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Abstract

Circular RNA transcripts were first identified in the early 1990s but knowledge of these species

has remained limited, as their study has been difficult through traditional methods of RNA

analysis. Now, novel bioinformatic approaches coupled with biochemical enrichment strategies

and deep sequencing have allowed comprehensive studies of circular RNA species. Recent studies

have revealed thousands of endogenous circular RNAs (circRNAs) in mammalian cells, some of

which are highly abundant and evolutionarily conserved. Evidence is emerging that some

circRNAs might regulate microRNA (miRNA) function, and roles in transcriptional control have

also been suggested. Therefore, study of this class of non-coding RNAs has potential implications

for therapeutic and research applications. We believe the key future challenge to the field will be

to understand the regulation and function of these unusual molecules.

Circular RNAs (circRNAs) are a recent addition to the growing list of types of non-coding

RNA. Although the existence of circular transcripts has been known for at least 20 years1,

such molecules were long considered molecular flukes—artifacts of aberrant RNA splicing2

or specific to a few pathogens, such as the Hepatitis δ virus3 and some plant viroids4.

However, recent work has revealed large numbers of circRNAs that are endogenous to

mammalian cells, and many of these are abundant and stable. CircRNAs can arise from

exons (exonic circRNA) or introns (intronic circRNA); these are distinct species with

independent modes of generation. Potential functions in the regulation of gene expression

are emerging for both exonic and intronic circRNAs5–7.

Most circRNAs have eluded identification until recently for several reasons. Circular RNAs,

unlike miRNAs and other small RNAs, are not easily separated from other RNA species by

size or electrophoretic mobility. Commonly used molecular techniques that require

amplification and/or fragmentation destroy circularity, and because circRNAs have no free

3’ or 5’ end, they cannot be found by molecular techniques that rely on a polyadenylated

free RNA end (such as rapid amplification of cDNA ends (RACE), or poly(A) enrichment of

+Address correspondence to NES (nes@med.unc.edu).

NIH Public Access
Author Manuscript
Nat Biotechnol. Author manuscript; available in PMC 2015 May 01.

Published in final edited form as:
Nat Biotechnol. 2014 May ; 32(5): 453–461. doi:10.1038/nbt.2890.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



samples for RNA-seq studies). Furthermore, a key feature of circRNAs, an out-of-order

arrangement of exons known as a ‘backsplice’ (described below), is not unique to circRNAs,

and early RNA-seq mapping algorithms filtered out such sequences. These problems have

recently been addressed through the development of exonuclease-based enrichment

approaches, novel bioinformatic tools, sequencing with longer reads and higher throughput,

and sequencing of ribosomal RNA (rRNA)-depleted RNA libraries (rather than polyA-

enriched libraries).

The first hint of endogenously produced circRNAs emerged in the early 1990’s from studies

of the DCC transcript in human cells1. The authors of that study described transcripts with

exons out of the expected order: 5’ exons were ‘shuffled’ downstream of 3’ exons. Despite

the non-canonical ordering, the exons were complete and used the usual splice donor and

acceptor sites. This arrangement was referred to as ‘exon shuffling’ (distinct from the

evolutionary process described by Gilbert8). The observed shuffled transcripts were less

abundant than the expected transcripts by several orders of magnitude and were non-

polyadenylated, predominantly cytoplasmic and expressed in human and rat tissues. The

authors speculated that such a product might emerge from intra-molecular (cis) splicing,

which would result in an exonic circRNA. A site at which the 3’ ‘tail’ of an expected

downstream exon within the gene is joined to the 5’ ‘head’ of an exon that is normally

upstream is referred to a ‘backsplice’. Early studies also detected circular RNAs by electron

microscopy3,9, but this approach cannot easily distinguish circular RNAs from RNA lariats

(which are byproducts of RNA splicing)10.

Subsequent reports identified shuffled transcripts from several other genes, including

ETS-12,11, SRY12 and cytochrome P450 2C24 (CYPIIC24)13,14 in human, mouse and rat

cells. In each case, discovery began with the serendipitous observation of PCR products with

backsplice sequences. SRY is usually unspliced, but sites with the canonical splice site

GT/AG sequence motifs were involved in the backsplice, suggesting the involvement of the

canonical spliceosome. The splice junctions used in the exonic circRNA forms of ETS-1 and

CYPIIC24 used splice donor and acceptor sites also involved in forward splicing11,13. A few

additional circular RNAs were identified in the ensuing two decades15–18, but they were

generally much less abundant than the linear products of their source gene. Therefore, before

the era of massively parallel sequencing, circular RNAs were considered oddities of

uncertain importance.

In this review we discuss methods for the identification of endogenous circRNAs, including

molecular methods and genome-wide approaches, with a focus on the advantages and

disadvantages of various techniques. Next we consider the findings from these genomic

studies, focusing on exonic circRNAs, and describe the biochemical properties of circRNAs

in vivo, including methods for validation of circularity. Finally, we discuss known and

predicted circRNA functions and speculate on possible applications of the new-found

understanding of this molecular species.
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Detection methods

Identifying backsplices

Although progress in our knowledge of circRNAs has occurred mainly because of

sequencing-based methods, analysis of the molecular characteristics of circRNAs is

fundamental to the various strategies that we discuss in this section. Observation of

sequences consistent with backsplice formation is crucial evidence of exonic circRNA

production. We define an ‘apparent backsplice’ sequence as any case in which the ordering

of the exons in a sequence is reversed relative to the annotated template. Importantly,

apparent backsplice sequences may be produced by mechanisms other than formation of

exonic circRNA: reverse transcriptase template switching; tandem duplication; and RNA

trans-splicing (Fig. 1A).

Reverse transcriptase template switching (Fig. 1A, i) is an artifact of cDNA synthesis,

occurring when an extending cDNA molecule dissociates from its template RNA and

resumes extension from another RNA template, often in a homology-dependent manner.

This effect produces spurious evidence of backsplice-containing products and is known to

confound the analysis of rare splicing products19,20. However template switching is largely

random and is not expected to produce abundant cDNA molecules of identical sequence.

Therefore, high abundance of a particular apparent backsplice sequence in a cDNA library

offers evidence that the sequence is also present in the RNA template. This may be assessed

either by identification of multiple unique reads in deep sequencing data or by ‘divergent’

qPCR primers. These divergent primers, are oriented to amplify away from each other in a

genomic context, but become ‘convergent’ and amplify a discrete amplicon when a

backsplicing event brings outside sequences together (see Fig. 1B for illustration).

Alternatively, the presence of the backsplice sequence in the RNA pool may be assessed

directly by RNase protection2 or northern blot probing for the backsplice sequence (Fig.

1B).

Apparent backsplice sequences can also arise from tandem DNA duplications that can

generate duplicated exons within a gene. When these sequences are transcribed, the mRNA

contains an apparent backsplice sequence (Fig. 1A, ii) due to the difference between the

annotated template sequence and the DNA template present in the cell. In addition, trans-

splicing—a process in which two distinct molecules participate in splicing —can generate

apparent backsplices when it occurs between two RNA molecules originating from the same

gene (Fig. 1A, iii).

There are several approaches to distinguish such species from true exonic circRNA. Linear

exonic RNAs will usually have 3’ polyadenylation, whereas circles have no 3’ end. Exonic

circRNAs migrate more slowly in a gel than linear RNA of the same length, and this effect

is augmented by increased gel cross-linking21 (Fig. 1B). However exonic circRNAs also

contain less total nucleotide sequence than full length, trans-spliced, or tandem duplicated

transcripts from the same gene, and therefore will migrate faster in a gel that has low cross-

linking (Fig. 1B). Standard (or virtual22,23) northern blot can be used to assess these

characteristics. A more conclusive assay uses either weak hydrolysis or targeted RNase H

degradation12: a circular RNA will be linearized into a single product of a predictable size
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after RNase H degradation or after a single nick by hydrolysis (Fig. 1B). Additional methods

offering strong evidence of circularity are 2D gel electrophoresis21 and gel trap

electrophoresis24,25 (Fig. 1B): in 2D gel electrophoresis, circRNAs are revealed by their

poor migration through highly cross-linked gels relative to less cross-linked gels. In gel trap

electrophoresis, circRNA mixed with melted agarose becomes trapped by cross-links and

does not migrate in an applied electric field. Enzymatic methods can also provide evidence

of circularity. RNase R exonuclease26, tobacco acid phosphatase5 and terminator

exonuclease treatment5 leave circular RNA intact but efficiently degrade most linear RNAs.

In all three cases, quantification of a specific RNA species before and after treatment should

reveal enrichment of circular transcripts. Finally, with sufficiently long sequencing reads or

paired-end reads, it should be possible to identify sequences that are inconsistent with

circRNA27. These could include an apparent backsplice sequence, but also include

sequences from exons outside of the backsplice coordinates. For example an apparent

backsplice from exon 3 to exon 2 in a longer sequence that includes exon 4 or exon 5 (see

Fig 3a below) would be best explained by a trans-spliced RNA. The above methods have

limitations and are best used in combination to validate circRNAs.

It is also important to distinguish exonic circRNA from RNA lariats. Lariat RNA is formed

during canonical RNA splicing; it is mostly intronic and is biochemically distinct from

exonic circular species by the presence of a 2’-5’ carbon linkage at the splicing branch-

point. Through genomic analysis of lariats by assembly of highly expressed, non-

polyadenylated intronic sequences7, it has recently become apparent that many lariat RNAs

may be more stable than was previously appreciated. These stable lariat RNAs exhibit

degradation of their 3’ tails, leaving a remnant molecule7. Such lariat-products have been

called ‘circular intronic RNA’ (we use the nomenclature ‘intronic circRNA’) and are further

distinguished from exonic circRNA by the presence of a 2’-5’ junction7. Exonic circRNAs

do not feature a 2’-5’ linkage but instead consist of 3’-5’ links throughout the molecule.

Lariat RNAs behave similarly to exonic circRNA in the assays described above. They are

largely exonuclease insensitive26, migrate more slowly than linear molecules21 and will

form a single band when nicked within the loop component of the lariat. However, exonic

circRNA is easily distinguished from intronic circRNA and lariat RNA by the features of the

apparent backsplice sequence. Reverse transcription can occur inefficiently across the

branch-point of a lariat, producing sequence that is superficially similar to a backsplice in

having juxtaposed upstream and downstream sequences. But these branch-point-traversing

sequences include intronic sequences, specifically the canonical GT of the splice donor site

and sequences 5’ of the branch-point nucleotide. In addition, when reverse transcriptase

traverses the 2’-5’ junction one or more untemplated bases are generated, which are readily

identifiable in sequencing23,28. This signature can be used to rule out exonic circRNA

origins for the intronic products. In principle, lariat RNAs could be preferentially depleted

from other circular species by treatment with debranching enzyme before exonuclease

digestion, as this enzyme selectively hydrolyzes 2’-5’ linkages. Therefore, although lariats

are common circular RNA molecules, they can be readily distinguished from exonic

circRNA.
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Genomic methods

Recent genome-wide studies of circRNA have been enabled by developments in sequencing

technology (deeper sequencing with longer read lengths), better algorithms for mapping

RNA to its genomic source, and ribosomal RNA depletion strategies that enable sequencing

of non-polyadenylated RNA. In general, two approaches have been taken: first, using a list

of candidate junctions generated from existing transcript models27,29; or alternatively,

identifying junctions by matching reads to the genomic sequence as is done in spliced

alignment algorithms (for more on alignment of deep sequencing data, see recent review30).

Both of these methods have identified circRNAs that have then been validated by

sequencing, RNase R exonuclease testing and other methods.

The first identification of exonic circRNAs in a genomic study occurred serendipitously

through using independent mapping of paired-end reads sequenced from opposite ends of a

single cDNA fragment27. This approach identified an unexpected abundance of fragments in

which two read pairs mapped to the same gene but were in the opposite order from that

expected from the annotation (Fig. 2A). Realizing that these likely arose from circular

RNAs, the authors imputed the location of a backsplice using the existing gene annotations.

This approach was extended by scanning for out-of-order paired-end reads that were

concentrated in fixed windows tiled across a gene (Fig. 2B). This approach has the

advantage of being a fast way to analyze rRNA-depleted libraries but it is largely candidate-

based, and so does not detect circRNAs from unannotated transcripts and does not provide

direct evidence of circularity. However, qPCR validation assays on a number of individual

species discovered by this method revealed that the transcripts were predominantly RNase R

exonuclease resistant and lacked the expected properties of backsplice-containing linear

RNAs (trans-spliced or duplication products) 27.

Other methods using rRNA-depleted libraries include identifying reads with apparent

backsplice sequence from rRNA-depleted RNA-seq data from mammalian and nematode

cells, without using a candidate-based approach6. The authors mapped reads to genomic

locations de novo and identified apparent backsplice sequences in individual reads. They

chose reads that could not be mapped directly to the genome and then mapped the two ends

of a single read separately. By using single reads, the authors were able to identify the

location of the putative backsplice to single nucleotide resolution (Fig. 2C). The authors also

selected only apparent backsplice sequences that were flanked by GT/AG splice sites in the

genomic context. Therefore, this method can identify unannotated splice sites but it might be

less sensitive than a candidate-based approach.

A more nuanced approach to candidate-based analysis was recently developed using rRNA-

depleted RNA-seq without exonuclease enrichment29. This method uses deep sequencing

and 75bp paired-end reads to identify apparent backsplice sequences that map to a set of

candidate junctions generated using existing gene annotations. The authors divided pairs of

reads in which one read contained an apparent backsplice into two groups: a group in which

the non-backsplice-containing read mapped to an exon between the backspliced exons, and

therefore could potentially arise from a circRNA (Fig. 3A); and a group in which the second

read in the pair mapped to an exon outside of the backspliced exons, and therefore could not
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be explained by a circRNA. This second group was assumed to represent artifacts of

sequencing. The distributions of mapping quality statistics within the two groups was then

used to generate a confidence score for each junction observed (Fig. 3B). This approach

allowed the use of a false discovery rate cutoff rather than an arbitrary read depth–based

threshold.

In addition to sequence-only based approaches, a biochemical approach for the genome-

wide identification of circRNA has been described by others in archaea31 and by our group

in mammals23. This technique, “CircleSeq” (Fig. 4), uses RNase R digestion prior to high-

throughput sequencing to identify species that are RNase R resistant (Fig. 4A). The method

uses a mapping algorithm capable of identifying apparent backsplice sequences

(MapSplice32), rather than an algorithm requiring a choice of exon order. In mammals, but

not archaea, rRNA depletion is required. Using this technique, Identification of exonic

circRNAs is possible on the basis of two features: first, backsplice-containing reads are

identified using a segmented mapping approach (Fig. 4B); and second, reads derived from

circular species should be significantly enriched in the RNase R–treated sample compared to

mock treated control (8–16 fold on average, though variable levels of enrichment were

observed). The exons of linear RNAs should be depleted by exonuclease digestion, as

should splice junctions not present in circRNAs. An example of data for a circular RNA

(cANRIL)23 exhibiting these features is shown in Figure 4C.

CircleSeq also identifies lariat RNAs23, though these are easily distinguished from

circRNAs in the sequencing data. As mentioned, lariats show RNase R enrichment of the

loop sequence, RNase R depletion of the lariat tail, and the presence of ‘branch-point

sequences’. Branch-point sequences resemble apparent backsplice sequences in that parts of

the sequence are misordered compared to their genomic annotation. In branch-point

sequences, though, the sequences at the backsplice are intronic and contain untemplated

bases produced during cDNA synthesis. All abundant species identified by CircleSeq that

contain a true backsplice and that have been subjected to specific characterization have been

demonstrated to be exonic circRNA, suggesting the reliability of this approach to distinguish

exonic circRNAs from linear backsplice-containing transcripts and lariats23,31.

Although CircleSeq generates deep coverage of circular and lariat products, it has some

limitations. It requires more input total RNA than sequencing without enrichment, and is

sensitive to endonuclease contamination. It might also bias against the detection of longer

circRNA products, as a single nicking event would confer exonuclease sensitivity. Finally,

exonuclease protection may extend to some linear products with protective 3’ end structures,

such as the 3’ triple helix seen in the long non-coding RNAs MALAT1 and Menβ33,34, thus

complicating the interpretation of the results. These caveats must be weighed against

CircleSeq allowing the identification of circles at greater depth and provides greater

confidence that backsplice-containing species identified through this approach are circular

than unenriched sequencing alone.
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Properties of circRNAs

General features

Studies of circRNAs have identified a number of shared features. Exonic circRNA is very

stable in cells2, with most species exhibiting a half-life over 48 hours35, compared to an

average half-life of 10 hours for mRNAs36. However, exonic circRNA is not stable in

serum, with a half-life of italic>15 seconds37, presumably due to circulating RNA

endonucleases38. Intracellular stability is likely due to circRNA resistance to RNA

exonucleases2. Possibly due to this stability, some exonic circRNAs have been shown by

sequencing read counting methods and qPCR-based methods to be at higher levels than the

linear RNA gene product27,29,35. Exonic circRNA species also do not contain the

characteristic 2’-5’ linkage of an RNA lariat and therefore are resistant to RNA debranching

enzymes. Studies of exonic circRNA localization using different methods have reported

cytoplasmic localization1,2,6,23,25,39,40, though the process of nuclear export remains

obscure and it is possible that circular RNA escapes from the nucleus during mitosis. Exonic

circRNAs are also susceptible to siRNA mediated decay6,23,25, a property that is useful in

studying their possible functional roles.

Several shared sequence-based features have been described in exonic circular RNAs. First,

exonic circRNAs described to date always involve a GT-AG pair of canonical splice sites,

although this is biased by discovery methods which favor or require such sites in

mapping6,23. Furthermore, exonic circRNAs almost always use at least one previously

annotated splice site. Introns flanking sites involved in a backsplice tend to be longer than

introns generally, but some flanking introns can be smaller than average29. As was first

shown for the circRNA derived from SRY, complementary sequences in the introns flanking

backsplice sites seem to promote circularization23. In particular, paired ALU repeats in

inverted orientations upstream and downstream of backsplice sites are enriched 5-fold in

sites of human exonic circRNA formation35. Likewise, circRNA overexpression constructs

including complementary upstream and downstream sequences show enhanced circRNA

formation relative to constructs without complementary sequences5,6. Lastly, the length of a

given exon appears to influence circularization. This is most obvious for exonic circRNA

comprised of a single exon, as the exons comprising single-exon circRNA are 3-fold longer

compared to all expressed exons23,27. In aggregate, genomic features that appear to promote

circularization are longer than average exons, flanked by longer than average introns

containing inverted tandem repeats that likely promote intron pairing (described below).

Prevalence of circRNAs

Findings from recent genome-scale studies of circRNA are largely consistent with each

other. These analyses have found strong evidence for thousands of circRNAs in diverse

human cell types6,7,27,35. Statistical analysis of rRNA depleted sequencing data27, many

validation approaches6 and CircleSeq data35 show that the majority of apparent backsplice

sequences in RNA-seq data arise from circRNAs. Similarly, analyses of mouse RNA with

the same techniques have revealed thousands of apparently circular transcripts6,7,29,35. Most

human and mouse circRNAs arise from coding genes23,27. Work in C. elegans has found

abundant circular RNAs and identified life cycle dependent regulation of some of these6.
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Recent work in human cell lines used in the ENCODE project has shown that exonic

circRNA production is regulated independently from the expression of the underlying linear

RNA gene and that transcription levels vary among cell types29. This evidence for regulated

production, along with substantial conservation of exonic circRNA expression in

mammals6,23, suggests a functional role for many of these transcripts.

Given difficulties in separating circular and linear RNAs solely on physical properties, the

absolute abundance of circular species in the pool of total RNA is difficult to judge. In

control replicates used for CircleSeq (see Genomic Methods, below), some backsplice

species were represented by as many as 1:300,000 reads, while others by as few as

1:300,000,000. Thus circRNA analysis requires at least millions of reads, and preferably

hundreds of millions, even in libraries with preferential enrichment by RNase R digestion. A

recent estimate using paired-end reads coupled to qPCR-based quantification of some exonic

circRNA transcripts estimated the relative abundance of exonic circRNA as 1% the amount

of poly(A) RNA29. A estimate using an alternative methodology can be obtained using data

from our recent study of human fibroblasts by identifying the number of reads with apparent

backsplice sequences that were validated by RNase R enrichment. Reads mapping to these

junctions comprise 0.1% of all sequencing from rRNA-depleted total RNA. As circular

RNAs contain sequences in addition to the backsplice, it is necessary to improve this

estimate by imputing exonic circRNA length. Each backsplice-traversing read can then be

weighted based on predicted circular RNA length, (note though that not all intervening

exons appear in all exonic circRNAs, e.g. cANRIL35,41, Fig. 4C), and this gave an estimate

that exonic circRNA comprises 0.8% of all non-ribosomal RNA. Therefore, these differing

approaches suggest a substantial fraction of non-ribosomal RNA is contained in exonic

circRNA.

With regard to the identification of specific circular species, recent genome-wide studies of

human exonic circRNAs also have substantially overlapping findings. In total, 358 circular

RNAs were identified in all three studies and 1,233 were identified by at least two of the

three studies (Fig. 5). It should be noted that the Rajewsky et. al.6 and Salzman et. al.27

analyses include some common source data, although the methodologic features of these

analyses differ. Substantially more circRNAs were found using CircleSeq35 (shown on

figure 5 as ‘Jeck et. al.35, low confidence’), which likely reflects a lower limitation of

detection using a biochemical enrichment approach.. Assuming complete rRNA depletion,

700 megabases of non-ribosomal RNA per cell, and equal RNA representation across

sequencing libraries, then the least abundant exonic circRNAs in this low confidence dataset

number one copy per 80 cells. However, many circRNAs at low levels were also identified

by approaches used by Rajewsky et al.6 and Salzman et al.27. Analysis of CircleSeq data

with more stringent filtering (requiring backsplices to be observed in multiple replicates and

in samples without RNase R treatment) gives a set of 10-fold fewer circular RNAs (shown

on Fig. 5 as ‘Jeck et. al.35, high confidence’), and this set has a larger overlap with circular

RNAs found using bioinformatic approaches (20% vs. 4%). In a few instances, an abundant

exonic circRNA was found by one approach but not the others, possibly due to the different

cell types analyzed.
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Exonic circRNA production mechanism

Two mechanisms have been proposed for mammalian exonic circRNA formation (Fig. 6).

Both involve the backsplice being formed by the canonical spliceosome. In the first

mechanism—historically termed ‘mis-splicing’ but referred to here as ‘direct backsplicing’

to emphasize that these are not always “errors” of splicing—a downstream splice donor

pairs with an unspliced upstream splice acceptor2 and the intervening RNA is circularized

(Fig. 6A). The second mechanism— known as the ‘lariat intermediate’ or ‘exon skipping’

mechanism—involves splicing occurring within lariats produced from exon skipping14 (Fig.

6B).

Although it is likely that both mechanisms function in vivo, some evidence suggests that

direct backsplicing may occur more frequently than exon skipping. In some cases a linear

mRNA has been found that lacks the exons that are included in a circular RNA, providing

evidence that exon skipping is at least a plausible mechanism of formation14,23,27, though

such events could also plausibly occur after direct backsplicing. However, genome-wide

exonic circRNA discovery studies have failed to find such linear RNAs for the majority of

exonic circRNAs23,27. It is possible that such an analysis underestimates exon skipping,

given that linear products are less stable than most circular species. There are examples of

exonic circRNAs with no additional exons upstream or downstream of the circularized

product in annotated linear transcript, such as in SRY and CDR1as12,25. For these transcripts

to result from exon skipping, there would need to be unannotated upstream and downstream

exons that skipped over the sequence that is eventually circularized. Given the abundance of

the exonic circRNAs that result from these loci, the presence of such unannotated exons

appears unlikely, further supporting direct backsplicing for the formation of these products.

As additional evidence for the direct backsplicing model, constructs for the overexpression

of circRNAs usually include the exon that will become circularized and partial sequences of

the flanking introns5,6,42 (Fig. 6C), but no additional upstream or downstream exonic

sequence. These constructs successfully produce exonic circRNA without the need for

additional flanking exons, and therefore would be inconsistent with an exon skipping event.

We believe the common features of exonic circRNA producing loci suggest that some

endogenous circRNAs are likewise produced by a direct backsplicing mechanism. First,

long exons are preferentially circularized, perhaps because long exons are sterically more

favorable for 3’ to 5’ splicing at canonical splice sites. Also, exonic circRNA producing

genes are enriched for repeat elements in flanking introns within 500 bp of the backsplice

sites. These repeat elements are most likely to be in orientations that promote RNA base

pairing35 ,suggesting that RNA base pairing might bring upstream splice acceptors into

physical proximity with downstream splice donors. The human HIPK3 locus appears typical

in this regard (Fig. 7). This locus is particularly informative in that murine Hipk2/3 and

human HIPK3 all harbor similar genomic structures with regard to intron and exon length,

and also show a high degree of circularization. Only the human HIPK3 locus, however,

contains tandem ALU repeats, and exhibits a much higher degree of circularization. It is

worth noting, however, that some single exon circRNAs are as small as 204 nucletodies29

and that many exonic circRNAs are flanked by relatively short introns. Therefore, it seems

likely that multiple mechanisms may generate an exonic circRNA.
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Putative functions of exonic circRNAs

These genome-wide analyses have identified a large number of abundant exonic circRNAs.

Additionally, cross-species comparisons have shown that sites of circularization are

conserved in orthologous exons at a rate well above the amount expected by chance 27,29,35.

These species’ abundance and evolutionary conservation in turn suggest exonic circRNA

may play specific roles in cellular physiology, and several possible functions have been

proposed including miRNA binding, protein binding, regulation of translation and

translation into proteins.

miRNA Sponges

Recently two exonic circRNAs in mammals have been shown to function as miRNA

sponges or competing endogenous RNAs43–45. Competing endogenous RNAs act as decoys

for the binding of miRNA with their coding RNA targets, increasing the expression of those

same coding RNAs with the increasing expression of the competing endogenous RNA. The

exonic circRNAs of CDR1as and SRY have been shown to bind miRNAs without being

degraded, making them excellent candidates for competing endogenous RNA activity.

Binding of miRNAs by exonic circRNAs was first shown for CDR1as25, and support for

CDR1as acting as a miRNA sponge comes from several lines of evidence. CDR1as has 74

miR-7 seed matches and is densely bound by Argonaute proteins (the proteins that bind to

miRNAs)6. miR-7 and CDR1as are co-expressed in the mouse brain and in-vitro microscopy

and co-immunoprecipitation experiments have shown colocalization of CDR1as and

miR-75. Knockdown of CDR1as or overexpression of a miRNA previously shown to cleave

CDR1as (miR-671)25, decreased expression of known miR-7 target genes. By contrast,

CDR1as overexpression prevented knockdown of miR-7 targets. Furthermore, transgenic

expression of mouse CDR1as in zebrafish embryos, which lack endogenous CDR1as,

substantially reduced midbrain size, mimicking the phenotype of morpholinos knockdown

of miR-7 in zebrafish6. Further loss-of-function experiments are needed test whether

endogenous CDR1as also regulates brain size. Likewise, the circular SRY transcript has 16

binding sites for miR-138, co-precipitates with Argonaute 2 (AGO2) when miR-138 is

overexpresses and miR-138-mediated knockdown is attenuated when SRY is overexpressed

in mouse cells5. While these two examples are striking, an analysis of the largest yet

identified set of exonic circRNAs, those identified by CircleSeq, suggests that very few

circRNAs in mammalian cells beyond CDR1as and SRY have this structure of more than ten

miRNA binding sites for a single given miRNA (W.R.J. and N.E.S. unpublished

observations). Many ecircRNA, however, contain a smaller number of putative miRNA

binding sites. Therefore, effective miRNA sponging by exonic circRNA may be relatively

unusual, or may not require the large number of miRNA binding sites that characterize SRY

and CDR1as. Efforts are also underway to explore the potential use of circRNA sponges as

potential therapeutics; for example to target oncogenic miRNAs46,47.

Regulation of transcription

Mechanisms have been suggested whereby circularization could regulate transcription. For

example, in mice the formin (Fmn) gene is essential for limb development. Exonic

circRNAs are produced from the Fmn transcript through backsplicing involving a splice
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acceptor upstream of the Fmn coding sequence48. Knockout mice lacking this splice

acceptor have no detectable expression the exonic circRNAs and normal limb development,

but have an incompletely penetrant renal agenesis phenotype48. The inability to produce an

exonic circRNA from the targeted Fmn locus therefore appears to lead to aberrant

expression of the formin protein, although the 5’ UTR exons deleted in the animal model

could have functions unrelated to circularization. The authors propose that the formation of

an exonic circRNA acts as an ‘mRNA trap’ by sequestering the translation start site, leaving

a non-coding linear transcript and thereby reducing the expression level of the formin

protein.

The mRNA trap mechanism could be very widespread. For example, in human and murine

cells, exonic circRNAs are derived from the second exons of the HIPK2 and HIPK3 loci and

this exon contains the canonical ATG (i.e. a translation start codon). In the case of HIPK3,

the exonic circRNA is considerably more abundant than the linear, protein-coding

transcript23 (Fig. 7). The circularization of the ATG-containing exon would be inconsistent

with the production of the canonical protein from the locus, and therefore circularization can

be considered a form of ‘alternative splicing’ that regulates protein translation. We have

observed that in human fibroblasts, 34% of single exon circles contain a translation start

compared with only 14% of all exons containing a translation start (p bold> 10−10 by chi

square test, W.R.J. and N.E.S. unpublished observations). This finding is consistent with a

widespread role for circular RNAs as mRNA traps that regulation protein expression.

The mRNA trap role of exonic circRNA suggests potential functions for circRNAs through

their mechanism of formation, rather than as end products. For example, the dystrophin

(DMD) gene is known to produce several circular products49 and a study of exonic circRNA

in DMD in patients with a dystrophinopathy showed that exonic circRNA formation may

lead to inactive DMD transcripts in individuals with certain deletion mutations50, further

reducing the pool of mRNAs that can be translated. This suggests that the mRNA-trap effect

of exonic circRNAs might enhance the disease phenotype in these patients. Splicing

regulation is already a target of emerging therapies for these dystrophinopathies. For

example, antisense oligonucleotides against certain exons that induce exon skipping and

restore open reading frames are currently in clinical trials51. Circularization might be a

future target for therapies: either to decrease the circularization of functional transcripts or to

sequester, through an mRNA-trap, exons contributing to dysfunctional transcripts.

Interactions with RNA binding proteins

It has previously been shown that some linear non-coding RNA transcripts sequester RNA

binding proteins52 and exonic circRNAs might have a similar role. For example, circRNA

can stably associate with AGO proteins and Pol II, and there is no evidence to exclude other

RBPs as well. Exonic circRNAs also have some properties that suggest they might act as

‘scaffolding’ for RBPs by binding multiple RBPs and facilitating stable interaction through

the underlying increased stability of the circular RNA transcript. They may also have roles

as sequence targeting elements, binding simultaneously to RBPs and regions of RNA or

DNA that are complementary to the circRNA sequence, as has been proposed6. Circular

RNAs could adopt tertiary structures distinct from related linear molecules of the same
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sequence due to the limitations of circularization or new protein binding sites could be

generated by the sequences that are brought together in the circular RNA; such features

might result in circRNAs being able to bind different sets of proteins than related linear

RNAs.

Translation of circRNAs

It is possible that some circRNAs are translated, as inclusion of an internal ribosome entry

site (IRES) allows translation of engineered circRNAs53. Presumably an endogenous

circRNA with an IRES and ATG could undergo translation. At least one naturally occurring

circular RNA is known to encode a protein in mammalian cells: the Hepatitis δ agent3, a

circular RNA satellite virus of the Hepatitis B virus. Hepatitis δ leads to production of a

single viral protein associated with pathogenicity, but the mechanism of translation is non-

canonical and is probably specific to certain viral agents.

It is interesting to consider the nature of possible proteins encoded by circRNAs. If the

number of base pairs is divisible by three, a protein-encoding circRNA would be read

recurrently in-frame to produce a repeated polypeptide sequence, as has been experimentally

demonstrated53. If the circRNA contained a number of base pairs not divisible by three, it

would be read in alternative reading frames each time the ribosome passed around the circle,

and a stop codon would usually be encountered when read out-of-frame. In theory, it would

be possible to have an exonic circRNA read in all 3 alternate reading frames without ever

encountering a stop (i.e. a ‘Möbius protein’), but we have not identified a naturally

occurring exonic circRNA with this property.. We have considered the protein coding

potential of many ATG-containing exonic circRNAs produced in human fibroblasts, but to

date we35 and others29 have not been able to identify a naturally occuring exonic circRNA

that undergoes translation. For example, we have not been able to find exonic circRNA

undergoing translation (i.e. bound to polysomes), and we have not identified peptides in

mass spectrometry data that could only occur as a results of translation of exonic circRNAs.

Conclusions

Until recently, only a handful of circRNAs had been identified in mammalian cells and these

were largely thought to have arisen from errors in RNA splicing. This view is not

compatible with the recent discoveries of thousands of distinct exonic circRNAs in various

human cell types and with many of these circRNAs being abundant, stable and

evolutionarily conserved. There is evidence of functionality from the finding that some

exonic circRNA act as miRNA sponges and apparent regulation of the expression of linear

protein-encoding RNA products by ‘mRNA trap’ mechanisms, and it seems likely that

additional functions will be described.

As studies of circRNAs proliferate, it will become increasingly necessary to develop a

standard nomenclature, especially if they are to be incorporated into RNA databases,

including RefSeq and UCSC genome browser annotations. Although rare exonic circRNAs

—such as CDR1as—can be defined by their source gene, an alternative naming system is

needed for cases where circRNAs arise from the gene bodies of protein-coding linear

transcripts as several genes produce multiple circRNAs. For example, the name ‘circular
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ANRIL’ would be ambiguous because several circRNAs can arise from ANRIL. The recent

identification of stable intronic circular RNAs further confuses the terminology. We favor a

naming convention that identifies the source gene and adds a numeric identifier (e.g.

ecircHIPK3-1 to designate the first exonic circular RNA isoform of HIPK3). Name

standardization would assist both bioinformatic and experimental research into circRNA

origins and function.

Finally, exonic circRNAs have potential therapeutic roles. If properly packaged and

delivered, their high cytoplasmic stability could make them long-acting regulators of cellular

behavior. CircRNA overexpression constructs could be used to generate high levels of stable

RNA circles in cells for a variety of purposes, such as to act as miRNA sponges to reduce

the activities of oncogenic miRNAs(e.g. miR-21 and miR-22147) in the context of cancer.

CircRNAs containing IRES sequences could be used to produce unusual peptides; for

example, long repeating polypeptides that might be useful in the production of new biologic

materials. As more functions of exonic circRNAs are discovered, further uses of this newly

appreciated class of RNAs are likely to emerge.
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Figure 1. Splicing products and methods for detection
(A) Several mechanisms can form an apparent backsplice, illustrated here for a gene model

in which exons are shown as rectangles, introns as thin lines and the transcription start site

as a right-angled arrow. DNA is in green and RNA is in red. (i) Reverse transcriptase (RT)

template switching, in which the RT enzyme transcribes another copy of an upstream exon.

(ii) Tandem duplications in the DNA template resulting in repeated exons. (iii) Trans-

backsplicing, in which one RNA molecule is spliced to another (shown by curved black

line). Regular splicing events are shown as angled black lines. (iv) Exonic circRNAs can

form by cis-backsplicing in which exons from the same RNA molecule are spliced together

to form a circle (backsplicing shown by curved black line). (B) Molecular assays to

distinguish exonic circRNA from other backsplice products, and diagrammatic

representation of the expected results. (i) Divergent primers that would amplify in outward

facing directions with respect to genomic sequence become properly inward facing an

produce discreet amplicons when a backsplice connects outside sequences. (ii) The expected

migration distance of a canonical linear RNA in a denaturing agarose gel, as well as the

relative migration of exonic circRNA and RNAs resulting from trans-splicing or tandem

duplication. (iii) Migration of RNA through an agarose gel before and after RNAse H

treatment. Circular RNA, uniquely, results in a single band after being cut once. (iv) Two

dimensional gel electrophoresis through two differently crosslinked polyacrylamide gels

separates circular RNAs into an off-diagonal curve. (v) Gel-trapping holds circular RNAs in

the well of an electrophoresis gel as linear RNAs migrate away. (vi) Exonuclease

enrichment degrades linear RNAs while leaving a pool enriched for circular RNA.
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Figure 2. Sequencing-based methods for identification of exonic circRNA
Several informatics methods have been used to identify the locations of backsplices using

deep sequencing data from rRNA depleted RNA. (A) Paired-end reads may be mapped

separately to the annotated transcriptome and the location of a backsplice inferred when the

pairs have opposite orientations on either side of one or more splice sites. (B) Paired-end

reads may be mapped directly to the genome and multiple reads that map out of genomic

order suggest there might be a nearby backsplice. Stronger evidence is provided by the

presence of multiple such reads accumulating in fixed “windows” of set length tiled across

the genome. (C) A read can be segmented so that different parts of the read can be mapped

to different parts of the genome; this allows backsplices to be mapped at nucleotide

resolution without existing annotations.
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Figure 3. Informatic approach to identifying false positive backsplices
(A) Illustration of paired ends that would be inconsistent with underlying exonic circRNA.

In the first example, the first read of the pair maps to a backsplice, but its paired read maps

to an exon that is inconsistent with a circRNA because it lies in an exon beyond those

involved in the backsplice. In the second example, the first read of the pair again maps to the

backsplice, but its pair now maps to an exon between those two involved in the backsplice,

consistent with a circRNA. The two sets of reads are then used to generate two distributions

(B) that may be used to set empirical false discovery rates based on mapping quality

features.
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Figure 4. A combined biochemical and informatic approach to identify exonic circRNAs in
mammalian cells, ‘CircleSeq’
Developed in part by our group. (A) Total RNA is depleted of rRNA, for example using

RiboMinus or RiboZero methods rRNA depleted samples are split; one aliquot is treated

with the RNase R exonuclease and the other is subjected to a mock treatment. Sequencing

libraries are prepared from each and before deep sequencing and comparison of the samples,

optimal RNase R digestion is confirmed by checking by quantitative RT-PCR that known

exonic circRNAs are enriched in the RNase treated sample (not shown). Informatic

approaches, such as that shown in Figure 2c can be applied to the data. (B) An example of

data from CircleSeq in human tissues for the ANRIL noncoding RNA locus. Normalized

mapped read depth for the mock treated sample (green, top) and for RNase R treated

samples (orange, bottom) are shown (note different scales). Regions where there is

enrichment of a group of exons in the rRNA-treated sample – suggestive of a circRNA – are

shown in blue. Exons outside of these regions are depleted in the RNAase-treated sample.
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Figure 5. Comparison of circular RNAs identified by genomic studies
Numbers of circular RNAs identified by three genomic studies6,27,35 and the numbers of

circular RNAs overlapping among these studies. Overlapping regions represent the number

of species where both the splice donor and splice acceptor of the backsplice were identical in

two or more works. Data from Memczak et. al. 2013 were taken from Supplementary Table

2 in that article. Two circles shown for Jeck et. al. show a high and low confidence set of

circles reported in that work. High confidence circles were observed in two sequencing data

sets from unenriched sequencing data, while low confidence circles were observed in only

one. Sites taken from Salzman et. al. 2012 are from Supplementary Table S2 in that article,

which required our inference of the genomic locations using RefSeq gene annotations.
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Figure 6. Possible mechanisms for formation of exonic circRNAs
(A) direct backsplicing2, in which two unspliced introns within a transcript pair and the

intervening introns are spliced through the usual mechanism. Here, a branch point in the 5’

intron attacks the splice donor of the 3’ intron. The 3’ splice donor then completes the

backsplice by attacking the 5’ splice acceptor. This forms a circular RNA. (B) Exon

skipping resulting in circular RNA formation54. In this case an exon skipping event creates a

lariat containing an exon. This lariat is spliced internally, removing the intronic sequence

and producing a circular RNA. (C) Design schema for an overexpression vector that

produces circular RNA. This design was employed for CDR1as and SRY5. Here the exon

made to be circularized is included in an overexpression construct with upstream and

downstream intron sequence. Additional sequence is placed 5’ in the transcript to produce

pairing with downstream intron, as in the direct backsplicing mechanism (shown).
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Figure 7. Genomic features of circular RNA
Circular RNAs are generated from exons that are longer than average, and are flanked by

long introns containing inverted ALU repeats, as exemplified by the HIPK3 gene, shown

with CircleSeq data set35. In the HIPK3 gene, ribosomal RNA depleted sequencing (green)

resulted in substantially more coverage of a single exon, which also demonstrated a large

number of backsplice sequences. These sequences are also demonstrated to be true circles

by their enrichment by RNAse R (brown), while all other exons are degraded. This

circularized exon is the longest of the gene, is surrounded by the longest introns of the gene,

and is flanked by ALU elements in a complementary orientation

Jeck and Sharpless Page 22

Nat Biotechnol. Author manuscript; available in PMC 2015 May 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript


