
Learning of Spatial Relationships between Observed and
Imitated Actions allows Invariant Inverse Computation in the
Frontal Mirror Neuron System

Hyuk Oh,
Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742
USA

Rodolphe J. Gentili,
Department of Kinesiology and the Neuroscience and Cognitive Science Program, University of
Maryland, College Park, MD 20742 USA

James A. Reggia, and
Department of Computer Science and the University of Maryland Institute for Advanced
Computer Studies, University of Maryland, College Park, MD 20742 USA

José L. Contreras-Vidal [Senior Member, IEEE]
Department of Kinesiology, the Neuroscience and Cognitive Science Program, and the Fischell
Department of Bioengineering, University of Maryland, College Park, MD 20742 USA

Rodolphe J. Gentili: rodolphe@umd.edu; James A. Reggia: reggia@cs.umd.edu; José L. Contreras-Vidal:
pepeum@umd.edu

Abstract

It has been suggested that the human mirror neuron system can facilitate learning by imitation

through coupling of observation and action execution. During imitation of observed actions, the

functional relationship between and within the inferior frontal cortex, the posterior parietal cortex,

and the superior temporal sulcus can be modeled within the internal model framework. The

proposed biologically plausible mirror neuron system model extends currently available models by

explicitly modeling the intraparietal sulcus and the superior parietal lobule in implementing the

function of a frame of reference transformation during imitation. Moreover, the model posits the

ventral premotor cortex as performing an inverse computation. The simulations reveal that: i) the

transformation system can learn and represent the changes in extrinsic to intrinsic coordinates

when an imitator observes a demonstrator; ii) the inverse model of the imitator’s frontal mirror

neuron system can be trained to provide the motor plans for the imitated actions.

I. Introduction

BRAIN-IMAGING studies have provided evidence suggesting that the human mirror

neuron system (MNS) is involved in learning by imitation of an observed action [1]–[3].

Traditionally, it was suggested that the MNS is composed of two main components
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designated as the frontal and parietal MNSs respectively in the ventral premotor cortex

(PMv) and the inferior parietal lobule (IPL) [4], [5]. Besides these MNS components, an

assisting component characterized as mirror-like system includes the superior temporal

sulcus (STS) [2].

Generally, the functional properties and roles of the MNS in learning by visually guided

imitation can be examined by considering the neural or behavioral responses of an imitator

during the following two-phase study for the imitator [6]. First, during an observation phase,

the imitator observes an action (e.g., an arm reaching for an object) performed by the

demonstrator. In this phase, the MNS responses of the imitator are typically compared

against a rest condition. Second, during an action execution phase, the imitator reproduces

the action observed in the first phase. The imitator’s MNS responses and kinematics

recorded in this phase are generally compared with the corresponding data during

observation or execution alone. Based on these two-phase experiments, brain-imaging

studies have revealed that intraconnections and interconnections between and within the

inferior frontal cortex (IFC), the posterior parietal cortex (PPC), and the superior temporal

cortex (STC) would constitute a large neural architecture for action imitation [7].

Since the internal model framework could bridge the gap between neural mechanisms and

computations necessary for understanding the MNS, various modeling approaches have

been proposed [7]–[11]. These models commonly suggested that the pathway from the STS

to the frontal MNS via the parietal MNS would serve as an inverse model, whereas the

reverse pathway would correspond to a forward model [7]. However, these models focused

only on the functioning of the MNS associated with the forward computation without

explicitly investigating the inverse computation. Moreover, they did not explicitly integrate

a biologically plausible frame of reference transformation (FORT) system, although it is

critical to learn visually guided actions performed by other individuals since the

demonstrator and the imitator perform and imitate the action in their own frames of

reference, respectively [12]. Recently, it was suggested that neural substrates such as the

superior parietal lobule (SPL) [13], [14] as well as the intraparietal sulcus (IPS, specifically

in the anterior and lateral parts) [13], [15] could implement the transformation system.

Therefore, this paper aims to propose a biologically plausible and behaviorally realistic

MNS model based on internal model concepts, which incorporates both the transformation

of a frame of reference and the inverse computation through two-phase learning including

action observation and imitation. It will deepen our understanding of the basic

neurophysiological and computational mechanisms by investigating functional relationships

between neural structures and sensorimotor transformations that underlie adaptive MNS

computations during action observation and imitation. Also, this model could be employed

for learning by imitation in humanoid robotics.

II. The Model Overview

The currently proposed model extends the anatomical and conceptual architecture proposed

in our previous model based on Miall’s model [9], [14] (Fig. 1).
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During the observation phase, the demonstrator’s action is encoded into kinematic visual

information in the primary visual cortex (V1). The encoded information is sent to the STS as

well as the IPS/SPL, and triggers the prefrontal cortex (PFC). Subsequently, the STS

provides an abstract visual representation of the familiar biological motion (e.g., reaching)

and corresponding body limbs (e.g., arm) [9], [16]; the IPS/SPL (i.e., the FORT system)

transforms the observed information in the viewpoint of the imitator’s intrinsic coordinate

system [13]; the PFC initiates the whole system by providing the intentions to imitate [10].

In particular, the recruitment of the FORT system may be mediated by means of the

switching mechanism applying the stimulus-response mapping rules in the PFC [17], [18].

For example, the PFC would switch to the translation, scaling, and rotation modes when

observing the actions performed by other individuals, whereas it would switch to the identity

mode (i.e., no transformation in this case) when processing the visual feedback of one’s own

actions. Afterwards the transformed observed actions would update the PMv to change the

encoded information to the motor plan (i.e., inverse computation), which is required to

reproduce the observed action. Although no action is performed during observation, the

efference copy of the motor plan is still available and sent to the IPL, which in turn predicts

the sensory consequences of the corresponding action (i.e., forward computation) that are

transferred to the STS and the cerebellum (CB) [9]. Then, the STS compares the expected

and observed actions to enhance the retrieval of the familiar actions when the match is

successful [16]. In addition, the CB generates the prediction error that can be used to update

the inverse and forward model in the PMv and the IPL, respectively.

During the subsequent action execution phase, where the observed action is actually

imitated, the neural processes between and within the PMv, the IPL, the STS, and the CB

will remain as similar to those previously described in the observation phase. However,

contrary to observation, the neural drive will be also sent to the musculoskeletal system

through the primary motor cortex (M1) to perform actual actions. The imitator can then

observe one’s own actions with the identity transformation since the frame of reference is

identical. Finally, when the imitator observes one’s own motor output, the actual feedbacks

(e.g., somatosensory and visual) are available, thus the error between the actual sensory

consequences of the action and the observed prior action can be compared to update the

PMv, the IPL, and the STS.

III. Methods

Currently, two separate radial basis function (RBF) networks [19], [20] serve as both the

FORT and the adaptive inverse model systems mapping f :  →  according to:

(1)

(2)

where x ∈  is the input vector, f (x) ∈  is the output vector, ϕ (·) is the Gaussian basis

function, || · || denotes the Euclidean norm, n is the number of RBFs, κi (0 ≤ i ≤ n)are the
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synaptic weights, (1 ≤ i ≤ n) are the RBF centers, and σ is known as the RBF width

parameter.

Learning in the model involves changing synaptic connection weights between nodes in the

hidden and output layers by the orthogonal least squares algorithm [20]. Currently, the

forward model was supposed to be known a priori by employing the exact mathematical

model.

A. Frame of Reference Transformation System

The FORT system assumed to be in the IPS/SPL aims to help the imitator to solve and

generalize the mapping  using (1) and (2), where  and  are two-

dimensional workspaces in a demonstrator-centered (D) and an imitator-centered (I) frame

of reference, respectively.

In general, the mapping includes various combinations of translation, rotation, scaling, and

reflection procedures, and each of them can be specifically described as following [21], [22]:

i) Translation is a mechanism for the imitator to refer to the demonstrator’s actions in the

same position by shifting the origin of the imitator’s frame of reference; ii) Rotation allows

the imitator facing the same direction with the demonstrator by rotating the orientation of

the axial frame of the imitator; and iii) Scaling and Reflection are so-called personalization

methods for the imitator in the understanding of the observed actions by changing the ratio

and shape of the body (i.e., scaling) or the handedness (i.e., reflection).

The current FORT neural network combining translation, rotation, and scaling

transformations was trained by using only 25 uniformly spaced reference points regardless

of the size of the demonstrator’s workspace. Based on this approach, the network could

approximate the whole workspace, leading to the efficient network. As a first step, the

network was trained before the inverse model system while the demonstrator and the

imitator faced each other.

B. Adaptive Inverse Model System

The adaptive inverse model system is assumed to be in the frontal MNS and can be simply

described by the mapping  using (1) and (2). Namely,  and  are two-

dimensional spaces specifying the observed action and the motor plan respectively in the

visual (V) and the motor (M) domain.

As previously mentioned, the inverse model was acquired by using a two-phase learning

process (i.e., learning by action observation and again by action execution). This learning

approach is behaviorally realistic since learning by imitation in ecological conditions

generally requires continuously repeating these two phases in a sequential manner. Two-

phase learning was repeated until reaching the threshold (1.0×10−6 m). Performance of the

right upper limb in the horizontal plane was simulated with a geometrical model including 2

degrees of freedom. Predictive performance and model accuracy were assessed by

comparing the similarity of the observed and the executed action in the geometric shape

(here, a triangle) of reaching trajectories.
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IV. Results

The anthropometric data and the functional range of motion in the performance of the right

upper limb arm for the demonstrator and the imitator are shown in Table I.

A. Frame of Reference Transformation System

The results revealed that the observed demonstrator’s workplace (green) was successfully

transformed (red) and mapped onto the imitator’s workplace (blue) (Fig. 2). The

performance of the FORT system was evaluated comparing the errors measured by the

normalized Euclidean distance with respect to the length of the imitator’s upper limb

between the observed-and-scaled demonstrator’s workspace (red) and the imitator’s

workspace (blue) (Fig. 2b), where the mean and standard deviation of the errors is 0.033 and

0.021, respectively. Besides, the standardized dissimilarity measure (SDM) using procrustes

analysis, where values near 0 and 1 respectively indicate more similarity and dissimilarity

between two shapes, is only 8.14×10−4 [23].

B. Adaptive Inverse Model System

The results supported that the inverse model can adaptively learn and reproduce the action in

the imitator’s frame of reference (Fig. 3).

Specifically, it was found that the normalized mean squared error (MSE) showed a tendency

to decrease exponentially throughout learning and that, compared to learning by observation,

learning by execution required about 5.2% less time to reach the same performance (Fig.

3a). These findings suggest that prior knowledge obtained during the observation phase

helped the imitator to acquire more rapidly the action during actual performance. Once the

inverse kinematic was learned, a triangular reaching action was used to assess the

performance of the overall neural model during action imitation (Fig. 3b–3d). The SDM

between the observed and imitated action is 2.64×10−5.

V. Discussion

We proposed a biologically plausible human MNS model for action imitations through two-

phase learning combining action observation and execution. Three novel results emerged

from the simulation. First, the frontal MNS could learn the inverse dynamic computation to

reproduce the observed kinematics. This learning was based on the performance and

prediction error; it thus expands previous works that were mainly conducted in motor

control [24]. Second, an ecological two-phase learning mechanism could make the inverse

model more behaviorally realistic by sequentially repeating both observation and action

execution phases. In this context, the PFC would work as a neural basis for the switching

system between two transformation modes (i.e., self-observation and other-observation) in

the IPS/SPL. Finally and more importantly, the IPS/SPL could acquire the FORT system to

transform the demonstrator to the imitator’s frame of reference [13]–[15]. Although other

models did not explicitly examine such a transformation system, this could be another

important assisting component for the MNS in imitation. For instance, it was reported in

monkeys that the responses of the mirror neurons in the PMv would be similar

independently of the demonstrator’s position [8], [25]. Our model offers a possible
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explanation of the neurophysiological findings. Specifically, the IPS/SPL would transform

the information from the extrinsic visual space into the intrinsic sensorimotor space. Then,

the information expressed in the transformed frame of reference corresponding to the

imitator would be sent to the frontal MNS and thus result in the demonstrator’s position

independent activity in the frontal MNS. Based on the rationale, the FORT system could

make the imitator perceive both other and own actions in a common frame of reference.

The current model also contains several limitations that need to be considered. For instance,

the implementation of the PFC is relatively succinct and should be further developed. Also,

the forward model was assumed as known a priori; however, various neural modeling

approaches can be employed to learn the forward model [19], [24]. Another limitation is that

the IPS/SPL (or FORT system) must be trained when the demonstrator and imitator are

facing each other (i.e., their position is spatially symmetric), and its learning must precede

the acquisition of the inverse model. Therefore, future works aim i) to extend the PFC

model, ii) to examine the coordination of learning between the frontal (inverse model) and

parietal (forward model) MNS, and iii) to investigate the capabilities of the transformation

system incorporated in the IPS/SPL.

References

1. Carr L, Iacoboni M, Dubeau MC, Mazziotta JC, Lenzi GL. Neural mechanisms of empathy in
humans: A relay from neural systems for imitation to limbic areas. PNAS. 2003; 100(9):5497–502.
[PubMed: 12682281]

2. Iacoboni M, Koski LM, Brass M, Bekkering H, Woods RP, Dubeau MC, Mazziotta JC, Rizzolatti
G. Reafferent copies of imitated actions in the right superior temporal cortex. PNAS. 2001; 98(24):
13995–9. [PubMed: 11717457]

3. Umiltà MA, Kohler E, Gellese V, Fogassi L, Fadiga L, Keysers C, Rizzolatti G. I know what you
are doing: a neurophysiological study. Neuron. 2001; 31(1):155–65. [PubMed: 11498058]

4. Fadiga L, Fogassi L, Pavesi G, Rizzolatti G. Motor facilitation during action observation: a
magnetic stimulation study. J Neurophysiol. 1995; 73(6):2608–11. [PubMed: 7666169]

5. Decety J, Chaminade T, Grezes J, Meltzoff AN. A PET exploration of the neural mechanisms
involved in reciprocal imitation. Neuroimage. 2002; 15(1):265–72. [PubMed: 11771994]

6. Dinstein I, Thomas C, Behrmann M, Heeger DJ. A mirror up to nature. Curr Biol. 2008; 18(1):R13–
8. [PubMed: 18177704]

7. Iacoboni, M. Understanding others: imitation, language, and empathy. In: Hurley, S.; Chater, N.,
editors. Perspectives on Imitation: From Neuroscience to Social Science. Cambridge: The MIT
Press;

8. Craighero L, Metta G, Sandini G, Fadiga L. The mirror-neurons system: data and models. Prog
Brain Res. 2007; 164:39–59. [PubMed: 17920425]

9. Miall RC. Connecting mirror neurons and forward models. NeuroReport. 2003; 14:2135–7.
[PubMed: 14625435]

10. Oztop E, Wolpert D, Kawato M. Mental state inference using visual control parameters. Brain Res
Cogn Brain Res. 2005; 22(2):129–51. [PubMed: 15653289]

11. Tani J, Nishimoto R, Paine RW. Achieving “organic compositionality” through self-organization:
reviews on brain-inspired robotics experiments. Neural Netw. 2008; 21(4):584–603. [PubMed:
18495423]

12. Demiris, J.; Hayes, GR. Imitation as a dual-route process featuring predictive and learning
components: a biologically plausible computational model. In: Dautenhahn, K.; Nehaniv, CL.,
editors. Imitation in animals and artifacts. Cambridge: The MIT Press;

Oh et al. Page 6

Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2014 August 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



13. Buneo CA, Andersen RA. The posterior parietal cortex: sensorimotor interface for the planning
and online control of visually guided movements. Neuropsychologia. 2006; 44:2594–606.
[PubMed: 16300804]

14. Oh, H.; Gentili, RJ.; Contreras-Vidal, JL. Adaptive inverse modeling in the frontal mirror neuron
system for action imitation. 15th Int. Grap. Soc. Conf; to be published

15. Grefkes C, Fink GR. The functional organization of the intraparietal sulcus in humans and
monkeys. J Anat. 2005; 207(1):3–17. [PubMed: 16011542]

16. Iacoboni M. Neural mechanisms of imitation. Curr Opin Neurobiol. 2005; 15(6):632–7. [PubMed:
16271461]

17. Dove A, Pollmann S, Schubert T, Wiggins CJ, von Cramon DY. Prefrontal cortex activation in
task switching: an event-related fMRI study. Brain Res Cogn Brain Res. 2000; 9(1):103–9.
[PubMed: 10666562]

18. Imamizu H, Kuroda T, Yoshioka T, Kawato M. Functional magnetic resonance imaging
examination of two modular architectures for switching multiple internal models. J Neurosci.
2004; 24(5):1173–81. [PubMed: 14762135]

19. Gentili, RJ.; Oh, H.; Molina, J.; Contreras-Vidal, JL. Neural network models for reaching and
dexterous manipulation in humans and anthropomorphic robot systems. In: Cutsuridis, V.;
Hussain, A.; Taylor, JG., editors. Perception-Action Cycle: Models, Architectures, and Hardware.
New York: Springer; 2011.

20. Chen S, Cowan CFN, Grant PM. Orthogonal least squares learning algorithm for radial basis
function networks. IEEE Trans Neural Netw. 1991; 2(2):302–9. [PubMed: 18276384]

21. Lopes M, Santos-Victor J. Visual learning by imitation with motor representations. IEEE Trans
Syst Man Cybern B Cybern. 2005; 35(3):438–49. [PubMed: 15971913]

22. Frank, AU. Formal models for cognition taxonomy of spatial location description and frames of
reference. In: Freksa, C.; Habel, C.; Wender, KF., editors. Spatial Cognition. Berlin: Springer;
1998.

23. Seber, GAF. Multivariate Observations. Hoboken: John Wiley & Sons; 1984.

24. Jordan MI, Rumelhart DE. Forward models: supervised learning with a distal teacher. Cogn Sci.
1992; 16:307–54.

25. Gallese V, Fadiga L, Fogassi L, Rizzolatti G. Action recognition in the premotor cortex. Brain.
1996; 119:593–609. [PubMed: 8800951]

Oh et al. Page 7

Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2014 August 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 1.
The model overview for the human MNS based on a forward and an inverse model

framework during learning by imitation for reaching action. Functional roles and

computations are described in the boxes and the links, respectively. The proposed pathway

from the IPS/SPL (including the FORT system) to the STS is represented with a dashed gray

line. The dark gray boxes (PFC, PMv, IPS/SPL, and CB) are currently implemented. xdem:

demonstrator’s action; ximit: imitator’s own action; xobs: observed action; TRG: trigger;

bodyarm: corresponding body limbs; XT: transformed action; XP: predicted action; εP:

prediction error; ρ: cross correlation; XD: desired motor plan; θ: motor plan; μ: motor

command.
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Fig. 2.
The FORT system includes translation, rotation, and scaling. (a) The demonstrator and the

imitator are facing each other at the top (the demonstrator) and the bottom (the imitator).

The demonstrator’s workspace (green) was transformed into the observed workspace (red)

by the imitator. This observed workspace would be scaled into the imitator’s own workspace

(blue), where the imitation is performed. The imitator could reproduce (blue arrow) the

action that was performed (green arrow) by the demonstrator. (b) The normalized Euclidean

distance error between the scaled red area and the original blue area is represented at the XY

plane.

Oh et al. Page 9

Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2014 August 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 3.
Adaptive inverse model performance. (a) The log scaled normalized MSE curve represents 6

sequentially repeating adaptive learning by observation (white bands) and by action

execution (gray bands). (b) The imitator reproduces (blue) the observed (red) triangular

kinematics in a clockwise direction (black dotted arrow). The red and blue bean-shaped

areas represent the demonstrator and imitator’s workspaces, respectively. (c)–(d) The three

white and gray bands represent each linear segment of the triangular shape. Generally, the

joint angles displacements were sigmoid and the velocity profiles were single-peaked bell

shapes although sometimes these classical kinematics were slightly distorted due to

cumulative residual errors from the FORT and the inverse model.
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TABLE I

Anthropometric Data and Functional Range of Motion

Dimension name Demonstrator Imitator

Upper Arm Length 0.33 m 0.16 m

Forearm Length 0.27 m 0.12 m

Shoulder Horizontal Adduction (θ1)† 0° to 120° 0° to 120°

Elbow Horizontal Flexion (θ2)† 0° to 120° 0° to 120°

†
The 0° start position for establishing the degrees of each motion is 90° shoulder abduction and 90° elbow extension, respectively (Fig. 2a).
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