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We explore the hypothesis that the folding landscapes of mem-
brane proteins are funneled once the proteins’ topology within the
membrane is established. We extend a protein folding model,
the associative memory, water-mediated, structure, and energy
model (AWSEM) by adding an implicit membrane potential and
reoptimizing the force field to account for the differing nature of
the interactions that stabilize proteins within lipid membranes,
yielding a model that we call AWSEM-membrane. Once the pro-
tein topology is set in the membrane, hydrophobic attractions
play a lesser role in finding the native structure, whereas po-
lar–polar attractions are more important than for globular pro-
teins. We examine both the quality of predictions made with
AWSEM-membrane when accurate knowledge of the topology
and secondary structure is available and the quality of predictions
made without such knowledge, instead using bioinformatically
inferred topology and secondary structure based on sequence
alone. When no major errors are made by the bioinformatic meth-
ods used to assign the topology of the transmembrane helices,
these two types of structure predictions yield roughly equiva-
lent quality structures. Although the predictive energy landscape
is transferable and not structure based, within the correct topo-
logical sector we find the landscape is indeed very funneled:
Thermodynamic landscape analysis indicates that both the total
potential energy and the contact energy decrease as native con-
tacts are formed. Nevertheless the near symmetry of different
helical packings with respect to native contact formation can result
in multiple packings with nearly equal thermodynamic occupancy,
especially at temperatures just below collapse.

energy landscape theory | molecular dynamics

The folding of globular proteins has come to be well under-
stood starting from Anfinsen’s thermodynamic hypothesis

(1), by means of statistical energy landscape theory (2–5) and its
principle of minimal frustration. Evolution selects the sequences
of most globular proteins so that folding is, by and large, ther-
modynamically controlled and the landscape is dominated by the
interactions between residues that are close together in the fol-
ded state, i.e., the native contacts. In vivo folding of α-helical
transmembrane proteins differs from the usually autonomous
folding of globular proteins in that, during translation, another
actor, the translocon, generally assists the nascent chain in either
translocating across or integrating peptides into the lipid mem-
brane. Topology, by which we mean the “specification of the
number of transmembrane helices and their in and/or out ori-
entations across the membrane” (ref. 6, p. 909), in vivo is thus
initially established cotranslationally with few exceptions. Large
barriers between alternate topologies once the protein is folded,
along with the involvement of the translocon catalyst, suggest a role
for kinetic control in folding of α-helical transmembrane proteins.
In light of these differences, what aspects of energy landscape
theory, based as it is on near-equilibrium statistical physics, can
be applied for understanding and predicting membrane protein
structures and folding mechanisms?
Despite the known differences between globular and mem-

brane protein folding, there is evidence that some of the ideas
from energy landscape theory also apply to membrane protein

folding. Starting with Khorana’s work (7), numerous α-helical
transmembrane proteins have been refolded from a chemically
denatured state in vitro (8). This indicates that at least some
transmembrane domains may not require the translocon to fold
properly. In addition, recent experiments on a few α-helical
transmembrane proteins have succeeded in characterizing the
structure of transition state ensembles, in a manner like that used
for globular proteins. These studies suggest that native contacts
are important in the folding nucleus but may not represent the
whole story (9, 10). Whether membrane proteins possess energy
landscapes as funneled as globular proteins remains an open
question. Experimentally, resolving this question is complicated by
the fact that the many ways membrane proteins are unfolded also
disrupts their membrane environment. One way to circumvent this
problem is to use detergent to solubilize the denatured state, but
as of yet, it is unknown how closely the resulting folding mecha-
nisms resemble the folding mechanisms in more realistic
membrane environments.
We address the role of thermodynamic control and funneled

landscapes in α-helical transmembrane protein folding once the
protein’s overall topology is set by using coarse-grained molec-
ular dynamics simulations to examine the consequences of the
principle of minimal frustration for the second stage of mem-
brane protein folding in which the helices arrange into a specific
structure. If the landscapes of α-helical transmembrane mem-
brane proteins indeed are funneled, by using a sufficiently large
database of α-helical transmembrane protein structures (11), the
principle of minimal frustration provides a strategy to learn an
energy function potentially capable of folding α-helical trans-
membrane proteins via molecular dynamics. We explore this
strategy in this paper by extending to membrane proteins an
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associative memory, water-mediated, structure, and energy model
(AWSEM) (12), a coarse-grained molecular dynamics Hamiltonian
that has been shown to predict globular protein structures to low
resolution. Through an energy landscape optimization we learn
the parameters of an intramembrane transferable interaction
potential and include an implicit membrane potential. In this
work we describe these additions to AWSEM, motivate and detail
the optimization and learning algorithm, and evaluate the pre-
dictive abilities of the newly optimized AWSEM-membrane force
field. We then use thermodynamic landscape analysis to quantify
how funnel-like the resulting energy landscapes for folding mem-
brane proteins are when conformations are restricted to have a
proper topology within the membrane.

Ingredients of AWSEM-Membrane
Model Overview and Extensions. We learn the parameters in the
energy function by first assuming that membrane proteins do
actually have largely funneled landscapes once their topology
is set. The quality of structure prediction by annealing the re-
sulting energy function then provides a consistency check on the
underlying funnel hypothesis. The prediction of transmembrane
domain structure is a two-step process. First, the overall topology
must be predicted, and second, the relative arrangement of the
helices within the membrane must be determined. Predictions of
topology, starting with the idea of the positive-inside rule (13),
have been very successful, but dynamical topological rearrange-
ments sometimes occur during the folding process. These ex-
ceptions aside, modern methods for predicting topology are
quite reliable. Starting from this point, we thus consider only the
second stage of membrane protein folding, wherein helices rear-
range within a single topological sector, which is assumed to be
like that of the final native configuration.
Our force field extends AWSEM—a predictive, coarse-grained

molecular dynamics Hamiltonian with transferable tertiary inter-
actions and local-in-sequence interactions determined via bioin-
formatic pattern matching (12). This model does quite well for
globular proteins. In models such as AWSEM, where many at-
omistic degrees of freedom are integrated over, the interactions
necessarily become context dependent. Given the very different
environments in which soluble and transmembrane proteins fold,
it is expected that retraining some parts of the potential is nec-
essary in order to properly capture the interactions between re-
sidues in the membrane. As such, a density-dependent residue–
residue interaction potential has been optimized by using the
minimal frustration principle. The optimization recipe detailed
below is similar to that used to previously to optimize AWSEM
for soluble protein structures (14–16). In this case a training set
of α-helical transmembrane protein structures is used. The po-
tential retains the three interaction classes used in the potential
for globular proteins: direct additive interactions and two sorts of
mediated interactions that depend on the density of surrounding
protein. Two residues directly interact if their Cβ atoms are close
together (<6.5Å). If the Cβ atoms of two residues are separated
by 6.5 Å < r < 9.5 Å, they participate in a mediated interaction. If
the density of residues around both interacting residues is low,
the interaction is said to be membrane mediated, whereas if the
density is high, the interaction is termed protein mediated. In the
case of globular proteins, the low-density mediated interactions
correspond to water-mediated interactions, which have been
shown to be important in being simultaneously able to funnel
both dry and wet protein–protein interfaces (14). Later we will
provide a physicochemical interpretation of the membrane pro-
tein parameters found by learning via optimization based on the
membrane protein database.
The dominant effects of the lipid membrane are to sequester

hydrophobic amino acids into the membrane and mostly, but not
entirely, to exclude other amino acid types. This exclusion of
polar and charged amino acids from the lipid layer imposes large

barriers for topological rearrangements. These effects are cap-
tured by Vmembrane, a three-layer implicit membrane potential.
The intramembrane region is 30 Å thick, which corresponds to
the region that is spanned by the hydrophobic tails of the mem-
brane lipids. Because in this study we focus on transmembrane
domains, most of the protein that is outside of the intramembrane
region (the loops) actually resides in the interfacial layer occupied
by the polar head groups of the lipid molecules, either on the
cytoplasmic or periplasmic side. Vmembrane takes an initial as-
signment of the residue position relative to the membrane as its
input. Residues are deemed to be periplasmic, transmembrane,
or cytoplasmic. In most of our calculations the assignment is de-
termined from a 3D experimentally determined structure using
the TMDET web server (17), thus confining the landscape to the
proper topological sector, but we also present results using assign-
ments of location predicted solely from sequence on a purely bio-
informatic basis using the Membrane Protein Structure and
Topology using Support Vector Machines program, MEMSAT-
SVM (18). During the simulation, Vmembrane energetically stabilizes
a residue when it is in its initially assigned layer but penalizes the
residue when it enters one of the other layers. Another important
effect of the membrane is to promote the alignment of trans-
membrane helices with the oriented lipid tails, leading to a liquid
crystalline packing. To model this effect, we applied a weak, non-
specific cylindrical radius of gyration bias that ultimately penalizes
configurations having helices aligned parallel to the membrane
plane. Full details of the potential are available in SI Text.
There are several advantages for the molecular dynamics imple-

mentation of AWSEM-membrane. No explicit representation of
the solvent is necessary. This feature along with the coarse-grained
representation of the protein chain, at three atoms per residue
(Cα, Cβ, O), provides a very significant speedup over fully at-
omistic models. This intrinsic algorithmic speedup allows not
only efficient structure prediction via simulated annealing but
also allows the analysis of equilibrium thermodynamics of the
landscapes via umbrella sampling. We can thus test whether a
transferable energy landscape capable of predicting membrane
protein structures is indeed funneled, as was intended by the
learning algorithm that gave rise to the landscape, and quantify
the extent to which the landscape is funneled.

Energy Landscape Optimization Using an α-Helical Transmembrane
Protein Training Set. Studies on soluble globular proteins indicate
that evolution has selected sequences with funneled energy land-
scapes. The funneledness of a landscape is characterized by the
ratio of the folding temperature to the glass transition tempera-
ture, TF/TG, within a simple mean field approximation. This ratio
is a monotonically increasing function of the ratio of the energy
gap between the folded and compact unfolded states, δE, to the
energetic ruggedness of the unfolded states characterized by
the square root of the variance, ΔE2. The ratio δE/ΔE also
determines how confidently a structure can be assigned to being
folded. Coarse-grained Hamiltonians that optimize δE/ΔE for a
training set of proteins yield energy landscapes with transferable
parameters have been shown to successfully predict structures of
monomers with quite different sequences and also to predict dimer
interfaces of globular proteins de novo (12, 19, 20). AWSEM’s
transferable tertiary interactions also equip the model to investigate
problems such as the complex energy landscapes of designed pro-
teins and multidomain protein misfolding as well as the mechanism
of the initiation of aggregation (21–23).
For a Hamiltonian that depends linearly on a set of parame-

ters {γi}, the energy function may be written as V =
P

iγiϕi. The
γi are the strengths of the interactions that encode the basic
forces and the ϕi are the functional forms of the interactions. For
such a model, the ratio of the gap to the ruggedness is given by a
simple expression δE=ΔE=Aγ=

ffiffiffiffiffiffiffiffi
γBγ

p
, where the vector A depends

on the differences in structure between the native protein and

11032 | www.pnas.org/cgi/doi/10.1073/pnas.1410529111 Kim et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1410529111/-/DCSupplemental/pnas.201410529SI.pdf?targetid=nameddest=STXT
www.pnas.org/cgi/doi/10.1073/pnas.1410529111


molten globules Ai = 〈ϕi〉decoy − ϕnative, whereas B is a matrix that
is determined by the fluctuations of the interactions in the mol-
ten globule ensemble Bi,j = 〈ϕiϕj〉decoy − 〈ϕi〉decoy〈ϕj〉decoy.
While performing the optimization, it is also useful to con-

strain the collapse temperature Tc so that folding and collapse
occur at nearly the same temperature (24): A′i = hϕiidecoy=kBN.
When collapse and folding occur at similar temperatures, during
simulated annealing the system will not typically get trapped in
a nonspecific collapsed state at high temperature before it has a
chance to explore other, possibly lower-energy, compact config-
urations. We thus optimize a more complex target function:

F =
�
A− λ2A′

�
γ− λ1

ffiffiffiffiffiffiffiffi
γBγ

p
:

The solution of this geometric problem amounts to solving a
system of linear equations γ = B−1[A − λ2A′] up to a scalar multiple.
We enforce the folding temperature to be approximately equal to
the collapse temperature by determining the Lagrange multiplier λ2
such that Aγ = λ2A′γ. A simple first approximation to the statistics
of the molten globule state can be obtained by shuffling a protein’s
sequence on top of the native structure. In the case of membrane
proteins, we constrain this shuffling to occur only within each re-
spective membrane layer to avoid overemphasizing the apparent
mutual attraction of charged and polar residues. This arises mostly
from the fact that charged and polar residues are already excluded
from the membrane, and this exclusion is taken into account by
the implicit membrane potential. Sequence shuffling gives statis-
tics about contacts that would occur in a highly mixed set of
molten globules that undergoes no separate ordering transitions.
We average A, A′, and B over a training set of 75 α-helical

transmembrane proteins. The training set is a distilled version of
the database from Schramm et al. (11). In developing an opti-
mized intramembrane contact potential we decided to exclude
information from structures with extended regions outside the
membrane. We also excluded chains that did not contain at least
two transmembrane helices. Many complex multimers (for ex-
ample, channels) were also discarded as were chains missing
more than 14 nonterminal residues. Nonterminal missing loops
were modeled using the ModLoop server (25).

Physicochemical Interpretation of Parameters
The optimization procedure described above yields 630 γ-inter-
action parameters that can be compared with potentials pre-
viously optimized for globular proteins. These parameters can

be found in Table S1. We can attempt to interpret the learned
parameters on a physicochemical basis. In Fig. 1 the optimized
membrane γ-values are shown next to the γ-values for globular
proteins. The globular protein gammas show a clear and strong
hydrophobic attraction in both the direct and high-density in-
teraction classes. The corresponding signal is weaker for the
learned membrane interactions. This damping of the importance
of hydrophobicity for funneling within a topological sector is not
unreasonable considering that the bilayer is hydrophobic and
therefore, to fold completely, membrane proteins can no longer
rely too heavily on simple hydrophobic attraction for finding
their relative positions within the bilayer. Pairing of oppositely
charged residues can be seen in all three interaction classes for
membrane proteins. These interactions are strong in the low-
density globular γ but absent for the high-density-mediated
interactions for globular proteins. In addition to pairing between
the highly hydrophobic amino acids valine and isoleucine, pairing
between two polar asparagine residues is also found to be highly
favorable. The latter pattern has already been noted before and
attributed to inter side-chain hydrogen bonding (26, 27).

Structure Prediction Results
To test the hypothesis that α-helical transmembrane proteins have
funneled energy landscapes within their native topological sector,
we used AWSEM-membrane, whose parameters already have been
learned based on this hypothesis to predict the tertiary structure of
14 α-helical transmembrane proteins, most of which were also
studied in ref. 28 (Table S2).
Many of the targets are subdomains of larger chains and/or

multimers. Some of the targets have cofactors, but the cofactors
were omitted during the simulations. We first assigned the resi-
dues to layers using the actual Protein Data Bank (PDB) structure
and the TMDET server (17). For the first round of predictions, we
also used the native secondary structure assignment from the
structural identification program STRIDE (29) to bias dihedral
angles of α-helical residues via Vrama (12). AWSEM-membrane’s
local-in-sequence interactions, which use a fragment-based ap-
proach (see SI Text for details), do not make use of fragment
structures that come from proteins that are significantly globally
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Fig. 1. A comparison of the interaction parameters determined for the opti-
mized globular and α-helical membrane protein potentials. The globular inter-
action parameters (Upper) and membrane interaction parameters (Lower) are
shown. For each potential, all three interaction classes are shown: direct,
high-density mediated, and low-density mediated. Residue types are ordered
by their hydrophobicity, and the strength of interaction is indicated by color
with blue being the most destabilizing and red the most stabilizing.
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Fig. 2. Qc as a function of protein length of high-quality structures sampled
during simulated annealing simulations. Proteins are ordered according to
the number of amino acids in the chain, ranging from 91 to 285. Higher Qc

values correspond to higher similarity to the experimentally deter-
mined structure. The structures that were generated using topology and
secondary structure information from the experimentally determined
structure are shown as gray circles connected by a dashed line. De novo
prediction results using topology and secondary structure information
from MEMSAT-SVM are shown as yellow squares for those proteins for
which MEMSAT-SVM did not significantly err the topology assignment of
the transmembrane helices.
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homologous to the target sequence. We used simulated annealing
starting from an unfolded but topologically correct conformation to
predict the structures. Initial configurations were generated by first
positioning the chain in its native topology (meaning assignment
of each residue to one of the three layers) within the implicit
membrane. The structures were then unfolded using high tem-
perature and a harmonic biasing potential to low Qw (SI Text).
Finally, the temperature was slowly cooled to a quenching tem-
perature. We assess the quality of predictions using both Qc, the
fraction of native contacts, and combinatorial extension (CE)
alignments (30). AWSEM-membrane, using only information
about the topology and secondary structure from experimental
structures, gives good predictions for most of the 14 targets
according Qc, the fraction of native contacts (Fig. 2). We per-
formed CE alignments and found that for the best-predicted
eight targets, the resulting aligned backbone structures had an
rmsd of <5 Å when at least 75% of the residues were aligned
(see Fig. S1). Two examples of predicted structures are shown in
Fig. 3.
Although the AWSEM-membrane intramembrane interaction

potential is transferable and depends solely on sequence, the
predictions described above do make use of some information
from native structure. Both native topology and α-helical sec-
ondary structure for each target were derived from the corre-
sponding PDB structure in these first predictions. To test the
influence of this native information on the quality of the pre-
dictions, we also carried out completely de novo predictions,
using MEMSAT-SVM, which depends solely on sequence, to
assign the input topology and secondary structure. Simulated
structures from two example de novo predictions are shown in
Fig. 4. Incorrect secondary structure prediction by MEMSAT-
SVM, which biases AWSEM-membrane’s Vrama, is approximately
compensated for by both the fragment memory and α-helical
hydrogen-bonding potential. Nevertheless rare, major errors
in topology prediction do lead to poorer prediction results.
We expect de novo predictions will be nearly impossible when
the input topology is completely wrong, for example, e.g., if an

incorrect number of transmembrane helices is predicted by the
bioinformatic input algorithm. More modest differences in to-
pology assignment, such as the shifting by one or two residues
at the end of the transmembrane part of a helix, have much less
severe consequences on prediction quality. The de novo pre-
dictions of many targets without any structural input results in
high-quality structures comparable to the results obtained by
obtaining topology and secondary structure assignments from the
experimentally determined structure. In particular, the de novo
prediction quality for the two largest targets that have no sig-
nificant topological mispredictions, Bacteriorhodopsin (PDB ID
code 1PY6) and Rhodopsin (PDB ID code 1U19), was nearly
identical to the quality of predictions obtained using the exper-
imentally assigned topology and secondary structure (Fig. 4).
The targets for which the native topology was significantly in-
correctly predicted by MEMSAT-SVM are not included in Fig. 2,
but an example can be found in Fig. S2 and Table S3.

Thermodynamic Landscape Analysis
AWSEM-membrane is able to predict the helical packing of
many membrane proteins via simulated annealing, but what do
the energy landscapes of these proteins look like? Landscape
analysis based on order parameters is the first step toward un-
derstanding folding mechanisms. Because of the high-dimensional
nature of the problem, one must first choose the appropriate order
parameters. We use Qc, which is expected to correlate with the
energy. We also use Cα rmsd, which can separate structures with
similar contact maps such as pseudomirror images. The free-
energy surface gives information about which states are signifi-
cantly populated and some idea of the barriers that exist between
distinct ensembles. Projecting the potential energy (PE) onto the
same order parameters tells us how the average energy depends
on the degree of nativeness, i.e., how funneled the landscape is.
The lowest PE states dominate at lower temperatures and cor-
respond to the ground states of the Hamiltonian. This gives us an
extra check on the simulated annealing results: Sufficiently long
simulated annealing should be able to find the ground states that
are sampled during the umbrella sampling, but in practice this is
not always the case owing to overly rapid annealing. The ex-
pectation value of the contact energy allows us to assess the role
of native contacts in folding.
We constructed 2D free-energy profiles, F(Qc,rmsd), for the

nicotinic acetylcholine receptor subdomain (PDB ID code 2BG9)
and for the V-type Na+-ATPase subdomain (PDB ID code 2BL2)
from umbrella sampled data along Qw using the multistate Bennett
acceptance ratio (31) along with computing expectation values of
the PE and the contact energy (Econtact). Fig. 5 shows the results
of the landscape analysis on the nicotinic acetylcholine receptor
subdomain (2BG9) along with its native structure. Just below the

Fig. 3. Example structure prediction results from simulations using topology
and secondary structure information derived from the experimentally deter-
mined structure. (Upper) PDB ID code 1J4N, aquaporin water channel AQP1
subdomain. (Lower) PDB ID code 1IWG, multidrug efux transporter sub-
domain. The experimental structures are shown on the left, and the sim-
ulated structures are shown in the middle. For these two structures, color is
used to indicate the amino acid index along the chain. At right, a CE struc-
tural alignment of the experimental and simulated structures is shown, with
the experimental structure in tan and the simulated structure in blue.

Fig. 4. Example structure prediction results from simulations using input
topology and secondary structure information derived from bioinformatic
sequence-based predictions. (A) 1PY6, Bacteriorhodopsin. (B) 1U19, Rhodopsin.
In A and B, The experimental structures are shown on the left, and the sim-
ulated structures are shown on the right. Color is used to indicate the amino
acid index along the chain.
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collapse temperature, the landscape of the nicotinic acetylcho-
line receptor subdomain (2BG9) has two basins that correspond
to different helical packings. Both structures have a significant
fraction of native contacts formed (Qc ≈ 0.4), but one packing
is significantly nonnative (rmsd ≈ 10 Å), whereas the other is
quite native in appearance (rmsd ≈ 6 Å). These basins are sep-
arated by a low barrier, indicating that interconversion between
the states may be rapid. The expectation value of the PE indi-
cates that at lower temperatures the lower rmsd packing is fa-
vored, so a larger fraction of the native contacts would form if
annealing were taken to this lower temperature. This bias toward
the better structure does not apparently come from the in-
teraction potential alone: The expectation value of Vcontact would
indicate that the two packings would be roughly equally stable.
Nevertheless the landscape for the PE of the nicotinic acetyl-
choline receptor subdomain (2BG9) is funneled to high Qc and
low rmsd. At intermediate temperatures, multiple ensembles
corresponding to native and nonnative helical packings are stable.
Many of the same contacts form in both packings. This symmetry
of contacts with respect to different helical packings is a feature
that may be common to the smaller transmembrane domains, as
happens for the globular problem, too (32, 33). The degeneracy
may also be resolved in the complete multimeric assembly.
In Fig. 6 we show the landscape of the V-type Na+-ATPase

subdomain (2BL2) below the collapse temperature. As for the
nicotinic acetylcholine receptor (2BG9), the landscape for the V-type
Na+-ATPase subdomain (2BL2) has two basins that correspond
to alternate helical packings with rmsd ≈ 8 and 5 Å. The struc-
tures at the higher rmsd resemble the native but two helices have
swapped locations. The lower rmsd structures are completely
native-like in packing. The expectation value of the PE shows
that the decrease in energy is well correlated with the native con-
tact formation. In both packings a high fraction of native contacts
has formed (Qc ≈ 0.5). In this case, at low temperatures not only
the interaction potential but also the total PE would favor both

packings approximately equally. We note that the proline-induced
kinks of V-type Na+-ATPase (2BL2) are not captured well by
AWSEM-membrane, as shown in the representative structures in
Fig. 6. Further refinement of the local-in-sequence signals and
special treatment of transmembrane–protein-specific motifs will be
needed to improve the performance of the model for this system.

Discussion
AWSEM has been extended to model α-helical transmembrane
proteins, resulting in the transferable AWSEM-membrane po-
tential that can successfully fold membrane proteins at modest
resolution. The AWSEM-membrane force field includes an implicit
membrane potential and an optimized intramembrane contact po-
tential that was trained using a set of experimentally determined
α-helical transmembrane domain structures. The AWSEM-
membrane potential learned by distinguishing native from shuffled
structures indicates that although some of the features of inter-
actions between residues are the same both for transmembrane
domains and for globular proteins, there are certainly significant
differences in the interactions for the two environments. The
contact parameters show that the mutual attraction of hydro-
phobic residues does not contribute as greatly to distinguishing
between folded and misfolded states in transmembrane domains
as it does for globular proteins. This is quite reasonable given
that membrane proteins once inserted fold in a largely hydro-
phobic environment. Oppositely charged pairs of residues and
mutual attraction of polar residues contribute significantly to the
selection of the folded structures.
Using only information about the gross topology and sec-

ondary structure from experimental structures, AWSEM-mem-
brane is able to fold many α-helical transmembrane proteins.
Transmembrane domains with four transmembrane helices or
less are especially well predicted, with three of the four smallest
proteins predicted to an accuracy of rmsd better than 4 Å. Larger
proteins show more significant defects in their predicted structures,

Fig. 5. The experimentally determined structure (Upper Left) and the free-
energy profile (Upper Right) for nicotinic acetylcholine receptor subdomain
(2BG9) below the collapse temperature. The free energy is plotted versus Qc,
the fraction of native contacts (x axis) and the rmsd (y axis). Representative
structures are shown from the two free-energy basins. Expectation value of
the total PE (Lower Left) and Econtact (Lower Right) are plotted versus the
same order parameters.

Fig. 6. The experimentally determined structure (Upper Left) and the free-
energy profile (Upper Right) for V-type Na+-ATPase subdomain (2BL2) below the
collapse temperature. The free energy is plotted versus Qc, the fraction of native
contacts (x axis) and the rmsd (y axis). Representative structures are shown from
the two free-energy basins. Expectation value of the total PE (Lower Left) and
Econtact (Lower Right) are plotted versus the same order parameters.
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but nonetheless possess long regions of native-like structure as in-
dicated by the CE alignment score. Refinement of the AWSEM-
membrane force field via iterative self-consistent optimization in
which decoys are explicitly generated from molecular dynamics
with the same potential should yield even better results. Using
a larger training set made possible by the continued growth of
available transmembrane protein structural databases will also
improve the model. The fact that, for the most part, structure
prediction starting from either the exact topology and secondary
structure information or with such input inferred by bioinformatic
methods yield prediction results of roughly equal quality indicates
that the methods for predicting these coarse-grained input data are
reasonably well developed. In some cases where significant errors
are made in topology prediction, however, the large barrier imposed
by the implicit membrane potential would make successful pre-
diction by AWSEM-membrane molecular dynamics very difficult.
Thermodynamic landscape analysis shows that the energy is

highly correlated with formation of native contacts. In other
words, the energy landscapes of transmembrane domains are
indeed funneled, at least within their native topological sector.

Nevertheless, the highly symmetric nature of small transmembrane
domains with respect to contacts results in distinct helical
packings with a similar fraction of native contacts being favored
below the collapse temperature. In one case that we examined,
this frustration would be resolved by going to lower temperature
in the annealing, but in another case it would not. Oligomeri-
zation of the domains may also single out one of the basins from
the near-degenerate ground states of the monomer. Whether or
not this multiplicity of basins for the monomer leads to the ki-
netic effects of frustration in vitro or whether this frustration is
overcome in vivo through the action of the translocon kinetically
is an interesting question.
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