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Glycosaminoglycans (GAGs) are constructed through the stepwise addition of respective monosaccharides by various glyco-
syltransferases and maturated by epimerases and sulfotransferases. The structural diversity of GAG polysaccharides, including
their sulfation patterns and sequential arrangements, is essential for a wide range of biological activities such as cell signaling,
cell proliferation, tissue morphogenesis, and interactions with various growth factors. Studies using knockout mice of enzymes
responsible for the biosynthesis of the GAG side chains of proteoglycans have revealed their physiological functions. Furthermore,
mutations in the human genes encoding glycosyltransferases, sulfotransferases, and related enzymes responsible for the biosynthesis
of GAGs cause a number of genetic disorders including chondrodysplasia, spondyloepiphyseal dysplasia, and Ehlers-Danlos
syndromes. This review focused on the increasing number of glycobiological studies on knockout mice and genetic diseases caused

by disturbances in the biosynthetic enzymes for GAGs.

1. Introduction

Glycosaminoglycans (GAGs) are covalently attached to the
core proteins that form proteoglycans (PGs), which are
ubiquitously distributed in extracellular matrix and on the
cell surface [1-7]. GAGs are linear polysaccharides that
form the side chains of PGs and have been classified into
chondroitin sulfate (CS), dermatan sulfate (DS), heparan
sulfate (HS), and heparin based on their structural units. The
backbone of CS consists of repeating disaccharide units of
N-acetyl-p-galactosamine (GalNAc) and p-glucuronic acid
(GIcUA) (Figure 1). DS is a stereoisomer of CS and composed
of GalNAc and L-iduronic acid (IdoUA) instead of GIcUA
(Figure 1). They are often distributed as CS-DS hybrid chains
in mammalian tissues [8]. On the other hand, HS and
heparin consist of N-acetyl-D-glucosamine (GlcNAc) and
GlcUA or IdoUA (Figure 1). The glucosamine (GlcN) residues
in HS and heparin are modified by not only N-acetylation
but also N-sulfation. These GAG chains are modified by
sulfation at various hydroxy group positions and also by the

epimerization of uronic acid residues during the biosynthetic
process, thereby giving rise to structural diversity, which plays
an important role in a wide range of biological roles including
cell proliferation, tissue morphogenesis, infections by viruses,
and interactions with various growth factors, cytokines, and
morphogens [7-18].

Glycosyltransferases, epimerases, sulfotransferases, and
related enzymes in the biosynthesis of GAGs have been
cloned and characterized (Tables 1-4 and Figures 2 and 3) [6,
7,14,19]. Furthermore, genetic analyses using model animals
including mice, zebrafish, fruit flies, and nematodes have
led to new findings on different phenotypes [4, 8, 9, 12, 13].
Human genetic disorders including bone and skin diseases
caused by mutations in the genes encoding the biosynthetic
enzymes for GAGs have recently been reported [7, 14, 20].
This review focused on recent advances in knockout mice
for GAG biosynthesis, as well as cartilage and connective
tissue disorders caused by disturbances in the biosynthesis of
functional GAG chains.
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Symbol  Sequence Symbol Sequence Symbol Sequence

O unit GlcUA-GalNAc iO unit IdoUA-GalNAc HS-0S HexUA-GIcNAc

A unit GlcUA-GalNAc(4S) iA unit IdoUA-GalNAc(4S) HS-2S HexUA(2S)-GlcNAc

C unit GlcUA-GalNAc(6S) iC unit IdoUA-GalNAc(6S) HS-6S HexUA-GIcNAc(6S)

B unit GIcUA(2S)-GalNAc(4S) iB unit IdoUA(2S)-GalNAc(4S) HS-NS HexUA-GIcN(NS)

D unit GIcUA(2S)-GalNAc(6S) iD unit IdoUA(2S)-GalNAc(6S) HS-diS;  HexUA-GIcN(NS,6S)

E unit GlcUA-GalNAc(4S,6S) iE unit IdoUA-GalNAc(4S,6S) HS-diS2  HexUA(2S)-GIcN(NS)
HS-diS;  HexUA(2S)-GlcNAc(6S)
HS-triS ~ HexUA(2S)-GlcN(NS,6S)

(a)

(c)

FIGURE 1: Typical repeating disaccharide units in CS, DS, HS, and heparin, and their potential sulfation sites. CS consists of GIcUA and
GalNAc, whereas DS is a stereoisomer of CS including IdoUA instead of GIcUA. Both linear polysaccharides are often found as CS-DS hybrid
chains in mammals. HS and heparin consist of uronic acid and GlcNAc residues with varying proportions of IdoUA. Heparin is highly
sulfated and has a large proportion of IdoUA residues, whereas HS is low sulfated and has a high proportion of GIcUA. These sugar moieties
are esterified by sulfate at various positions as indicated by the circled “S” The abbreviation of “i” in iO, iA, iB, iC, iD, and iE stands for IdoUA.

HexUA represents hexuronic acid (GIcUA or IdoUA).

2. Biosynthesis of 3'-Phosphoadenosine
5'_Phosphosulfate

The sulfation of GAGs is required for the exertion of their
physiological functions. Sulfotransferases catalyze the trans-
fer of sulfate from the donor substrate, 3'-phosphoadenosine
5'-phosphosulfate (PAPS), to the corresponding acceptor
substrates [21]. PAPS is synthesized from ATP and inorganic
sulfate in the cytosol, and the reaction takes place in two
sequential steps [21-23]. ATP sulfurylase firstly catalyzes
the reaction between ATP and inorganic sulfate to form
the biosynthetic intermediate, adenosine 5'-phosphosulfate
(APS) [22, 23]. The formation of the active sulfate, PAPS,
is then catalyzed by APS kinase, which involves a reaction
between APS and ATP [22, 23]. ATP sulfurylase and APS
kinase are encoded by the respective genes in bacteria, fungi,
yeast, and plants [21]. On the other hand, both enzymes are
fused in animals, resulting in a polypeptide designated PAPS
synthase (PAPSS), which is a bifunctional enzyme composed
of the N-terminal APS kinase domain and C-terminal ATP
sulfurylase domain [21]. Following the formation of PAPS
in the cytosol, PAPS is translocated into the Golgi by PAPS
transporters [24].

3. Biosynthesis of GAG Chains

3.1. GAG-Protein Linkage Region. CS, DS, HS, and heparin
chains are attached to serine residues in core proteins through
the common GAG-protein linkage region tetrasaccharide,

GIcUA f1-3galactosefl-3galactosefl-4xylosef1-O-  (GlcUA-
Gal-Gal-Xyl-O-) (Figure2) [1, 5]. The transfer of a Xyl
residue from uridine diphosphate (UDP)-Xyl to specific
serine residues in the newly synthesized core proteins of PGs
in the endoplasmic reticulum and cis-Golgi compartments
is initiated by p-xylosyltransferase (XylT) (Figure2 and
Table 2) [25, 26]. fl,4-Galactosyltransferase-I (GalT-I),
which is encoded by B4GALT?7, then transfers a Gal residue
from UDP-Gal to the Xyl-O-serine in the core proteins
[27, 28]. P1,3-Galactosyltransferase-II (GalT-II), which
is encoded by B3GALT6, transfers another Gal residue
from UDP-Gal to the Gal-Xyl-O-serine [29]. Finally, f1,3-
glucuronosyltransferase-I (GIcAT-I), which is encoded by
B3GAT3, transfers a GIcUA residue from UDP-GIcUA to
the Gal-Gal-Xyl-O-serine (Figure 2 and Table 2) [30]. These
enzymes may form a multienzyme complex such as the
so-called GAGosome for GAG synthesizing enzymes for the
construction of the linkage region [31, 32].

Several modifications including the 2-O-phosphorylation
of the Xyl residue as well as sulfation at the C-6 position
of the first Gal and at C-4 or C-6 of the second Gal
residue have been reported [5]. GAG-Xyl kinase, encoded by
FAM20B, Xyl phosphatase, encoded by ACPL2, and Gal-6-
O-sulfotransferase, encoded by CHST3 (C6ST1), have so far
been identified (Table 2) [33-35]. These modifications affect
the glycosyltransferase reactions of GalT-I and GIcAT-I in
vitro and may regulate the formation of GAG chains [36, 37].

3.2. Repeating Disaccharide Region of CS and DS. Chain
polymerization of the repeating disaccharide region in CS
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Common GAG-protein
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FIGURE 2: Biosynthetic assembly of GAG backbones by various glycosyltransferases. All glycosyltransferases require a corresponding UDP-
sugar, such as UDP-Xyl, -Gal, -GIcUA, -GalNAc, and -GIcNAc, as a donor substrate. After specific core proteins have been synthesized, the
synthesis of the common GAG-protein linkage region, GIcUA §1-3Gal 1-3Gal 31-4Xyl 81-, is evoked by Xyl T, which transfers a Xyl residue from
UDP-Xyl to the specific serine (Ser) residue(s) at the GAG attachment sites. The linkage tetrasaccharide is subsequently constructed by GalT-I,
GalT-II, and GIcAT-I. These four enzymes are common to the biosynthesis of CS, DS, HS, and heparin. The first 31-4-linked GalNAc residue is
then transferred to the GIcUA residue in the linkage region by GalNAcT-I, which initiates the assembly of the chondroitin backbone, thereby
resulting in the formation of the repeating disaccharide region, [-3GalNAcf1-4GIcUAf1-],,, by CS-polymerase. Alternatively, the addition of
al-4-linked GIcNACc to the linkage region by GIcNAcT-I initiates the assembly of the repeating disaccharide region [-4GlcNAcal-4GIcUAB1-],,
of HS and heparin by HS-polymerase. Following the formation of the chondroitin and heparan backbones, both precursor chains are modified
by sulfation and epimerization (see Figure 3). Each enzyme, its coding gene, and the corresponding inheritable disorder are described under
the respective sugar symbols from the top of each line. SEMDJLI, spondyloepimetaphyseal dysplasia with joint laxity type 1.

and DS chains is initiated by the transfer of the first
GalNAc from UDP-GalNAc to the GIcUA residue in the link-
age region tetrasaccharide, GlcUA-Gal-Gal-Xyl-O-, by f1,4-
N-acetylgalactosaminyltransferase-I (GaINAcT-I) (Figure 2)
[193-196]. Alternatively, the transfer of a GlcNAc residue
from UDP-GIcNAc to the linkage region tetrasaccharide
by al,4-N-acetylglucosaminyltransferase-I (GlcNACT-I) is
known to result in the initiation of the repeating disaccharide
region of HS and heparin chains (Figure 2) [197-201]. Six
chondroitin synthase family members have been identi-
fied including chondroitin synthases (ChSys), chondroitin-
polymerizing factor (ChPF), and CSGalNAcTs (Figure 2 and
Table 3) [193-196, 202-208]. ChSyl is composed of 802
amino acids and is a bifunctional glycosyltransferase that

exhibits CS-GIcAT-II and GalNACT-II activities, which are
required for the biosynthesis of the repeating disaccharide
region, -4GlcUAS1-3GalNAcf31 (Table 3) [202]. ChSyl1 itself
is unable to construct the backbone of CS by the activity
of polymerase, whereas the enzyme complex of ChSy with
ChPF can form the repeating disaccharide region [203-
205]. A precursor of CS, the chondroitin backbone, is then
maturated by sulfation modified by various sulfotransferases
such as uronosyl 2-O-sulfotransferase (UST) [209], chon-
droitin 4-O-sulfotransferases (C4ST) [210-212], chondroitin
6-O-sulfotransferase (C6ST) [213, 214], and GalNAc 4-sulfate
6-O-sulfotransferase (GalNAc4S-6ST) [215] (Figure 3 and
Table 3). These transfer the sulfate group from the sulfate
donor PAPS to the corresponding position of the GIcUA and
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FIGURE 3: Modification pathways of CS, DS, HS, and heparin. After formation of the GAG backbones, including chondroitin and heparan,
each sugar residue is modified by sulfation, which is catalyzed at various positions by sulfotransferases, as indicated in the figure. C4ST and
C6ST transfer a sulfate group from PAPS to the C-4 or C-6 position of the GalNAc residues in the CS chain, which results in the formation of
A-units and C-units, respectively. Further sulfations are catalyzed by GalNAc4S-6ST or UST, which is required for the formation of disulfated
disaccharide units, E-units and D-units, respectively. DS-epimerase converts GIcUA into IdoUA by epimerizing the C-5 carboxy group in the
chondroitin precursor, thereby resulting in the formation of the dermatan backbone. D4ST, which is distinct from C4ST, transfers a sulfate
group from PAPS to the C-4 position of the GalNAc residues in dermatan to form the iA-units. The disulfated disaccharide units, iB and iE,
are infrequently synthesized by UST and GalNAc4S-6ST, which are the same enzymes as those responsible for the biosynthesis of B and E
units in CS chains. Following the synthesis of the backbone of HS or heparin by HS polymerases, the first modifications, N-deacetylation and
N-sulfation, are catalyzed by NDST. Some GIcUA residues are then converted to IdoUA residues by GLCE. Thereafter, the hydroxy groups at
the C-2 of IdoUA and at C-3 and C-6 of N-sulfated glucosamine and/or GlcNAc are sulfated by specific sulfotransferases. The 6-O-desulfation
of the N-sulfated GlcN residue in the HS and heparin chains occurs by the action of SULF in order to modify the fine structure of HS for the
regulation of interactions with various signaling molecules. C4ST, chondroitin 4-O-sulfotransferase; C6ST, chondroitin 6-O-sulfotransferase;
DA4ST, dermatan 4-O-sulfotransferase; DSE, dermatan sulfate C5-epimerase; GalNAc4S-6ST, GalNAc 4-sulfate 6-O-sulfotransferase; GLCE,
heparan sulfate C5-epimerase; HS2ST, heparan sulfate 2-O-sulfotransferase; HS3ST, heparan sulfate 3-O-sulfotransferase; HS6ST, heparan
sulfate 6-O-sulfotransferase; NDST, N-deacetylase/N-sulfotransferase; UST, uronyl 2-O-sulfotransferase; NS, 2S, 4S, and 68§, 2-N-, 2-O-, 4-
O-, and 6-O-sulfate, respectively.

GalNAc residues in chondroitin. C4STs have been shown to
regulate the chain length and amount of CS coordinating with
CSGalNACcTs [216, 217].

Epimerization of the C-5 position of GIcUA residues
in a chondroitin polymer as a precursor backbone occurs
during or after the chain elongation, which results in the
formation of the repeating disaccharide region, -4IdoUA«l-
3GalNAcpI-, of DS chains (Figure 3) [218-221]. The dermatan
chains fully develop through sulfation catalyzed by dermatan
4-O-sulfotransferases (D4ST) [222, 223] and uronosyl 2-O-
sulfotransferase (UST) [209] (Figure 3 and Table 3).

3.3. Repeating Disaccharide Region of HS and Heparin. Fol-
lowing the construction of the linkage region tetrasaccha-
ride, GlcUAS1-3Galp1-3GalB1-4Xyl 81-O-serine, on the core
protein, transfer of the GlcNAc residue from UDP-GIcNAc
to the tetrasaccharide induces chain polymerization of the

repeating disaccharide region of HS and heparin catalyzed
by GIcNACT-I [197-201] (Figure 2). After the addition of
the first GIcNAc to the linkage region, the growing pen-
tasaccharide is further elongated by alternate additions of
GlcUA and GlcNAc from UDP-GIcUA and UDP-GIcNAc by
HS-p1,4glucuronyltransferase-1I (HS-GIcAT-II) and «1,4-N-
acetylglucosaminyltransferase-II (GIcNACT-II), respectively
(Figure 2). Exostosin 1 (EXTI) as well as 2 (EXT2) both
exhibit HS-GIcAT-II and GIcNACT-II activities [199, 224-
226] (Table 4). Furthermore, the heterodimeric complex of
EXT1and EXT?2 exhibits HS polymerase activity on a linkage
region tetrasaccharide acceptor in vitro, which results in the
biosynthesis of HS and heparin polysaccharides [227, 228].
Three homologous genes to the EXT have been identified
[6, 14, 229]. EXTL1 and EXTL2 exhibit GIcNACT-II and
GIcNACT-I activities, respectively, whereas EXTL3 has not
only GIcNACT-I, but also GIcNACT-II activities (Figure 2 and
Table 4) [200, 201].
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After the formation of the repeating disaccharide back-
bone of HS chains by EXTs and EXTLs, GlcNAc residues
are converted into GlcN residues by GIcNAc N-deacetylase
(Figure 3) [6, 14, 198]. A sulfate group is subsequently trans-
ferred from PAPS to the GIcN by GIcN N-sulfotransferase
[6, 14, 198]. Both enzymes are encoded by a single gene, Glc-
NAc N-deacetylase/N-sulfotransferase (Figure 3 and Table 4)
[230-233]. The interconversion of GlcUA to IdoUA in HS
and heparin is achieved by HS-glucuronyl C5-epimerase
(Figure 3) [234-236]. Moreover, sulfation at the C-2 position
of uronic acid as well as C-3 and C-6 positions of the
GlcN residues in the HS and heparin are catalyzed by HS
2-O-sulfotransferase, HS 3-O-sulfotransferase, and HS 6-O-
sulfotransferase, respectively (Figure3 and Table 4) [237-
244]. The desulfation of 6-O-sulfated GIcNS residues in HS
chains by HS 6-O-endosulfatase modifies the fine structure
of HS in order to regulate various biological events including
cell signaling, tumor growth, and angiogenesis (Figure 3 and
Table 4) [245-247].

4. Knockout and Transgenic Mice of GAG
Biosynthetic Enzymes

4.1. Xyltl. A recessive dwarf mouse mutant (pug) obtained
from an N-ethyl-N-nitrosourea mutagenesis screen was
attributed to a missense mutation in Xyltl, which resulted in
the substitution of an amino acid (p.Trp932Arg) [59]. XylT
activity in the pug mutant was markedly reduced in vitro,
which resulted in a decrease in the amount of GAGs in
cartilage. Furthermore, early ossification was reported in this
mutant, which resulted in a shorter body length than that
of a wild-type embryo. These phenotypes may be caused by
an upregulation of Indian hedgehog signaling but not MAPK
signaling due to lack of GAGs [59].

4.2. B3gat3 (GIcAT-I). Mice deficient in GIcAT-I synthesize
a smaller CS and HS chain in their blastocysts than that
of the heterozygous mice [75]. In addition, these mice
exhibit an embryonic lethality before the 8-cell stage due
to the failure of cytokinesis, which has been attributed to a
deficiency in CS, but not HS based on the findings reported
in embryos treated with chondroitinase and heparinase [76].
Moreover, interaction of CS with E-cadherin, which regulates
the differentiation of embryonic stem cells, may control Rho
signaling pathway [76]. These findings indicated that CS, but

not HS, is involved in regulating cell division in mammals.

4.3. Csgalnactl and Csgalnact2. CSGalNAcTI-null mice have
been shown to produce a smaller amount as well as a shorter
length of CS chains than the wild-type [84, 85]. These mice
also have shorter limbs and axial skeleton and a thinner
growth plate in cartilage than wild-type mice, which results
in a slightly shorter body length and smaller body weight
[84, 85]. It is likely that the reduction in CS may affect normal
chondrogenesis and formation of type II collagen fibers [84].
These findings suggest that CSGalNAcT1 is essential for the
differentiation and maturation of cartilage.
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A deficiency in CSGalNAcTI1, but not CSGalNAcT2,
has been shown to promote axonal regeneration following
spinal cord injury [86]. CS-PGs function as barrier-forming
molecules during axonal regeneration after damage to the
nervous system [10]. Thus, the down- and upregulation
of CS and HS biosynthesis, respectively, in the scars of
CSGalNACT17~ mice led to better recovery from injuries in
the nervous system than the wild type.

4.4. Chsyl. Chsyl-deficient mice are viable but exhibit chon-
drodysplasia, progression of the bifurcation of digits, delayed
endochondral ossification, and reduced bone density [81].
Furthermore, a decrease in 4-O-sulfation and increase in 6-
O-sulfation as well as desulfation of the GalNAc residues of
CS have been reported in the cartilage of Chsyl”/~ mice. The
signaling of hedgehog but not of FGF, bone morphogenetic
protein, or transforming growth factor- altered in primary
chondrocytes from Chsyl-deficient mice [81], which suggests
that CS-PGs and hedgehog protein may coordinately regulate
skeletal development and digit patterning.

4.5. Chpf. Mice deficient in Chpf, also known as chondroitin
sulfate synthase-2 (CSS2), are fertile and viable and exhibit no
obvious abnormalities including osteoarthritis and cartilage
development [82]. These findings are consistent with the
study by Wilson et al. [81].

4.6. Dse and Dsel. The body weight of Dse”/~ mutant mice,
which have fewer IdoUA residues in the skin, is ~30% smaller
than that of the wild type [88, 89]. Although no significant
differences were observed in the content of collagen between
Dse”/~ and the wild type, the ultrastructure of collagen fibrils
in the dermis and hypodermis was thicker in the deficient
mice than in the wild type, and a decline in their mechanical
strength was also noted in the deficient mice. On the other
hand, no morphological or histological abnormalities have
been reported in mice targeted with the disruption of DS
epimerase-2 encoded by Dsel [93]. In addition, 4-O-sulfation
of the DS chain was decreased in the brain of Dse2”/ -,
whereas the adult Dse2™/~ brain had normal structures in
the extracellular matrix. The function of Dse2 appears to be
compensated by Dsel [93].

4.7 Chst3 (C6stl). The number of 6-O-sulfated disaccharide
units including the C-unit (GlcUA-GalNAc6-O-sulfate) and
D-unit (GIcUA2-O-sulfate-GalNAc6-O-sulfate) was shown
to be markedly reduced in the spleens and brains of C6stI-
deficient mice, and the number of naive T lymphocytes
was also decreased in the spleen [114]. However, brain
development in C6st1”'~ mice is normal in spite of a decrease
in D-units in the CS chains of the null mice.

CS-PGs are newly synthesized in the central nervous
system following injury, and this inhibits axonal regeneration
[10, 248]. Furthermore, upregulation of the expression of
C6stl and 6-O-sulfated CS-PGs has been demonstrated in
glial scars after a cortical injury [249]. C6stI”/~ mice had
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fewer or a similar number of regenerative axons after axotomy
to the wild type [115].

Anincrease in chondroitin 6-O-sulfation was observed in
the developing brains of C6stl-transgenic mice and affected
the formation of the perineuronal nets and cortical plasticity
[116], which are specialized structures of the dense orga-
nized matrix, which are composed of CS-PGs, hyaluronan,
tenascins, and link proteins and regulate neuronal plasticity
and neuroprotection [250]. Chondroitin 6-O-sulfate may
regulate the maturation of parvalbumin-expressing interneu-
rons through the incorporation of Otx2 [116], which regulates
ocular dominance plasticity.

4.8. Chstll (C4stl). The C4stl gene was identified as a target
gene of bone morphogenetic protein signaling using gene
trap experiments [94]. C4stI-mutant mice exhibit severe
dwarfism and die within six hours of birth due to respi-
ratory failure [95]. Moreover, severe chondrodysplasia with
abnormalities in the cartilage growth plate and chondrocyte
columns, marked reductions in GAG content and 4-O-
sulfated CS, the downregulation of bone morphogenetic pro-
tein signaling, and the upregulation of transforming growth
factor-f3 have been observed in these mice. These findings
indicated that C4ST1and the 4-O-sulfation of CS chains were
essential for the signaling pathways of bone morphogenetic
protein and transforming growth factor- 8 as well as cartilage
morphogenesis.

4.9. Chstl4 (D4stl). D4stI”/~ mice have a smaller body
weight, a kinked tail, and more fragile skin and are less fertile
than the wild type. [107]. In addition, axonal regrowth is ini-
tially facilitated in D4stI”/~ mice following nerve transection.

Furthermore, the impaired proliferation of neural stem
cells, reduced neurogenesis, and an altered subpopulations
of radial glial cells have been reported in D4stl-deficient
mice [96]. The epitope structure recognized by the mon-
oclonal anti-CS antibody 473HD, which contains the D-
unit (GlcUA-2-O-sulfate-GalNAc-6-O-sulfate) and iA-unit
(IdoUA-GalNAc4-O-sulfate) in the CS-DS hybrid chains
on PGs, such as phosphacan, is required for the forma-
tion of neurospheres and as a marker for radial glial cells
[251]. Expression of the 473HD epitope was shown to be
decreased in the neural stem cells of D4stI”/~ mice, and this
resulted in the altered formation of neurospheres [96]. These
findings indicated that DS chains and/or D4STI are essen-
tial for the proliferation and differentiation of neural stem
cells.

4.10. Chstl5 (Galnacds-6st). Galnac4s-6st-null mice are
viable and fertile and completely defective in the E-unit,
GlcUA-GalNAc(4-,6-O-disulfates), in both CS and DS chains
[117]. The activities of carboxypeptidase A and tryptase from
bone marrow-derived mast cells in Galnac4s-6st™'~ were
lower than those in the wild type, which suggested that the
E-unit-containing CS chain or CS-PGs may be involved
in the retention of these proteases in the granules of mast
cells.

1

4.11. Extl and Ext2. Gene knockout mice produced by the
targeted disruption of the gene encoding ExtI and Ext2 died
by embryonic day 8.5-14.5 due to defects in the formation
of the mesoderm and a failure in egg cylinder elongation
[119-121, 136]. The GIcUA and GlcNAc transferase activities
are decreased and HS chains are shorter in mice carrying a
hypomorphic mutation in EXTI generated by gene trapping,
which affect the signaling pathways of Indian hedgehog
and parathyroid hormone-related peptide [120, 121]. Thus,
it is difficult to analyze the in vivo functions of HS chains
using conventional knockout mice. A growing number of
conditional knockout mice produced by targeted disruption
of the gene encoding HS biosynthetic enzymes has provided
an insight into the physiological functions of HS and HS-
PGs [14]. For example, pluripotent embryonic stem cells in
which Extl was disrupted fail to differentiate into neural
precursor cells and mesoderm cells due to the enhancement
of Fgf signaling and retention of the high expression of
Nanog [122,123]. Conditional Extl-knockout mice selectively
disrupted in the nervous system die within the first day of
life and have defective olfactory bulbs, midbrain-hindbrain
region, and axon guidance due to a disturbance in signaling
pathways including Fgf8 and Netrin-1 [124-126]. Conditional
Extl-knockout mice specific for postnatal neurons exhibit a
large number of autism-like phenotypes in spite of a normal
morphology in the brain [127]. On the other hand, mice
in which ExtI was specifically disrupted for chondrocytes
and the limb bud, Ext2 heterozygous mice, and compound
ExtT*"/Ext2*~ mice display severe skeletal defects with
cartilage differentiation and chondrocyte maturation, and
these defects resembled an autosomally dominant inherited
genetic disorder, human hereditary multiple exostoses [128-
132]. Disruption of the Extl gene in glomerular podocytes
results in an abnormal morphology in these cells [133].
Furthermore, conditional knockout mice lacking ExtI in the
high endothelial venules and vascular endothelium cells show
a decrease in lymphocyte homing to peripheral lymph nodes
and a compromised contact hypersensitivity response [134,
135]. These findings suggest that HS and HS-PGs are essential
for playing a role in their physiological functions in a tissue-
specific manner.

4.12. Extl2 and Extl3. Mice deficient in Ext[2 are viable and
develop normally; however, they produce a larger amount
of GAG chains [137, 138]. Liver regeneration was shown to
be impaired in these knockout mice following liver injury
induced by administration of CCl, due to suppression of the
response to hepatocyte growth factor [137].

Mice deficient in Ext[3 are embryonically lethal, which
is similar to mice lacking ExtI or Ext2 [139]. In addition,
selective inactivation of the Ext/3 gene in pancreatic islet 3-
cells caused an abnormal morphology as well as a reduction
in the proliferation of the islets, which resulted in defective
insulin secretion [139]. However, it remains to be deter-
mined how HS, HS-PGs, or Extl3 is involved in insulin
secretion.
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4.13. Ndstl, 2, and 3. Functional analyses of HS and heparin
using Ndstl-deficient mice have been performed in approx-
imately 20 studies to date [140-164]. Representative studies
have been reviewed in this chapter. NdstI-deficient mice
die after birth and have cerebral hypoplasia, axon guidance
errors, defects in the eye and olfactory bulbs, insufficient milk
production caused by a defect in lobuloalveolar expansion
in the mammary gland, and morphological abnormalities
in the podocytes [140-142, 145, 156, 157, 162, 164]. Ndstl
conditional knockout mice specific for the liver accumulated
triglyceride-rich lipoproteins due to a reduction in the
clearance of cholesterol-rich lipoprotein particles [148, 163].
Furthermore, mice with the endothelial-targeted deletion of
Ndst] exhibited suppressed experimental tumor growth and
angiogenesis including microvascular density and branching
of the surrounding tumors due to altered responses to Fgf2
and Vegf, which resulted in reduced Erk phosphorylation
[147] and attenuated allergic airway inflammation [151].

Embryos from Ndst2-deficient mouse are viable and fer-
tile, whereas their mast cells are unable to synthesize heparin,
which leads to changes in morphology and severely reduced
amounts of granule proteases [165-167]. These findings indi-
cated that the storage of proteases in granules is controlled by
heparin or heparin-PG, such as serglycin [165-167]. On the
other hand, Ndst3-deficient mice develop normally and are
fertile [168].

4.14. Glce (HS GIcUA C5-epimerase). Mice with the targeted
disruption of HS epimerase die immediately after birth and
have agenesis of the kidney, a shorter body length, and lung
defects [169, 170]. Furthermore, developmental abnormalities
in the lymphoid organs, including the spleen, thymus, and
lymph nodes, have been reported in the knockout mice
[171, 172]. IdoUA-containing HS chains are critical for early
morphogenesis of the thymus through binding with Fgf2,
Fgf10, and bone morphogenetic protein 4 [171]. In addition,
the interaction of HS with a proliferation inducing ligand,
hepatocyte growth factor, and CXCL12« is required for B-cell
maturation [172].

4.15. Hs2st. Gene trap mice lacking Hs2st die during the
neonatal period and exhibit renal aplasia and defects in
the eyes, skeleton, and retinal axon guidance [173-179].
In addition, the cell-specific disruption of Hs2st in the
endothelial and myeloid cells enhanced the infiltration of
neutrophils due to an increase in their binding to IL-8 and
macrophage inflammatory protein-2 [162]. Mice with the
specific disruption of Hs2st in the liver accumulate plasma
triglycerides and the uptake of very-low-density lipoproteins
is reduced, whereas mice with the specific disruption of Hs6st
in the liver do not. These findings suggest that the clearance
of plasma lipoproteins is dependent on the 2-O-sulfation of
HS [153].

4.16. Hs3stl. HS3STI~ mice display normal development
and anticoagulant activity [184]; however, it was previously
demonstrated that the GIcN 3-O-sulfate structure was essen-
tial for the anticoagulant activity of heparin and HS [252].
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Other HS3ST family members such as HS3ST2, HS3ST3a,
HS3ST3b, HS3ST4, HS3ST5, and HS3ST6 may compensate
for the loss of HS3ST1 [184].

4.17. Hs6stl and Hs6st2. HS6STI-null mice die during the
late embryonic stage, are smaller than the wild type at
birth, and have defective retinal axon guidance due to the
disturbance of Slit-Robo signaling [177, 178, 181]. In contrast,
HS6ST2-deficient mice develop normally [183]. However,
serum levels of thyroid-stimulating hormone and the thyroid
hormone, thyroxin, are higher and lower, respectively, in the
deficient mice, which cause a reduction in energy metabolism
with an increase in body weight [183]. The storage of mast
cell proteases is altered in double knockout mice with
HS6STI/~/HS6ST27/~ [182], and their embryonic fibroblasts
are partially defective in FGF signaling [253].

4.18. Sulfl and Sulf2 (HS 6-O-endosulfatase). Sulfl”’~ mice
exhibit no apparent abnormalities [185]. On the other hand,
Sulf2”/~ mice have a smaller body size and mass [185, 192].
Mice deficient in both Sulfl and Sulf2 have multiple defects
including skeletal and renal malformations, which result in
neonatal lethality [186]. HS 6-O-sulfation and/or desulfation
by Sulfs are known to be involved in the cartilage homeostasis
mediated by bone morphogenetic protein and Fgf [187],
dentinogenesis through Wnt signaling [188], neurite out-
growth mediated by glial cell line-derived neurotrophic factor
[189], muscle regeneration [190], and brain development
[191]. These findings indicate that the fine-tuning of 6-O-
sulfation by Sulfs may control multiple functions of HS chains
during morphogenesis.

5. Human Disorders Affecting the Skeleton
and Skin due to the Disturbance of GAGs

5.1. PAPSS2. Spondyloepimetaphyseal dysplasia of Pakistani
type, which is characterized by kyphoscoliosis, generalized
brachydactyly, short and bowed lower limbs, and enlarged
knee joints, is caused by mutations in PAPSS2: p.Ser438X and
p.Arg329X [43, 44].

Patients with mutations in PAPSS2, resulting in the
substitution of corresponding amino acids (p.Thr48Arg,
p-Arg329X, and p.Ser475X), also have spondylodysplasia and
premature pubarche, which are accompanied by a short
stature, bone dysplasia, excess androgens, hyperandrogenic
anovulation, and the loss of dehydroepiandrosterone sulfate
[45]. Sulfotransferase 2A1 has been shown to transfer a sulfate
group from PAPS to dehydroepiandrosterone (DHEA) in
the adrenal glands and liver, resulting in the formation of
DHEA-sulfate [254]. The inactivation of PAPSS2 inhibits of
not only the formation of PAPS but also the conversion of
DHEA into DHEA-sulfate, which leads to the accumulation
of DHEA in patients [45]. Excess DHEA is finally converted
to testosterone through androsterone.

Autosomal recessive brachyolmia, which is a hetero-
geneous group of skeletal dysplasias and primarily affects
the spine, is also caused by PAPSS2 mutations [46, 47].
Brachyolmia is characterized by a short stature due to a short
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trunk, irregular endoplates, a narrow intervertebral disc,
calcification of cartilage in the ribs, a short femoral neck
and metacarpals, and normal intelligence [46-48]. However,
the excess amount of androgens cannot be detected in these
patients. Furthermore, PAPS synthase activity was absent
in the recombinant mutant enzymes, including p.Cys43Tyr,
p-Leu76Gln, and p.-Val540Asp [47].

5.2. XYLT1. Mutation in XYLT1I causes an autosomal reces-
sive short stature syndrome characterized by alterations in
the distribution of fat, intellectual disabilities, and skeletal
abnormalities including a short stature and femoral neck,
thickened ribs, plump long bones, and distinct facial features
[56]. The homozygous mutation in XYLT1I gives rise to the
substitution of the amino acid, p.Arg481Trp in the deduced
catalytic domain, which results in decorin without a DS side
chain in addition to mature decorin-PG with a DS chain from
the fibroblasts of the patient [56]. In addition, the mutant
XYLT1 is diffusely localized in the cytoplasm and partially in
the Golgi in the fibroblasts of the patient.

Desbuquois dysplasia type 2 is a multiple disloca-
tion group of skeletal disorders that is characterized by a
short stature, joint laxity, and advanced carpal ossification
[57]. Five distinct XYLTI mutations have been identified
to date, including a missense substitution (p.Arg598Cys),
nonsense mutation (p.Argl47X), truncated form mutation
(p.Pro93AlafsX69), and two splice site mutations [58]. Fur-
thermore, fibroblasts from the affected individuals synthe-
sized a smaller amount of CS and/or DS than those from
healthy controls [58].

5.3. B4GALT7 (GalT-I). Ehlers-Danlos syndrome is a het-
erogeneous group of heritable connective tissue disorders
characterized by joint and skin laxity as well as tissue fragility.
Six major types (classical, hypermobility, vascular, kyphosco-
liosis, arthrochalasia, and dermatosparaxis types) and several
minor types, including the progeroid type, are currently
known [255]. Mutations in B4GALT7 encoding GalT-I cause
Ehlers-Danlos syndrome-progeroid type 1, which is charac-
terized by an aged appearance, hypermobile joints, loose yet
elastic skin, hypotonic muscles, craniofacial dysmorphism, a
short stature, developmental delays, generalized osteopenia,
and defective wound healing [61-64]. Galactosyltransferase
activity is reduced in the mutant enzymes, p.Arg270Cys,
p-Alal86Asp, p.Leu206Pro, and p.Arg270Cys, which results
in the lack of DS side chains on decorin and biglycan core
proteins and also smaller CS and HS side chains on other PGs
[64-68].

A homozygous mutation in B4GALT7 (p.Arg270Cys)
causes a variant of Larsen syndrome in Reunion Island in the
southern Indian Ocean, which is called Larsen of Reunion
Island syndrome, and is characterized by distinctive facial
features, multiple dislocations, dwarfism, and hyperlaxity
[69].

5.4. B3GALT6 (GalT-II). Ehlers-Danlos syndrome-proger-
oid type 2 is caused by mutations in B3GALT6 encoding
GalT-II [70, 71]. GalT-II activity by the mutant enzyme
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(p.Ser309Thr) is significantly decreased, leading to the loss
of GAG chains on the core proteins of various PGs [70].
The autosomal-recessive disorder, spondyloepimetaphyseal
dysplasia with joint laxity type 1, which is characterized by
hip dislocation, elbow contracture, clubfeet, platyspondyly,
hypoplastic ilia, kyphoscoliosis, metaphyseal flaring, and
craniofacial dysmorphisms such as prominent eyes, blue
sclera, a long upper lip, and small mandible with cleft
palate, is also caused by mutations in B3GALT6 [70-72,
256]. Skeletal and connective abnormalities in both Ehlers-
Danlos syndrome-progeroid type 2 and spondyloepimeta-
physeal dysplasia with joint laxity type 1 overlap; however,
these individuals have no common mutations among fifteen
different mutations [70]. The GalT-II activities of the recom-
binant enzymes, p.Ser65Gly-, p.Pro67Leu-, p.Aspl56Asn-,
p.Arg232Cys-, and p.Cys300Ser-B3GALT6, were shown to be
significantly lower than those of wild-type-B3GALT6 [70].
The mutation that affected the initiation codon, c.lA>G
(p-Metl?), for BBGALT6 resulted in a lower molecular weight
of the recombinant protein than that of the wild-type protein
with the deletion of 41 amino acids at the N-terminus,
which indicated a shift in translation at the initiation codon
at the second ATG [70]. Although wild-type B3GALT6 is
expressed in the Golgi, the mutant enzyme (p.Metl?) is
localized in the nucleus and cytoplasm [70], indicating that
the mutant protein may not be functional due to its cellular
mislocalization.

5.5. B3GAT3 (GIcAT-I). A mutation (p.Arg277Gln) in the
B3GAT3 gene encoding GIcAT-I is known to cause Larsen-
like syndrome [73, 74], which is characterized by dislo-
cations in the hip, knee, and elbow joints, equinovarus
foot deformities, and craniofacial dysmorphisms such as a
flattened midface, depressed nasal bridge, hypertelorism, and
a prominent forehead [257, 258]. These patients mainly have
elbow dislocations with congenital heart defects including a
bicuspid aortic valve in addition to characteristic symptoms
of Larsen-like syndrome [73]. The p.Arg277Gln mutation
results in a marked reduction in GIcAT-I activity in the
fibroblasts of these patients and the recombinant enzyme pro-
tein [73]. Mature decorin-PG, which is secreted by fibroblasts
and has a single DS side chain, was observed in the fibroblasts
of healthy controls [73]. On the other hand, fibroblasts from
patients generate both a PG form of decorin and DS-free
decorin [73]. Moreover, the number of CS and HS in the
patients’ cells is also reduced.

5.6. CSGALNACTI. Neuropathies including Guillan-Barré
syndrome, chronic inflammatory demyelinating polyneu-
ropathy, hereditary motor sensory neuropathy, and unknown
etiologies are partially caused by mutations in CSGALNACT1
encoding GalNACT-I and GalNACT-II [83]. The GalNAcT-
II activities of the recombinant enzymes, CSGalNAcTI-
His234Arg and -Met509Arg, were shown to be markedly
reduced [83], which indicated that affect in CS chains
on PGs in the nervous system may lead to peripheral
neuropathies.



14

5.7. CHSYI. Patients with mutations in CHSYI have Tem-
tamy preaxial brachydactyly syndrome, which is an autoso-
mal recessive congenital syndrome characterized by facial
dysmorphism, dental anomalies, brachydactyly, hyperpha-
langism, growth retardation, deafness, and delayed motor
and mental developments [77, 78]. Their mutations result
in the substitution of amino acids and truncation of the
CHSY1 protein including p.Gly5AlafsX30, p.Glyl9-Leu28del,
p.Glu33SerfsXl1, p.GIn69X, and p.Pro539Arg and a splice-
site mutation [77-79]. A heterozygous mutation in CHSY]
(p.Phy362Ser) was recently identified in a patient with neu-
ropathy [80].

5.8. CHST3 (C6ST1). Spondyloepiphyseal dysplasia Omani
type, which is characterized by severe chondrodysplasia
with major involvement of the spine, is caused by a loss-
of-function mutation in C6STI [108-113]. Patients with the
substitution of amino acid in C6ST1, p.Arg304Gln, have
severe kyphoscoliosis, a short stature, mild brachydactyly,
rhizomelia, fusion of the carpal bones, and osteoarthri-
tis in the elbow, wrist, and knee joints [108, 109]. Fur-
thermore, additional clinical features, including deatness,
metacarpal shortening, and aortic regurgitations due to
ventricular septal, mitral, and/or tricuspid defects, have been
reported in Turkish siblings who had different mutations
in C6STI (p.Tyrl41Met and p.Leu286Pro) [110, 111]. Mutant
enzymes of the recombinant C6ST1 and enzymes from the
patients’ fibroblasts had markedly reduced C6ST activity,
which resulted in the loss of chondroitin 6-O-sulfate in the
fibroblasts [109-111]. Moreover, chondrodysplasia with mul-
tiple dislocations, Desbuquois syndrome, autosomal reces-
sive Larsen syndrome, and humero-spinal dysostosis have
been attributed to distinct CHST3 mutations (p.Leu259Pro,
p-Arg222Trp, p.Leu307Pro, p.Tyr201X, p.F206X, p.Glu372Lys,
p.Gly363AlafsX30, and a mutation at the splice site) [112, 113].
Different pathological diagnoses may be caused by the rela-
tively narrow clinical features and age-related descriptions of
the same conditions [113].

5.9. CHSTI4 (D4ST1). Ehlers-Danlos syndrome musculo-
contractural type 1, which is characterized by progressive
joint and skin laxity, multiple congenital contractures, pro-
gressive multi-system complications, and characteristic cran-
iofacial features, is caused by mutations in CHSTI4 encod-
ing D4ST1 (p.Val49X, p.Lys69X, p.Pro281Leu, p.Cys289Ser,
p-Tyr293Cys, and p.Glu334GlyfsX107) [97-102]. A recent
study described a case of Ehlers-Danlos syndrome muscu-
locontractural type 1 (p.-Val49X) in which muscle hypoplasia
and weakness was observed, which resulted in myopathy
based on laboratory findings such as muscle biopsy, ultra-
sound, and electromyography [103].

The recombinant mutants of D4ST1 (p.Pro281Leu,
p.Cys289Ser, and p.Tyr293Cys) and fibroblasts from affected
individuals have markedly reduced sulfotransferase activity
[99]. Furthermore, a single DS side chain on decorin-PG
from the fibroblasts of patients was found to be replaced by
a CS chain, but not dermatan [99]. Immature decorin-PG
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results in the dispersion of collagen bundles in the dermal
tissues of patients.

The autosomal recessive disorder, adducted thumb-
clubfoot syndrome, which is characterized by an adducted
thumb, clubfoot, craniofacial dysmorphism, arachnodactyly
cryptorchidism, an atrial septal defect, kidney defects, cranial
ventricular enlargement, and psychomotor retardation, is
also caused by mutations in CHST14 (p.-Val49X, p.Argl35Gly,
p-Leul37Gln, p.Arg213Pro, and p.Tyr293Cys) [104-106]. The
fibroblasts of these patients lack DS chains and have an excess
amount of CS chains.

5.10. DSE. A mutation in DSE (p.Ser268Leu) has been
shown to cause Ehlers-Danlos syndrome musculocontrac-
tural type 2 [87]. Clinical features including hypermobility
of the finger, elbow, and knee joints, characteristic facial
features, contracture of the thumbs and feet, and myopathy
have been observed in these patients. Epimerase activity
is markedly reduced not only in the recombinant mutant
DSE (p.Ser268Leu) but also in the cell lysate from these
patients [87]. In addition, a decrease in the biosynthesis of DS
accompanied by an increase in that of CS has been reported
in the fibroblasts of these patients. The deficiencies associated
with DSE in addition to D4STI affect the biosynthesis of
DS, which implies that both enzymes are essential for the
development of skin and bone as well as the maintenance of
their extracellular matrices.

6. Conclusions

The biological roles of CS, DS, and HS chains in vivo have
been revealed by examining knockout mice in addition to
nematodes, fruit flies, and zebrafish [4, 8, 12-14]. However,
the mice deficient in glycosyltransferases or sulfotransferases
involved in the biosynthesis of GAGs showed embryonic
lethality or death shortly after the birth. These observa-
tions indicate that GAGs or PGs are essential for early
development. Furthermore, studies using the conditional
knockout mice have revealed the specific functions of GAGs
in individual organs. Recent advances in the study of human
genetic diseases in the bone and connective tissue have also
clarified the biological significance of the GAG side chains
of PGs [7, 14, 20]. The clinical manifestations in human
disorders caused by deficiency in the biosynthetic enzymes
of GAGs do not always agree with the phenotypes of the
deficiency in the corresponding enzymes in knockout mice.
This contradiction may be due to the residual enzymatic
activity or GAGs in human patients. Although null mutant
mice show severe phenotypes including embryonic lethality,
human patients appear to show various symptoms depending
on the degree of remaining activity of the enzymes. Further
comprehensive approaches to the study of molecular patho-
geneses involving CS, DS, and HS chains are required to
facilitate the development of therapeutics and design of new
drugs for these diseases.
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