica species
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complex (E. histolytica, E. dispar and E. moshkovskii) are morphologically indistinguish-

able, but have different virulence capabilities. E. histolytica is the most important zoonotic

pathogen (Sargeaunt, Williams & Jones, 1982; Verweij et al., 2003; Ekanayake et al., 2006),

and has been reported in NHPs, causing intra- and extra-intestinal disease (Solaymani-

Mohammadi et al., 2006; Ulrich et al., 2010). Also, E. histolytica is known to be responsible

for 50 million human cases of haemorrhagic colitis and extra-intestinal abcessation, and

100,000 deaths annually (World Health Organization, 1997). In contrast, E. dispar is able

to colonize the intestine, but is noninvasive. E. moshkovskii is primarily free-living and

the ability to cause disease in human is still unclear (Heredia, Fonseca & Lopez, 2012).

Also, human diseases linked to the uninucleated cyst-producing E. chattoni have been

attributed to contact with monkeys (Sargeaunt, Patrick & O’Keeffe, 1992). E. nuttalli and

E. histolytica species complex have previously been confused or misidentified on routine

examination due to their morphological similarity, but are now considered separate species

with restricted host specificity (Tachibana et al., 2013).

Microscopic examination of faecal samples has been traditionally the primary method

of Entamoeba detection; however, it does not allow the differentiation of the pathogenic

E. histolytica from the non-pathogenic Entamoeba spp (Kebede et al., 2003; Verweij et

al., 2003; Fotedar et al., 2007). Knowledge of Entamoeba epidemiology and evolution

has considerably progressed in recent years, with improved isolation, identification,

and genotyping methods (Levecke et al., 2010; Stensvold et al., 2011). These molecular

methods have detected considerable diversity within the genus, and enabled the detection

and distinction of species (including the so-called ribosomal lineages) that cannot be

differentiated by traditional parasitological methods. Despite the continued importance of

Entamoeba spp and the known susceptibility of NHPs to infection very little information

is available on the prevalence of Entamoeba infection in NHP populations in the United

Kingdom. Given its zoonotic potential and public health impact, including in a zoological

setting the present study assessed and compared Entamoeba prevalence in captive primates

in various zoological gardens throughout the United Kingdom using molecular methods of

Entamoeba detection.

MATERIALS & METHODS
Study areas and sampling design
A preliminary study was performed to establish the prevalence of Entamoeba infection

in primates in a single zoological park in the United Kingdom, and to identify which

families of primates required the most focus during the subsequent nationwide study.

Hence, Twycross Zoo was chosen as the preliminary study site as it houses a wide variety

of primate species and families, and amoebic infection had been identified historically

and was suspected in their primates at the time of the study. Thirty-seven primates

were available for inclusion within the study, including six species of primates from 23

enclosures (Table 1). To identify individual primates in group enclosures a feed item for

each primate was impregnated with approximately 0.5 g of different coloured edible cake

glitter (Rainbow Dust Colours Limited, Lockstock Hall Preston, England) and fed during
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Table 1 The prevalence of Entamoeba spp. in non-human primates from Twycross Zoo.

Species Family E. histolytica complex E. hartmanni E. coli

Black Howler Monkey (Alouatta caraya; n = 17) Atelidae 11.8% (2) 35.3% (6) 70.6% (12)

Brown Woolley Monkey (Lagothrix lagotricha; n = 6) Atelidae 16.7% (1) 66.7% (4) 66.7% (4)

Eastern Javan Langur (Trachypithecus auratus auratus; n = 9) Colobinae 22.2% (2) 88.9% (8) 77.8% (7)

Dusky Leaf Monkey (Trachypithecus obscures; n = 1) Colobinae 100% (1) 100% (1) 0%

Golden Lion Tamarin (Leontopithecus rosalia; n = 2) Callitrichidae 0% 0% 0%

Golden-headed Lion Tamarin (Leontopithecus chrysomelas; n = 2) Callitrichidae 0% 0% 0%

Total (n = 37) 16.2% (6) 51.4% (19) 62.2% (23)

the morning by the keeper. Each group individual was assigned and fed a different glitter

colour from two days before sample collection until successful completion of sample

collection; this was typically two to five days. All stool samples in each enclosure were

collected separately on clean disposable paper plates during morning cleaning by keepers

until three stools per primate were identified from the glitter colour allocated for each

primate. Three samples per primate were collected to account for intermittently shed

Entamoeba. A representative 3–5 g stool sample for each animal (identified by different

glitter colours) was placed into a labeled clean 7 ml plastic bijoux, using a clean wooden

swab stick, containing 10% formalin, and was stored at 5 ◦C until further processing. Age,

sex, species, treatment with amoebicidal medication and enclosure identity were recorded.

Subsequent to the preliminary study, a nationwide epidemiological study was

conducted to identify the prevalence of Entamoeba infection, E. histolytica, E. dispar and

uninucleate cyst-producing species, within Colobinae primates at six different zoos in the

United Kingdom (Fig. 1). Primates from the Colobinae family (genus Semnopithecus, Tra-

chypithecus or Presbytis) were selected as the sample population for the nationwide study

based on two reasons. Firstly, the preliminary data from Twycross Zoo demonstrated the

highest prevalence of amoebiasis in the Old World Colobinae monkeys. This is in agree-

ment with results from other studies (Tachibana et al., 2001; Levecke et al., 2007). Secondly,

primates from the Colobinae family have specialised sacculated stomachs, an adaption to

their leaf-eating lifestyle, which provides favorable conditions for ingested Entamoeba cyst

excystation, and trophozoite tissue invasion (Mätz-Rensing et al., 2004; Ulrich et al., 2010).

A total 350 samples were collected from 162 primates from six zoological parks within

the United Kingdom (Table 2), between July 2010 and August 2011. This sample group

included primarily primates from the Colobinae family, but also some New World

monkeys. All zoological parks housed primates and non-primate species. Primates

occupied indoor concrete enclosures with access to external grassed sections. Same

species primates occupied mixed sex group enclosures. Some primates were housed

alone for medical reasons, or due to social incompatibility with the rest of the group. It

was possible to collect repeat samples from four primates sampled in the preliminary

study; all other primates from Twycross Zoo were unavailable for sampling. The same

stool collection technique was used as for the preliminary study with one modification
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Figure 1 Map of The United Kingdom showing the sampling locations. Six zoological gardens are
indicated by red solid stars. The map was created by using the STEP MAP web tool. 1 Twycross Zoo,
Atherstone, Midlands, CV9 3PX, England. 2 Port Lympne Wild Animal Park, Lympne, Hythe, Kent,
CT21 4LR, England. 3 Howletts Wild Animal Park, Bridge, Canterbury, CT4 65AE, England. 4 Colchester
Zoo, Stanway, Colchester, Essex, CO3 0SL, England. 5 Cotswold Wildlife Park, Bradwell Grove, Burford,
Oxfordshire, OX18 4JP, England. 6 Edinburgh Zoo, Edinburgh, City of Edinburgh, E12 6TS, Scotland.

to facilitate molecular examination of samples: stools were collected into 70% ethanol,

not 10% formalin. The primate keepers at each facility administered the glitter and

collected the samples. Two hundred and seventy-four stool samples could be associated

with 89 individually identified primates; however, some stool samples collected could

not be attributed to a specific primate from within a group enclosure. This was due to

the limitations of deciphering different glitter colours when dealing with large number

of primates, and hence glitter colours, in one enclosure. Hence, 76 stools from the

remaining 73 primates had to be collated as samples from eleven groups of NHPs (Table 2).

The entirety of each stool sample was examined grossly for the presence of blood as
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Table 2 Non-human primates sampled in the nationwide study.

Study site Species of primate Number of primates sampled

Individually
identified

Unidentified primates
(no. of group)

Twycross Zoo Eastern Javan Langur (Trachypithecus auratus auratus) 9 4 (1)

Black Howler Monkey (Alouatta caraya) 15 11 (2)

Woolley Monkeys (Lagothrix lagotricha) 6 –

Dusky Leaf Monkey (Trachypithecus obscures) 1 –

Golden Lion Tamarin (Leontopithecus rosalia) 2 –

Golden-headed Lion Tamarin (Leontopithecus chrysomelas) 2 –

Francois Langur (Trachypithecus francoisi) 5 –

Dusky Leaf Monkey (Trachypithecus obscures) 5 –

Port Lympne Wild Animal Park Eastern Javan Langur (Trachypithecus auratus auratus) 9 39 (4)

Grizzled Leaf Monkey (Presbytis comata) – 7 (1)

Banded Leaf Monkey (Presbytis femoralis) – 3 (1)

Howletts Wild Animal Park Banded Leaf Monkey (Presbytis femoralis) 5 –

Dusky Leaf Monkey (Trachypithecus obscures) 14 –

Francois Langur (Trachypithecus francoisi) 2 –

Grizzled Leaf Monkey (Presbytis comata) 8 –

Eastern Javan Langur (Trachypithecus auratus auratus) 2 –

Colchester Zoo Silvery Langur (Trachypithecus cristatus cristatus) 3 –

Cotswold Wildlife Park Purple-faced Langur (Trachypithecus vetulus monticola) 1 3 (1)

Edinburgh Zoo Purple-faced Langur (Trachypithecus vetulus vetulus) – 6 (1)

Total 89 73 (11)

a possible indication of gastrointestinal illness and potential parasitism. Thirty two

(82.1%) of primates had been treated with a vitamin D3 supplement and 10 day course

of metronidazole (Flagyl) followed by 10 days of diloxinide furoate in the six months prior

to sample collection.

The study was approved by The University of Nottingham (UK) School of Veterinary

Medicine and Science (SVMS) Ethical Review Committee. The Committee reviews all

research studies involving School personnel and is chaired by Professor David Haig. The

committee passed this study as good to proceed, not requiring any further ethical review.

Parasite identification
All formalin preserved samples were analysed microscopically using a modified Ridley’s

formol-ether concentration technique, which enhances microscopic sensitivity by produc-

ing ‘cleaner’ samples that are more efficient to examine. Following sedimentation, samples

were then examined microscopically for the presence of Entamoeba species from the

E. histolytica complex (E. histolytica, E. dispar and E. moshkovskii), E. coli and E. hart-

manni. Data was analyzed using Minitab 15. Binary logistic regression was used to demon-

strate statistical significance between prevalence of infection and primate demographics.

All prevalence data is derived using the total number of primates as the denominator.
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Table 3 Primer sets and PCR conditions used in the present study.

Forward primer Reverse primer Amplification reaction

Primer set 2* Primer 5.1: (5′′-AAG GAT AAC TCT
TGT TAA TTG CAG-3′′)

Primer 3.2: (5′′-TGT CTA AAT TAC
CCC AAT TTC C-3′′)

30 cycles of 94 ◦C, 57 ◦C, and 72 ◦C each for 30 s,
followed by a final 2 min at 72 ◦C

Primer set 3* Primer 5.2: (5′′-GGA ATA GCT TTT
TGA GAA GAA GG-3′′)

Primer 3.2: (5′′-TGT CTA AAT TAC
CCC AAT TTC C-3′′)

30 cycles of 94 ◦C, 57 ◦C, and 72 ◦C each for 30 s,
followed by a final 2 min at 72 ◦C

E. histolytica

RRH5: (5′′-GCG CCT TTT TAT TCA
ATA TAC TCC-3′′)

RRH3: (5′′-GGA TGA AGA TAT CTT
CAC AGG G-3′′)

30 cycles of 94 ◦C, 59 ◦C , and 72 ◦C each for 30 s,
followed by a final 2 min at 72 ◦C

E. dispar

RRD5: (5′′-CAT GAG GCG CCT TTT
TAT CA-3′′)

RRD3: (5′′-AGG GGA TGA TGA TAT
TGA ACA CAC TC-3′′)

30 cycles of 94 ◦C, 59 ◦C , and 72 ◦C each for 30 s,
followed by a final 2 min at 72 ◦C

Notes.
* Two primer sets were used to target uninucleated cyst-producing Entamoeba species (E Victory, pers. comm., 2010).

Molecular analyses
QIAamp DNA Stool Mini Kit (QIAgen, UK) was used according to the manufacturer’s

instructions to extract parasite DNA directly from faeces. Technique modifications to

improve the yield and purity of DNA extracts included increasing the lysis temperature to

95 ◦C and adding an extra wash prior to sample elution with Buffer AE. Concentration and

DNA purity in sample extracts was analyzed, using a Thermo Scientific NanoDropTM1000

Spectrophotometer, prior to PCR amplification. The strategy used for selection of PCR

primers (Table 3) was based on the use of previously published diagnostic primers for

the mononucleate Entamoeba species, E. histolytica and E. dispar (Ali, Zaki & Clark,

2005). Both species have been previously found in the faeces of NHPs. It is important

to discriminate E. histolytica from other nonpathogenic amoebas because E. histolytica

carries the risk of zoonosis (Rivera & Kanbara, 1999; Tachibana et al., 2000; Tachibana et al.,

2001; Verweij et al., 2003; Rivera, Yason & Adao, 2010; Feng et al., 2011). Also, we used two

species complex specific primers to amplify uninucleate cyst-producing species, but not

tetra- or octonucleate cyst-producing species. All PCR products were subjected to DNA

sequencing to identify the species/subtype of each amplicon including those amplified by

the species diagnostic primers.

Separate PCRs were performed with each primer pair in a reaction mixture of 40 µl

consisting of 4 µl of extracted DNA, 20 µl of Biomix (Bioline, UK), 15 µl of sterile distilled

water, and 0.5 µl of each forward and reverse primer. The amplification reactions were

performed using a Bioer Xp Cycler as described in Table 4. PCR products were separated

by electrophoresis in 1.2% agarose gels run at 100 V on a Thermo Scientific Easycast

B1 or D2 electrophoresis gel tank with a Thermo Scientific EC 1000 XL Power Pac for

approximately 60 min. A mix of 7 µl of PCR product and 3.5 µl of loading buffer (New

England Biolabs Ltd., UK) were applied to each well. A 1-kbp molecular size ladder (New

England Biolabs) was added to each gel for product size estimation. Gels were stained with

0.1 µg/ml ethidium bromide solution. Amplified DNA was visualized under UV light.
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Table 4 Details of purified amplicons of Entamoeba species from which nucleotide sequences were obtained.

Primate species Zoological park Primers Target

Banded Leaf Monkey (Presbytis femoralis) Howlett’s Wild Animal Park RRH3, RRH5 E. histolytica

Eastern Javan Langur (Trachypithecus auratus auratus) Twycross Zoo RRD3, RRD5 E. dispar

Dusky Leaf Monkey (Trachypithecus obscures) Twycross Zoo RRD3, RRD5 E. dispar

Dusky Leaf Monkey (Trachypithecus obscures) Howletts Wild Animal Park RRD3, RRD5 E. dispar

Eastern Javan Langur (Trachypithecus auratus auratus) Howletts Wild Animal Park RRD3, RRD5 E. dispar

Eastern Javan Langur (Trachypithecus auratus auratus) Twycross Zoo RRD3, RRD5 E. dispar

Eastern Javan Langur (Trachypithecus auratus auratus) Twycross Zoo RRD3, RRD5 E. dispar

Eastern Javan Langur (Trachypithecus auratus auratus) Twycross Zoo RRD3, RRD5 E. dispar

Eastern Javan Langur (Trachypithecus auratus auratus) Twycross Zoo RRD3, RRD5 E. dispar

Black Howler Monkey (Alouatta caraya) Twycross Zoo P3.2, P5.2 Uninucleates

Black Howler Monkey (Alouatta caraya) Twycross Zoo P3.2, P5.2 Uninucleates

Woolly Monkey (Lagothrix lagotricha) Twycross Zoo P3.2, P5.2 Uninucleates

Golden-headed Lion Tamarin (Leontopithecus chrysomelas) Twycross Zoo P3.2, P5.2 Uninucleates

Eastern Javan Langur (Trachypithecus auratus auratus) Twycross Zoo P3.2, P5.2 Uninucleates

Eastern Javan Langur (Trachypithecus auratus auratus) Twycross Zoo P3.2, P5.2 Uninucleates

Woolly Monkey (Lagothrix lagotricha) Twycross Zoo P3.2, P5.2 Uninucleates

Molecular phylogenetics
One positive amplicon per primate (a total of 16 amplicons) was selected for sequencing,

based on visualization of PCR products (Table 4). Amplicons were purified, using

a QIAquick PCR Purification Kit (QIAgen, UK), according to the manufacturer’s

instructions and then subjected to sequencing on the Illumina platform by Source

BioScience (Nottingham, UK) using the primers from the PCR. Nucleotide sequences were

determined at least once on each DNA strand. Three representative Entamoeba nucleotide

sequences obtained in this study were deposited in GenBank under accession numbers

KJ149294, KJ149295, KJ149296.

Raw sequencing chromatograms were evaluated with Geneious (version 5.4) software.

Newly obtained Entamoeba sequences were compared with similar sequences available at

the GenBank database by using the Bl2Seq algorithm as implemented in BLASTn (Altschul

et al., 1990). Multiple alignments of all nucleotide sequences were obtained by using the

MUSCLE program (Edgar, 2004). The resulting alignments were adjusted manually when

necessary using CLUSTALX (Larkin et al., 2007). The unmatched ends were deleted to

obtain a homogeneous matrix of characters and thus increase the reliability of the tree

obtained. Phylogenetic trees were inferred from the nucleotide sequence alignments by

the maximum-likelihood (ML) method using the BIONJ algorithm (Gascuel, 1997) and

distance method with HKY85 model (Hasegawa, Kishino & Yano, 1985) of nucleotide

substitution implemented in PhyML-aLRT (Guindon & Gascuel, 2003). The reliability of

the branching order was assessed by performing 1,000 bootstrap replicates.
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RESULTS
Entamoeba prevalence at Twycross Zoo
One hundred and twenty-six stool samples were collected from 37 individual primates. No

primate demonstrated ill health at the time of sample collection and no samples contained

grossly visible blood. Microscopic examination demonstrated Entamoeba shedding in

81.1% of 37 primates sampled (Table 1). Entamoeba coli was the most prevalent Entamoeba

species shed (62.2%), with three of six primate species shedding this Entamoeba species.

Shedding of species from the E. histolytica complex was identified in 16.2% of primates

(6 primates). Co-infection with two or more Entamoeba species was identified in 14

primates. Old World Colobinae primates showed the highest prevalence of Entamoeba

infection. Entamoeba infection was significantly associated with species of primate (P <

0.05) and administration of metronidazole (P < 0.05). More specifically, infection with

E. coli was significantly associated with both parameters (both P < 0.05). Primates previ-

ously treated with metronidazole showed greater infection with E. coli (76.9%) compared

to those untreated (25.0%). No significant associations were identified between primate

demographic characteristics and infection with Entamoeba from the E. histolytica complex

or E. hartmanni. Eggs from Trichuris species were identified in samples from two primates.

Entamoeba prevalence at multiple zoos
Entamoeba was present in 101 (28.9%) samples (Table 5), indicating a notable prevalence

of Entamoeba infection at the national level. No more than one species of Entamoeba was

identified per sample. Three Entamoeba species were detected by species-specific PCR and

confirmed with sequencing and BLAST: E. histolytica, E. dispar and E. polecki. E. histolytica

was detected in one sample (2.9%), E. dispar in 14 samples (4.0%) and uninucleated

cyst-producing Entamoeba species in 86 (24.6%) samples. E. histolytica and E. dispar were

identified in samples from Colobinae primates only, whilst uninucleated-cyst producing

Entamoeba species were identified in samples primarily from New World monkeys, but

also in primates from the Colobinae family. Entamoeba infection was only detected in

primates from three zoological parks (Table 5): E. histolytica was only identified at one

park, E. dispar in three parks, and uninucleated cyst-producing Entamoeba species in three

parks. No primate was found to harbor mixed Entamoeba species. All primates sampled

appeared clinically healthy at the time of sample collection.

To infer the phylogenetic relationship of the isolates detected in the present study,

E. histolytica, E. dispar and E. polecki, with previously characterized isolates, we used

maximum likelihood method. PCR amplicons from sixteen samples were purified and

submitted for sequencing (Table 4). The sequence from the sample that produced an

amplicon with the E. histolytica-specific primers was identical to the corresponding region

of the GenBank sequence for E. histolytica from monkey (AB197936) from a cynomolgus

monkey. Likewise, sequences obtained from eight samples that produced amplicons with

the E. dispar-specific primers were identical to the corresponding region of the GenBank

sequence (AB282661) for E. dispar from a rhesus monkey. Seven sequences were obtained

from uninucleate amplicons from Twycross Zoo and shared high sequence homology
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Table 5 The prevalence of Entamoeba species by species of primate and zoological park.

Species of primate E. histolytica E. dispar Uninucleates

% (number of primate)

Old world monkey

Banded Leaf Monkey (Presbytis femoralis; n = 20) 5.0 (1) 0 0

Dusky Leaf Monkey (Trachypithecus obscures; n = 60) 0 3.3 (2) 0

Eastern Javan Langur (Trachypithecus auratus auratus; n = 117) 0 10.3 (12) 29.1 (34)

Francois Langur (Trachypithecus francoisi; n = 19) 0 0 0

Grizzled Leaf Monkey (Presbytis comata; n = 27) 0 0 0

Silvery Langur (Trachypithecus cristatus cristatus; n = 9) 0 0 0

Purple-faced Langur (Trachypithecus vetulus vetulus; n = 11) 0 0 0

Subtotal (n = 263) 0.76 (1) 5.3 (14) 12.9 (34)

New world monkey

Black Howler Monkey (Alouatta caraya; n = 52) 0 0 70.9 (40)

Woolly Monkey (Lagothrix lagotricha; n = 23) 0 0 47.8 (11)

Golden-headed Lion Tamarin (Leontopithecus chrysomelas; n = 6) 0 0 16.7 (1)

Golden Lion Tamarin (Leontopithecus rosalia; n = 6) 0 0 0

Subtotal (n = 87) 0 0 59.8 (52)

Total (n = 350) 0.3 (1) 4.0 (14) 24.6 (86)

Zoological park

Colchester Zoo (n = 9) 0 0 0

Cotswold Wildlife Park and Gardens (n = 8) 0 0 0

Edinburgh Zoo (n = 3) 0 0 0

Howletts Wild Animal Park (n = 90) 1.1 (1) 2.2 (2) 0

Port Lympne Wild Animal Park (n = 72) 0 2.8 (2) 0

Twycross Zoo (n = 168) 0 6.0 (10) 51.2 (86)

Total (n = 350) 0.3 (1) 4.0 (14) 24.6 (86)

E. polecki. Two representative sequences were used to build a phylogenetic tree. As seen

in Fig. 2, E. polecki sequences obtained in the present study clustered with and formed a

monophyletic group with E. polecki subtype 4 isolates reported in Homo sapiens from Asia,

Africa and Europe.

DISCUSSION
Nonhuman primates harbour a number of Entamoeba spp of varied importance to human

and domestic animal health. The prevalence and genetic identity of Entamoeba species was

investigated in primate collections at six major NHP zoos in the United Kingdom. Results

indicated a low prevalence of the pathogenic E. histolytica in the examined primates. This is

important to the primate population and also to the many thousands of human visitors of

these zoos each year. Higher prevalence of non-pathogenic Entamoeba species was however

identified in the primates sampled. Previous studies utilizing molecular methods to

identify carriage of Entamoeba species demonstrated a similar prevalence data to that seen

in the current study. Low carriage of E. histolytica and higher carriage of other Entamoeba

species in NHP populations has been demonstrated in both captive (Tachibana et al.,

Regan et al. (2014), PeerJ, DOI 10.7717/peerj.492 9/16

https://peerj.com
http://dx.doi.org/10.7717/peerj.492


Figure 2 Phylogenetic tree based on partial 18SrDNA sequences, showing the relationships among
Entamoeba species. Phylogenetic analysis used two different approaches, distance-based analysis and
maximum-likelihood (ML), produced trees with identical topologies of which only ML tree is presented.
GenBank accession numbers and host species are given in parentheses after the taxon name. Sequences
in bold face were obtained during this study. Numbers above branches are bootstrap values (%) from
1,000 replicates. Nodes of the tree with bootstrap values of ≥95% are indicated by black closed circles.
The node is not labeled where bootstrap support values is <50. Bar = estimated number of substitutions
per site.
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2000; Tachibana et al., 2001; Takano et al., 2005; Rivera, Yason & Adao, 2010) and free-living

NHP species (Rivera & Kanbara, 1999). However, the NHP populations examined in these

studies were based outside of Europe, with all of the captive populations investigated in

these studies existing in research facilities in Asia. Levecke et al. (2010) reported that 36%

of faecal samples collected from various primate species in zoological parks in Belgium

and The Netherlands contained E. histolytica, and identified Entamoeba species as the most

prevalent gastrointestinal parasite within the sampled population.

The lack of sex or age predisposition to infection with Entamoeba species in our study

is in agreement with other studies (Lilly, Mehlman & Doran, 2002; Jones-Engel et al., 2004;

Gillespie, Greiner & Chapman, 2005; Muehlenbein, 2005; Ekanayake et al., 2006; Teichroeb et

al., 2009). In the present study, the highest prevalence of Entamoeba infection was detected

in Old World monkeys; this finding is in agreement with reports from other studies in

Japan (Tachibana et al., 2001) and Belgium (Levecke et al., 2007). Primates from the

Colobinae family have specialised sacculated stomachs, an adaption to their leaf-eating

lifestyle, which provides favorable conditions for ingested Entamoeba cyst excystation,

and trophozoite tissue invasion (Mätz-Rensing et al., 2004; Ulrich et al., 2010). The higher

carriage of uninucleated cyst-producing Entamoeba species, compared to other Entamoeba

species, identified at Twycross Zoo may be explained by the asymptomatic commensal

carriage of a non-pathogenic Entamoeba species. These non-pathogenic species are less

likely to be clinically identified; therefore, infected primates are less likely to receive

amoebicidal treatment. Administration of amoebicidal drugs might have been the cause of

the apparent increase in the prevalence of uninucleated cyst-producing Entamoeba species

and Entamoeba coli in primates at Twycross Zoo. Re-establishment of gastrointestinal

microflora, following treatment with amoebicidal agents, may have favoured the growth

of the commensal populations of the octonucleated cyst-producing Entamoeba species

(E. coli) in treated primates, as confirmed by microscopic examination of stool samples. In

line with this assumption is the reported high frequency of the commensal uninucleated

and octonucleated cyst-producing commensal Entamoeba species in primate populations

(Tachibana et al., 2000; Petrášová et al., 2010). Alternatively, this may be explained by

the development of metronidazole resistance in these uninucleated and octonucleated

cyst-producing Entamoeba species.

The difference in the prevalence of Entamoeba among zoos (Table 5) can be explained by

the differences in biosecurity and precautionary measures taken to prevent parasitic disease

transmission. All zoos participated in the study already implement routine disinfection

programmes (personal communication with Zoos). However, additional precautionary

measures are needed in order to prevent the transmission of infection between enclosures

including hygienic food preparation, provision of potable water, and disinfection of keeper

footwear, over-clothing, hands, and cleaning equipment between enclosures. Effective

drainage and water microfiltration within enclosures is also critical. Proactive pest control

measures reduce arthropod vectors transporting infective cysts between enclosures (Pang,

Chang & Chang, 1993; Denver, 2008). Additionally, avoiding mixed primate exhibits

reduces the transmission of amoebiasis between NHP of different susceptibility. The same
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measure may help to prevent zoonotic transmission to zoo visitors. Unfortunately limited

time and financial resources often result in deficiencies in one or more of these measures.

Methods for Entamoeba identification have been undergoing rapid change over the past

decade and molecular phylogenetic techniques are rapidly becoming the procedures of

choice (Levecke et al., 2010; Stensvold et al., 2011). PCR amplification of the 18S rDNA gene

directly from a sample of mixed microbiota alleviates the need for culturing Entamoeba

(Levecke et al., 2010), and once DNA is prepared, there are no biohazard dangers.

rDNA-based molecular phylogenetic techniques were used to identify the Entmaoeba

species detected in the faecal samples from NHP in the present study. Sequences from

E. histolytica and E. dispar obtained in the study were identical to previously reported

sequences in Genbank AB197936 and AB282661, respectively. Phylogenetic analysis of the

partial-length 18SrDNA sequence showed that the uninucleate amplicons from Twycross

Zoo were all E. polecki.

The uninucleated-cyst-producing Entamoeba infecting humans E. polecki species

complex has been found to encompass four subtypes (ST1–ST4) (Stensvold et al., 2011).

E. polecki ST1 (previously given to E. polecki in pigs); ST2 (E. chattoni from non-human

primates); ST3 (E. struthionis from pigs and ostriches); and ST4 (restricted to humans;

unlikely to be zoonotic); indicating low host specificity of ST1 and ST3. Comparison

between sequences obtained in the present study and reference sequences obtained from

GenBank for each of the four E. polecki subtypes indicated that sequences of E. polecki

obtained in the present study from NHPs [Woolly Monkey (Lagothrix lagotricha),

Eastern Javan Langur (Trachypithecus auratus auratus), Golden-headed Lion Tamarin

(Leontopithecus chrysomelas), and Black Howler Monkey (Alouatta caraya)] formed a

phylogenetic cluster (Fig. 2) with isolates of E. polecki subtype 4 reported in Homo sapiens

from Africa, Asia and Europe (Stensvold et al., 2011). Given the reported high specificity

of E. polecki subtype 4 to humans, the similarity between sequences obtained from

NHPs from Twycross zoo in the present study with E. polecki ST4 sequences obtained

from Homo sapiens suggest a zoonotic potential. However, more analysis is needed

before any suggestion about the zoonotic implication of the isolates obtained in this

study to be made. A group of uninucleate Entamoebas (referred to as Entamoeba RL3),

phylogenetically distant from the E. polecki complex, have been reported from Francois

Langur (Trachypithecus francoisi) from Twycross Zoo in England (Stensvold et al., 2011).

Interestingly, sequences of this Entamoeba RL3 group did not seem to share similarity

with the sequences of uninucleated-cyst-producing E. polecki obtained in the present study

from NHPs from the same Zoo.

Sequence data (Table 4) also suggest that a common source asymptomatic infection with

the uninucleated cyst-producing Entamoeba species, E. polecki, at Twycross Zoo may have

propagated through many primate enclosures. This study did not examine the prevalence

of E. nutalli, an emerging species currently seeming to be prevalent in NHPs (Tachibana

et al., 2013). Since E. nuttalli has been associated with symptomatic carriage, and appears

to be restricted in host distribution to NHPs, it would be interesting to know whether any

of the animals sampled in the present study harboured E. nuttalli. Thus, further studies
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are needed to establish the prevalence of this important species in NHPs in the United

Kingdom and its zoonotic risk to public health.

CONCLUSION
This is the first study to report the prevalence of Entamoeba infection in captive NHPs

in the United Kingdom. Data collected from six zoos suggests a notable prevalence of

Entamoeba infection in NHPs in UK. DNA sequencing of positive stool samples revealed

three main species of Entamoeba, E. histolytica, E. dispar and E. polecki ST4 circulating in

the zoo’s environment in the UK. Some Entamoeba species can have zoonotic potential,

thus can constitute a risk for humans who are in close contact with primates.
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