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Abstract

Asthma is a common, disabling inflammatory respiratory disease that has increased in frequency

and severity in developed nations. We review studies of murine allergic airway disease (MAAD2)

and human asthma that evaluate the importance of Th2 cytokines, Th2 response-promoting

cytokines, IL-17 and pro- and anti-inflammatory cytokines in MAAD and human asthma. We

discuss murine studies that directly stimulate airways with specific cytokines or delete, inactivate,

neutralize or block specific cytokines or their receptors, as well as controversial issues, including

the roles of IL-5, IL-17 and IL-13Rα2 in MAAD and IL-4Rα expression by specific cell types.

Studies of human asthmatic cytokine gene and protein expression, linkage of cytokine

polymorphisms to asthma, cytokine responses to allergen stimulation and clinical responses to

cytokine antagonists are discussed as well. Results of these analyses establish the importance of

specific cytokines in MAAD and human asthma and have therapeutic implications.

Introduction

Atopic asthma is an inflammatory respiratory disorder that, along with other allergic

conditions, has more than doubled in prevalence and severity in developed countries during

the past 60 years. Atopic asthma is common; approximately 34.1 million Americans develop

asthma during their lifetime and approximately 70% of individuals with this diagnosis have

allergies (1, 2). A great deal has been learned about the pathogenesis of asthma during the

past 30 years and much of this new knowledge relates to the roles of cytokines in asthma

pathogenesis. Inhalation of allergens stimulates both bone marrow- and non-bone marrow-

derived cells of the innate immune system to secrete cytokines that promote antigen
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presentation to CD4+ T cells and influence both antigen-presenting cells and the T cells

themselves in a way the promotes a Th2 response (3). Th2 cytokines — IL-4, IL-5, IL-9 and

IL-13 (4) — then induce the changes in the airways and lung parenchyma that are associated

with asthma: airway eosinophilia, pulmonary lymphocytosis and mastocytosis, alternative

macrophage activation, epithelial cell proliferation with goblet cell hyperplasia (GCH) and

increased mucus secretion, smooth muscle hyperplasia, hypertrophy and hypercontractility,

subepithelial fibrosis, IgE secretion, increased production of chemokines that attract T cells,

eosinophils, neutrophils and mast cells or their precursors to the lungs, and airway

hyperresponsiveness (AHR, defined as increased sensitivity to agents, such as cholinergic

agents and other stimuli that cause smooth contraction that increases airway resistance by

narrowing airways) (4, 5). Together, these changes in airway structure and function result in

the clinical picture of asthma: episodic difficulty in breathing with wheezing and/or

coughing that is caused by reversible airway obstruction and is ameliorated by inhalation of

β-adrenergic agonists.

Cytokine roles in murine allergic airway disease

The importance of Th2 cytokines

Experiments performed largely in mice have provided a consensus view of cytokine roles in

asthma pathophysiology that stresses the importance of the Th2 cytokines. IL-4 and IL-13

stimulate multiple features of asthma (Table I) by binding and signaling through specific

receptors; IL-4 binds to both the type I and type II IL-4Rs while IL-13 binds selectively to

the type II IL-4R. Both IL-4Rs signal through IL-4Rα, which activates the transcription

factor, Stat6 (6). Each IL-4R additional contains a second polypeptide that is required to

activate IL-4Rα chain: the cytokine receptor common γ chain (γc) for the type I IL-4R and

IL-13Rα1 for the type II IL-4R. Because both IL-4 and IL-13 bind to the type II IL-4R,

there are probably no unique IL-4R-mediated effects of IL-13, while selective binding of

IL-4 by the type I IL-4R and the expression of γc but not IL-13Rα1 by some bone marrow-

derived cells, including T cells, most B cells (in the mouse) and mast cells, accounts for

stimulation of these cell types by IL-4 but not IL-13 (6). Studies with mice deficient in

IL-13Rα1 demonstrate that signaling through the type II IL-4R is required to induce GCH

and AHR, but may be less important than signaling through the type I IL-4R for induction of

airway eosinophilia (7, 8). IL-13 is more important than IL-4 for induction of GCH, AHR

and chronic remodeling changes, including smooth muscle hyperplasia and subepithelial

fibrosis (9, 10), even though either cytokine can stimulate all of these features (11-13). The

considerably higher lung levels of IL-13 than IL-4 in murine allergic airway disease

(MAAD) (8) probably account to a large extent for the predominant role of IL-13, although

type I IL-4R-mediated IL-4 induction of IL-10 and IFN-γ (14), which can inhibit AHR and

GCH (15, 16), may also contribute. Differences in the binding of IL-4 and IL-13 to the type

II IL-4R most likely also contribute to the dominant role of IL-13 in AHR and GCH

induction: IL-4 initially interacts with the type II IL-4R by binding with relatively high

affinity to IL-4Rα; the IL-4/IL-4Rα complex then recruits IL-13Rα1 to form the signaling

complex. In contrast, IL-13 initially binds to IL-13Rα1 with relatively low affinity; the

resulting complex then binds IL-4Rα to form the signaling complex. The higher affinity of

the initial binding step for IL-4 than IL-13 appears to allow low concentrations of IL-4 to
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signal more effectively than low concentrations of IL-13, while the higher cell membrane

concentration of IL-13Rα1 than IL-4Rα appears to allow high concentrations of IL-13 to

signal more strongly than IL-4 through the type II IL-4R receptor (17, 18).

In contrast to the greater role of IL-13 than IL-4 in inducing and maintaining AHR, GCH

and airway remodeling, both IL-4 and IL-13 appear to contribute importantly to alternative

macrophage and dendritic cell activation (macrophages and dendritic cells express both γc

and IL-13Rα1 and thus, both IL-4Rs) (19-21) and IL-4 has a greater role than IL-13 in the

induction of airway eosinophilia (8, 10, 12). The reason for IL-4’s stronger stimulation of

airway eosinophilia is presently unclear, because both IL-4 and IL-13 signal through the

type II IL-4R to induce production of chemokines, including eotaxin-1 (CCL11) and

eotaxin-2 (CCL24), which attract eosinophils to the lungs (8). IL-4 effects on other cell

types, such as vascular endothelial cells, or on eosinophils themselves that may respond

primarily through the type I IL-4R, may account for the difference. Expression of γc, but not

IL-13Rα1 by most murine B cells also accounts for the unique requirement for IL-4, in

mice, for induction of IgE responses to T cell-dependent Ags (8, 22, 23). The most critical

role of IL-4 in allergic airway disease, however, is in induction of the Th2 cytokine

response. This role is not shared by IL-13, because T cells express γc but not IL-13Rα1 (24,

25). Although IL-4 is not an absolute requirement for naïve T cell differentiation into Th2

cells (26), IL-4-induced Stat6 stimulation of GATA3, the transcription factor required for

Th2 differentiation (27), amplifies Th2 differentiation sufficiently to be required in many

instances for the development of a predominant Th2 response (28); this requirement has

been observed in most, but not all mouse models of asthma (29-35). Consistent with this, the

presence of supernormal concentrations of IL-4 allows the generation of Th2 responses to

Ags administered via the airways in an otherwise tolerogenic manner, suggesting that airway

IL-4 responses to one Ag probably increase the risk of developing allergic responses to other

inhaled Ags (36).

The importance of IL-4 and IL-13 in the induction and maintenance of murine allergic

airway disease have been demonstrated in several ways: 1) induction of key features of

allergic airway disease by intranasal (i.n.) or intratracheal (i.t.) administration of either

cytokine (8, 9, 12, 37); 2) transgenic overexpression of either cytokine in airway epithelial

cells (11, 13); 3) suppression of allergen-induced allergic airway disease by administration

of neutralizing mAbs to IL-4 or IL-13 (33, 38), soluble IL-4Rα (31) or soluble IL-13Rα2 (9,

10), a blocking anti-IL-4Rα mAb (39), or a mutant IL-4 that acts as an IL-4R antagonist (40,

41); 4) genetic deletion of IL-4 (42, 43), IL-13 (44), IL-4Rα (8) or IL-13Rα1 (7, 8); or 5)

suppression of one of these molecules with anti-sense DNA (45). Results differ in the above-

cited papers, depending on the precise allergen, immunization schedule, mouse strain and

inhibitory procedure employed. However, with a few exceptions, inhibition of IL-4

suppresses the development of a pulmonary Th2 response and allergic airway disease as

well as already established airway eosinophilia and IgE production, but does not affect

established AHR or GCH (33); inhibition of IL-13 can suppress even established AHR and

GCH but has less effect on eosinophilia or IgE production (10); absence of IL-13Rα1

prevents AHR and GCH but has little effect on the development of an IgE response and only

modestly prevents development of eosinophilia (8) and inhibition of IL-4Rα suppresses all

features of even established allergic airway disease with the exception of mastocytosis (45).
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However, currently available anti-IL-4Rα mAbs have been less effective than direct IL-13

antagonists at suppressing GCH and AHR, most likely because these anti-IL-4Rα mAbs do

not remove cell membrane IL-4Rα and are less effective at blocking IL-4Rα signaling by

IL-13 than by IL-4 (F. Finkelman, unpublished data).

Although IL-4 and IL-13 are generally the cytokines accorded primacy in the induction and

maintenance of allergic airway disease, the consensus view also confers importance on IL-5

and, to a lesser extent, IL-9. There is general agreement that IL-5 is critical for stimulating

eosinophil development, survival, activation and response to other cytokines, including the

eotaxins (46, 47). The importance of airway eosinophils in the induction and maintenance of

the airway Th2 response, AHR and GCH is debated and may be mouse strain- and allergen-

dependent (see section on controversies, below); however, IL-5-dependent eosinophils are

generally agreed to make an important contribution to asthmatic airway remodeling,

especially sub-epithelial fibrosis (48, 49).

Airway overexpression of IL-9 can induce the full allergic airway disease phenotype,

including eosinophilia, GCH and AHR (50); however, these effects result primarily from

IL-9 induction of increased IL-5 and IL-13 secretion by non-T cells (51) and IL-9 has not

been found to be important in most studies of MAAD (52), although there is one exception

(53). IL-9 does, however, directly promote airway mastocytosis (54) and migration of mast

cell precursors to the lungs; an effect not shared by IL-3, IL-4, IL-5, or IL-13 (55).

Cytokines that stimulate allergic airway disease by promoting a Th2 response

Airway over-expression of other cytokines, including IL-25 (also called IL-17E), IL-33 and

thymic stromal lymphopoietin (TSLP) induces and promotes allergic airway disease

indirectly by stimulating production of IL-4, IL-5 and/or IL-13 (29, 56, 57). Unlike IL-9,

which is produced by T cells, mast cells and basophils, allergen stimulation of epithelial

cells appears to be important for the initial production of IL-25 (58), IL-33 (3) and TSLP

(59). Each of the 4 cytokines that promote allergic airway disease indirectly by promoting

IL-4, IL-5 and/or IL-13 secretion has been shown to be important in at least some mouse

models of asthma in studies in which the cytokine or its receptor was blocked by inhibitory

proteins or deleted genetically (53, 60-62). In addition to direct effects on T cells that can

promote Th2 cytokine production, IL-9 and IL-33 stimulate non-T cells to secrete Th2-

associated cytokines (51, 57, 63) and TSLP stimulates dendritic cells to express the Th2

differentiation-promoting co-receptor, OX40 ligand (64). IL-25 has also been reported to

promote AHR independently of its stimulatory effects of Th2 cytokine secretion;

neutralization of IL-25 when already sensitized mice were exposed to aerosolized Ag

suppressed AHR without influencing airway inflammation or Th2 cytokine production and

inhaled IL-25 induced AHR in mice genetically deficient in IL-4, IL-5, IL-9 and IL-13 (60).

IL-25, IL-33 and TSLP are not the only cytokines implicated in Th2 response induction.

AHR, Th2 cytokine production and IgE levels are significantly reduced in allergen-

immunized IL-1α/IL-1β-deficient mice and increased in IL-1R antagonist-deficient mice

(65). Similarly, GM-CSF promotes development of a Th2 response, even in the absence of

IL-4 (66). The GM-CSF contribution to AAD is mediated, at least in part, by stimulating

activation, airway migration and proliferation of myeloid dendritic cells that can present Ag
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in a way that promotes Th2 differentiation (67). However, although GM-CSF deficiency or

neutralization can inhibit diesel exhaust particle-induced AHR (68) and allergen-induced

development of GCH, airway eosinophilia and IL-5 production (69), it has not always

inhibited allergen-induced IL-4 or IL-13 production or AHR (69).

The effects of the IL-1 family cytokine, IL-18, on Th2 cytokine production and MAAD are

more complex. Genetic deficiency of IL-18 has been reported to exacerbate (70) or inhibit

(71) different MAAD models and the effects of airway IL-18 inoculation on MAAD vary

and depend on time and route of IL-18 relative to allergen administration. This variability

most likely reflects the different effects of IL-18 when it interacts with different cytokines;

specifically, IL-18 enhances IL-12 induction of a Th1 response, IL-2 induction of a Th2

response and IL-3 induction of Th2 cytokine production by mast cells and basophils (72).

Cytokine suppression of allergic airway disease

Not all cytokines promote allergic airway disease; IL-12, type I and type II IFNs and the

“anti-inflammatory” cytokines, IL-10 and TGF-β, suppress this disorder (15, 16, 73-80),

although there are caveats to this generalization that probably reflect the pleomorphic effects

of each of these cytokines. Endogenously produced IL-12p40, a component of IL-12 and

IL-23, is required to suppress AHR and peribronchial fibrosis, but not airway eosinophilia,

in a chronic allergen administration model of allergic disease (81) and treatment with IL-12

can suppress even established allergic airway disease (76). The suppressive effects of IL-12

depend partially on IL-12 induction of IFN-γ (76) and treatment with large doses of IFN-γ

or type I IFN can also suppress at least some features of allergic airway inflammation,

especially eosinophilia, in worm infection models (80). Consistent with this, IFN-γ

deficiency has been reported to increase the duration of eosinophilia in allergen-immunized

mice (82). Mice deficient in T-bet, the transcription factor required for Th1 responses,

spontaneously develop allergic airway disease (83) that is IL-13-dependent (84). In contrast

to these observations, AHR was induced to the same extent when naïve mice were

inoculated with both Th1 and Th2 cells plus the appropriate Ag as when they were

inoculated with only Th2 cells plus Ag (85). Even more surprisingly, adoptive transfer of

eosinophils into the lungs of SCID mice has been reported to induce IFN-γ-dependent AHR

(86) and transgenic IFN-γ expression in mouse lung has been reported to induce increased

IL-5 and IL-13 production and airway eosinophilia (87). Although one may speculate that

low levels of IFN-γ may promote allergic airway disease by increasing Ag presentation and

inflammatory cell recruitment while higher levels of IFN-γ suppress Th2 responses and Th2

cytokine effects, the specific conditions that determine the net effect of IFN-γ on allergic

responses in the lung and other organs remain to be determined.

The importance of IL-10 as an allergy-limiting cytokine is supported by observations that

IL-10 treatment suppresses AHR, GCH and airway eosinophilia, that anti-IL-10 or anti-

IL-10R mAb treatment has the opposite effect in most studies (16, 73, 88, 89), and that

suppression of AHR by regulatory T cells is IL-10-dependent (90). Surprisingly, however,

AHR has been difficult to induce in IL-10-deficient mice (91). This apparent discrepancy

has recently been shown to reflect IL-10 suppression of IL-13Rα2, a soluble and cell

membrane protein that can act as an IL-13 antagonist by binding IL-13 without inducing
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pro-allergic signaling (92). Consequently, mice deficient in both IL-10 and IL-13Rα2

develop more severe allergic airway disease than mice deficient in either (92). MAAD is

also suppressed by another cytokine associated with regulatory T cells, TGF-β (73, 79).

Chronic TGF-β treatment, however, may have the risk of enhancing development of airway

smooth muscle hyperplasia and pulmonary fibrosis (93, 94).

Controversies in cytokine involvement in MAAD

The role of IL-5 in murine AAD

The importance of IL-5 and the eosinophil, which is predominantly IL-5-dependent, for

induction and maintenance of the main features of MAAD, other than airway remodeling,

very likely depends on the mouse strain studied, the allergen and precise immunization

protocol used and possibly the local bacterial flora and animal husbandry practices. Without

considering these variables, it is impossible to draw straightforward conclusions from the

copious literature. One group that used a GATA1 mutation to prevent production of mature

eosinophils found that these cells contribute importantly to the generation of a Th2 response

in C57BL/6 mice by producing or promoting production of chemokines that recruit T cells

that subsequently produce a Th2 response; however, eosinophils were not required for this

purpose in similarly immunized BALB/c mice (95, 96). Consistent with this strain

dependency, several reports have described an IL-5 requirement for GCH and AHR in

C57BL/6, but not BALB/c mice (30, 32, 33, 44, 97, 98). Also consistent with the concept

that IL-5 promotes allergic responses indirectly by promoting a Th2 response, the induction

of GCH by transgenic pulmonary IL-5 overproduction has been reported to be CD4+ T cell

and IL-4-dependent (99). However, intravenous IL-5 reconstituted AHR and airway

eosinophilia in allergen immunized mixed background C57BL/6 – 129 mice that were Stat6-

deficient, suggesting that IL-4 and IL-13 were not required (100) (Stat6 is required for IL-4/

IL-13-induced AHR), and two groups have reported anti-IL-5 mAb suppression of AHR in

BALB/c mice (101, 102). Endogenously produced IL-5 has also been reported to allow the

development of AHR in allergen-immunized IL-4-deficient mice (103) and even to allow

the development of IL-13-dependent AHR in IL-4Rα-deficient mice (through an unknown

mechanism) (104). The safest conclusions to draw from these observations are that: 1)

eosinophils and IL-5 contribute more to AHR and GCH in C57BL/6 mice than in BALB/c

mice; and 2) very robust allergen immunization procedures and/or environmental features

may induce redundant mechanisms that bypass Stat6 and IL-4Rα requirements that are seen

under more typical circumstances.

The role of IL-17 in murine AAD

Because IL-17A and IL-17F potently induce CXC chemokines and neutrophil responses,

among their multiple effects (105, 106), it is reasonable to expect IL-17A and IL-17F to be

involved in the airway neutrophilia that characterizes many mouse models of asthma.

Indeed, IL-17A and IL-17F have been reported to stimulate airway neutrophilia and have

additional important effects in MAAD; however, these additional effects have varied

considerably in different studies. IL-17RA-sufficient, but not IL-17RA-deficient mice

(which fail to respond to IL-17A, IL-17F and IL-17E/IL-25 (107, 108)) develop MAAD

when sensitized with ovalbumin and subsequently challenged i.n. with the same Ag (109).
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Failure of the IL-17RA-deficient mice to develop MAAD may have reflected a lack of

responsiveness to IL-17E rather than IL-17A or blocking of both IL-17A and IL-17F, which

have similar effects. This possibility is supported by a study in which ovalbumin

immunization induced the development of airway inflammation and AHR to the same extent

in IL-17A-deficient and sufficient mice that had a mixed genetic background (110). IL-17A

neutralization that was restricted to the time of i.n. ovalbumin challenge exacerbated airway

eosinophilia and AHR in C57BL/6 mice in one study, while IL-17A administration had the

opposite effects (109). However, in a different study, i.t. administration of IL-17A

immediately after challenge of ovalbumin-sensitized C57BL/6 mice with aerosolized

ovalbumin exacerbated MAAD, including AHR (111). Induction of AHR by inoculation

with IL-17A was not replicated by inoculation of IL-17F in this study and required both

neutrophils and the presence of Th2 cytokines. In contrast, pulmonary transduction of

BALB/c mice with the gene for IL-17F was reported to increase AHR and to exacerbate

AHR induced by ovalbumin sensitization and challenge (112). In yet another study

performed with a BALB/c - ovalbumin variant of MAAD, neutralization of IL-17 at the time

of ovalbumin challenge inhibited airway neutrophilia and exacerbated airway eosinophilia

but had little effect on AHR (113). In contrast, neutralization of IL-17 at the time of antigen

challenge in another BALB/c - ovalbumin MAAD study suppressed airway neutrophilia,

eosinophilia and AHR (114). More studies are required to determine the reasons for the

differences reported in these papers and to evaluate the implications of these results for

human asthma.

Our own observations, however, suggest that some of the variability in the effects of IL-17

in MAAD is mouse strain-related. We find that considerable pulmonary IL-17A is produced

when MAAD is induced in A/J mice, which are particularly susceptible to allergen

inoculation, while little or no pulmonary IL-17A if produced when MAAD is induced in

C3H mice, which are resistant to this disease. Neutralization experiments demonstrate that

IL-17A synergistically enhances IL-13-dependent AHR in A/J mice, while, not surprisingly,

neutralization of IL-17A has little or no effect on MAAD in C3H mice (M. Wills-Karp,

submitted). This variability may be relevant to humans, inasmuch as particularly high

IL-17A concentrations are found in the lungs of people who have severe asthma with large

numbers of BAL neutrophils (115, 116).

The role of IL-13Rα2 in MAAD

In addition to binding to IL-13Rα1 with low affinity and subsequently forming a high

affinity association with an IL-13Rα1/IL-4Rα signaling complex, IL-13 binds with high

affinity to IL-13Rα2 (117). In the mouse, IL-13Rα2 exists in two forms, a soluble form

present normally in serum in low ng/ml concentrations and a cell membrane form that is

expressed by smooth muscle and possibly other cell types (118, 119 and G. K. Khurana

Hershey, unpublished data). These two forms are generated predominantly by alternative

mRNA splicing, although proteolytic cleavage of the membrane form can generate small

amounts of the soluble form (111). IL-13Rα2 has been found in several experimental

systems to be a potent IL-13 antagonist; mice that lack a functional IL-13Rα2 gene

generally develop more severe IL-13-mediated pathology (120-122). One group, however,

has reported a signaling pathway by which an IL-13 interaction with membrane IL-13Rα2
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can promote TGF-β production and pulmonary fibrosis (94) and another has reported that

complexes of IL-13 and soluble IL-13Rα2 have a long in vivo half-life and promote

expression of two genes; one associated with exacerbation of oxidative inflammation and

the other associated with increased activation of inflammatory and antigen presenting cells

(118). Neither mechanism, however, activates Stat6, which is required for IL-13-induction

of GCH and AHR (123), and IL-13Rα2-deficient mice are reported to develop more severe

MAAD than wild-type mice following allergen inoculation (124). Surprisingly, we find that

this is not always the case; some allergen administration protocols at least initially induce

disease that is more severe in wild-type than in IL-13Rα2-deficient mice (G. K. Khurana

Hershey and M. Wills-Karp, unpublished data). It is not known if this reflects one of the two

mechanisms noted above or, possibly, generation of an IL-13Rα2-bound IL-13 pool at the

cell membrane that can then be transferred to the type II IL-4R. Additional studies are

required to evaluate these possibilities and determine how they influence asthma in humans,

who express only the membrane isoform of IL-13Rα2 (125, 126). Indeed, the difference in

IL-13Rα2 expression between mouse and man suggests that this molecule may function

differently in these two species and raises the possibility that these species may also have

differences in IL-13 function.

Cells directly involved in IL-4Rα-mediated AHR

Although multiple cytokines act on multiple cell types to induce the full features of MAAD,

hypotheses about how cytokines induce AHR have focused predominantly on IL-13,

epithelial cells and smooth muscle cells. The focus on IL-13 is explainable by its ability to

directly induce AHR and on its requirement in most studies of allergen-induced AHR (9,

10). Smooth muscle and epithelial cells have been implicated by in vitro studies

demonstrating that IL-13 can act directly on smooth muscle to increase its contractility

(127-136) and in vitro and in vivo demonstrations that IL-13 directly induces epithelial cell

hyperplasia and GCH (124, 137, 138), which narrow airways, so that a given contraction by

airway smooth muscle will induce a greater than normal increase in airway resistance (139).

The importance of the IL-13 – epithelial cell axis was illustrated by demonstration that AHR

develops in mice that overproduce IL-13 in their lungs and express Stat6 only in airway

epithelium (124); however, AHR was also induced by IL-13 in mice that selectively lack

IL-4Rα in airway epithelial cells (137). This indication that at least one additional cell type

must contribute to IL-13-induced AHR recently led to studies with mice that express IL-4Rα

only on smooth muscle or on all cell types other than smooth muscle (F. Finkelman,

unpublished data). Studies with these mice demonstrate that direct IL-4 and IL-13 effects on

smooth muscle, like airway epithelium, are sufficient but not necessary to induce AHR and

support the use of the mouse as an appropriate model for studying smooth muscle

contributions to asthma pathology. Additional studies are required to determine if IL-13-

induced AHR can be totally accounted for by its effects on epithelial and smooth muscle

cells.

Applicability of murine studies to human asthma

MAAD is an imperfect model of human asthma and allergy-related effector and regulatory

immune mechanisms in mouse and man are usually similar in general but can differ in

important details (140). Consequently, while cytokine studies with MAAD can be used to
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make predictions about cytokine roles in human asthma and to investigate mechanisms by

which cytokines may promote or inhibit asthma pathogenesis, human studies must be

performed to confirm or refute hypotheses generated in the mouse. When comparing the

results of mouse and human studies, however, it is important to consider differences in the

questions being addressed; for example, most murine cytokine neutralization studies

investigate whether a specific cytokine is important in MAAD induction, while human

cytokine neutralization studies always evaluate individuals who already have asthma and,

thus, study importance of disease maintenance rather than induction. It is likely that some

cytokines are more crucial for asthma induction than for maintaining established disease.

Cytokine roles in human asthma

Specific cytokines have been associated with human asthma through 4 types of studies: 1)

comparison of levels of cytokine gene expression or protein in blood, exhaled breath

condensates, or BAL or sputum cells between asthmatics and non-asthmatics; 2) comparison

of the allele frequency of polymorphic cytokine genes between asthmatics and non-

asthmatics or severe vs. less severe asthmatics; 3) determination of cytokine production

following installation of allergens into bronchi; and 4) determination of the clinical effects

of cytokine neutralization or cytokine receptor blocking on established asthma.

Comparison of cytokine expression by asthmatic and non-asthmatic

individuals

Although variable results have been reported in studies that correlate cytokine production

and cytokine gene expression in blood or BAL or sputum cells with asthma, most human

studies associate asthma with increased gene expression and secretion of IL-4 (141-149) and

IL-5 (141, 143-145, 150) and some provide similar data for IL-3 (151, 152), IL-9 (153),

IL-13 (146, 152), GM-CSF (151, 152), or Stat6 (154). In contrast, as was true for mice,

some human studies suggest a positive, and some a negative association between asthma and

airway production of IFN-γ (147-149, 152, 155, 156). In addition, two studies suggest that

IL-18 levels are lower in airway secretions of asthmatic individuals than in non-asthmatics

(157, 158).

Genetic polymorphisms linked to asthma

Approximately 100 studies have been published that link increased frequency or severity of

asthma to cytokine gene or cytokine signaling gene polymorphisms. More than 10 studies

have linked asthma frequency or severity to polymorphisms in genes that encode IL-4

(159-168), IL-13 (162, 169, 170), TNF (159, 171-177) and IL-4Rα (18, 162, 165, 168,

178-181). Several studies have also linked asthma to genes that encode the IL-1 receptor

antagonist (IL-1RA) (182-184), IL-10 (185-189), IL-18 (190-194), IFN-γ (195-197), TGF-

β1 (178, 185, 186, 198-202) and Stat6 (162, 203), while polymorphisms in genes that

encode IL-1β (182), IL-2 (186), IL-6 (183), IL-9 (204), IL-12/27p40 (205, 206), IL-15

(207), IL-17F (208), IL-21 (209), IL-27p28 (210), LT-α (211), TSLP (212), TGF-β2 (213)

and Stat4 (196) have been linked to asthma frequency or severity by fewer studies (214).

Some of these studies link asthma risk to a single nucleotide polymorphism (SNP) in a

cytokine gene exon (18), suggesting that polymorphic variants influence cytokine function
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or longevity, while other studies link asthma risk to a SNP in a cytokine promoter (164),

suggesting that polymorphic variants influence cytokine production. Several polymorphism

studies have identified combinations of allelic variants of different genes that together

appear to additively or synergistically influence the risk of asthma; these include

combinations of allelic variants of the genes that encode TNF and IL-13 (172), IL-10 and

TGF-β (185), IL-4Rα and IL-9R (215), Stat4, Stat6 and IFN-γ (196), IL-13 and IL-4Rα

(169, 201) and IL-4, IL-13, IL-4Rα and Stat6 (162). Studies that fail to demonstrate linkage

to asthma have also been published for cytokine or cytokine gene polymorphisms, including

IL-1β (189), IL-4 (179), IL-12/IL-23p40 (216), IL-16 (160, 217), IL-17F (218), TGF-β1

(219, 220), IL-18 (221), TNF (222), IL-4Rα (222), Stat4 (223) and Stat6 (223).

Positive linkage associations do not necessarily indicate that a specific cytokine or cytokine

signaling molecule is involved in asthma pathogenesis; the gene studied may instead be

associated by linkage disequilibrium with a polymorphic variant of a different gene that is

more directly involved. Negative studies also are not conclusive; they may have investigated

the “wrong” polymorphic variant of a gene that really is involved in asthma pathogenesis, a

specific racial or ethnic group in which polymorphic variants of the gene studied are not risk

factors for asthma, or too few patients to identify a genuine association. Additionally, some

SNP studies that link specific cytokines to asthma report linkage only for individuals with

exposure to specific environmental factors, such as dust mite allergen (224, 225), freeway

traffic (202) or tobacco smoke (222).

Relatively few studies demonstrate a mechanism that explains how a cytokine or cytokine-

related polymorphism can influence asthma frequency or severity; exceptions include

demonstration of an IL-4 promoter polymorphism that appears to increase asthma frequency

by increasing IL-4 production (226), an IL-13 polymorphism that appears to exacerbate

asthma by enhancing IL-13 activation of Stat6 and decreasing IL-13 affinity for IL-13Rα2

(169, 227); an IL-17F polymorphism that protects against asthma by antagonizing wild-type

IL-17F activity (208); an IL-18 polymorphism that appears to increase asthma severity by

increasing IL-18 expression (228) and an IL-4Rα polymorphism that increases asthma

severity by promoting signaling pathways that synergize with Stat6 activation to induce

genes that contribute to allergic inflammation (18).

Effects of allergen and cytokine challenge

Although bronchoscopic studies in which in vivo cytokine production by a lung segment is

evaluated after allergen challenge of that lung segment have provided variable results,

increased gene expression or secretion of IL-4, IL-5, IL-13 and GM-CSF have been reported

by most studies (229-233). Consistent with this and with mouse studies, inhalation of

recombinant human IL-4 induced AHR and sputum eosinophilic within 24 hours (234).

Inhalation of recombinant human IL-5 by Chinese mild asthmatic subjects was also reported

to induce AHR and airway eosinophilia in one study (235); however, these observations

were not reproduced in a two studies in which British mild asthmatic subjects inhaled the

same or a larger dose of recombinant human IL-5 from the same source (236, 237).
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Clinical trials

Because individuals come to clinical attention only after they develop symptoms of disease,

the most practical clinical question relating cytokines and asthma is whether a particular

cytokine or cytokine receptor is involved in maintaining, rather than inducing asthma.

Although in vivo neutralization studies with cytokine or cytokine receptor antagonists

provide the most definitive way to evaluate the importance of a cytokine in maintaining

established asthma, only a relatively small number of these studies have been reported and

some of these have limitations that make them difficult to interpret.

Studies that administered soluble IL-4Rα as an IL-4 antagonist initially showed some

promise of increasing asthma control (238), but this failed to be replicated by a later, larger

study (239). Initial clinical trials of anti-IL-5 mAb in asthma patients showed considerable

decreases of blood eosinophilia, a partial decrease in lung eosinophilia and no beneficial

effects on lung function or symptoms (240, 241), but appeared to have a beneficial effect on

remodeling by decreasing deposition of extracellular matrix proteins (242). More recent

studies that have evaluated anti-IL-5 mAb effects in more defined patient populations have

provided more impressive results: intravenous injection of anti-IL-5 mAb increased the

amount of air expelled during the initial second of forced expiration (FEV1) and decreased

asthma exacerbations, steroid requirement and blood and sputum eosinophilia in patients

with steroid-resistant asthma with sputum eosinophilia in one study (243), and decreased

severe exacerbations and blood and sputum eosinophilia and increased quality of life

without increasing FEV1 or decreasing symptoms or AHR in a second study (244).

Treatment with either of 2 TNF antagonists was reported to induce a statistically significant

beneficial effect: an increase in asthma control in one study (245), a decrease in asthma

exacerbations in a second study (246) and decreased AHR with increased FEV1 and asthma-

related quality of life in the third study (247). However, the beneficial effects were different

for the three studies and were relatively small.

Perhaps the most impressive observations have been made in a phase 2a trial of pitrakinra, a

mutated recombinant human IL-4 that blocks IL-4 and IL-13 effects by binding to IL-4Rα

without signaling. Pitrakinra inhalation substantially decreased the allergen-induced

decrease in FEV1 and accelerated the recovery from this effect of allergen inhalation (248).

Phase 2b studies of inhaled pitrakinra in asthmatics are reported to be in progress.

Undoubtedly, the small number of reports of clinical trials of cytokine or cytokine receptor

antagonists reflects the high cost of such studies and other economic considerations;

however, it is also likely that additional studies have been performed, but not reported

because of negative results. In this regard, it needs to be appreciated that the results of

human trials, like animal studies, can be misleading. It is understandable, but unfortunate

that maximum doses of cytokine or cytokine receptor antagonists in many human trials may

be determined by economic rather than biologic considerations and that most trials are not

set up to determine the extent to which a targeted cytokine or cytokine receptor is blocked in

the lungs. Consequently, it can be impossible to determine whether negative results of a

clinical trial reflect lack of importance of the targeted molecule in the maintenance of human

asthma or inadequate blocking of the target. Similarly, clinical trials with cytokine
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antagonists do not always investigate whether the antagonist eliminates the cytokine or

forms a soluble complex with the cytokine that may prolong its in vivo half-life and allow

agonist effects when the complex dissociates (249, 250). In the same vein, clinical trials with

cytokine receptor antagonists don’t always investigate the effect of the agent on cell

membrane expression of the targeted receptor, although removal of the receptor would likely

have a better inhibitory effect than simple receptor occupancy and increased expression of

the receptor might be deleterious. It would seem advisable for future clinical trials to address

these issues when possible.

Conclusions

Data from both murine and human studies support the importance of Th2 cytokines and, to a

lesser extent, inflammatory cytokines produced by the innate immune system, in MAAD/

asthma development and maintenance. These same data, however, demonstrate that murine

strain differences and differences in the allergens used to induce MAAD and the protocols

used to administer these allergens all influence the importance of a particular cytokine in

MAAD induction and maintenance. Other environmental influences, such as animal

husbandry practices and variations in “normal” bacterial flora, may also affect the role of a

particular cytokine in murine AAD. Similar factors are likely to influence the importance of

a particular cytokine in human asthma, as shown by differences in the association of

cytokine gene polymorphisms with asthma in different ethnic and racial groups and by the

different outcomes of anti-IL-5 mAb therapy in patients whose asthma had different clinical

characteristics. Taken together, mouse and human studies presently suggest that therapies

that effectively suppress IL-13 or IL-13 along with IL-4 and, possibly, other Th2 cytokines

may offer the best cytokine-based approach for suppressing established asthma, with the

caveats that no single therapy is likely to be effective for all individuals with this disease and

that different cytokine-based therapies are likely to prove most effective for different groups

of asthmatic individuals. We believe that identification and validation of cytokine, cytokine

receptor, and cytokine-associated signaling molecules that are appropriate therapeutic

targets will require additional mouse studies, particularly studies of molecules involved in

maintenance of established MAAD, as well as clinical trials that evaluate mechanisms in

addition to toxicity and efficacy.
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Table I
Cytokines that directly promote features of asthma

Feature Cytokines Implicated

Eosinophilia IL-4, IL-5, IL-13

Goblet Cell Metaplasia IL-4, IL-13

Airway Hyperresponsiveness IL-4, IL-13, IL-17A

IgE Production IL-4, IL-13

Mastocytosis IL-3, IL-9

Alternative Macrophage Activation IL-4, IL-13

Smooth Muscle Remodeling IL-4, IL-13

Th2 Induction/Maintenance IL-4, IL-9, IL-17E (IL-25), IL-33, TSLP

Subepithelial fibrosis IL-4, IL-13
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