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Abstract

Leptin is an adipocyte-derived hormone, recognized as a critical mediator of the balance between

food intake and energy expenditure by signalling through its functional receptor (Ob-Rb) in the

hypothalamus. Structurally, leptin belongs to the long-chain helical cytokine family, and is now

known to have pleiotropic functions in both innate and adaptive immunity. The presence of the

functional leptin receptor in the lung together with evidence of increased airspace leptin levels

arising during pulmonary inflammation, suggests an important role for leptin in lung development,

respiratory immune responses and eventually pathogenesis of inflammatory respiratory diseases.

The purpose of this article is to review our current understanding of leptin and its functional role

on the different resident cell types of the lung in health as well as in the context of three major

respiratory conditions being chronic obstructive pulmonary disease (COPD), asthma, and

pneumonia.
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1. Introduction

Leptin is a 16 kDa non-glycosylated polypeptide encoded by the ‘obese’ (ob) gene [1].

Originally described as a hormone secreted by adipocytes in proportion to total fat mass,

leptin was implicated in early studies as a critical mediator of the balance between food

intake and energy expenditure by signalling through its functional receptor (Ob-Rb) in the

hypothalamus [2,3]. However, leptin belongs structurally to the long-chain helical cytokine

family, which includes interleukin-6 (IL-6), G-CSF, and oncostatin M amongst others, and
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shares an extreme functional pleiotropy with many other members of this family. The near

universal distribution of leptin receptors, including in the respiratory system, reflects a

multiplicity of biological effects. Leptin has been reported to participate in diverse

physiological functions in both the central nervous system and the periphery, including

appetite and body mass control, metabolism, endocrine function, immune response, wound

healing, reproduction, cardiovascular pathophysiology, and respiratory tissue development,

remodelling, and function.

Adipocytes located in various fat depots are a major, but not sole source of leptin. Cells of

the placenta [4], gastric mucosa [5], colon [6], mammary epithelium [7], pituitary,

hypothalamus [8], skeletal muscle [9,10], bone [11] and bone marrow [12] have also been

shown to produce leptin in certain circumstances [2]. Leptin expression has also been

described in the lung tissues of humans [13], baboons [14], mice [15], seals [16], and even

Xenopus [17]. Recent studies have shown leptin secretion by human lung epithelial cell

types, including bronchial epithelial cells (BEC) [13,18], type II pneumocytes [13], and

lipofibroblasts [19].

Leptin expression in adipocytes is regulated by food intake and circulating leptin levels have

been shown to positively correlate with insulin levels. In addition, glucocorticoids appear to

be potent regulators of leptin expression based on in vitro studies of isolated adipocytes [20],

while a gender-related leptin regulation is suggested by the findings that leptin expression is

increased by ovarian sex steroids and inhibited by testosterone [21–23]. Other modulators of

leptin expression include a wide range of pro-inflammatory cytokines – including TNFα –

which are known to acutely increase leptin synthesis in adipocytes [24,25], whereas chronic

stimulation with such cytokines appears to lead to a suppression of leptin synthesis [26,27].

In the normal lung, numerous cell types display high levels of Ob-Rb [28,29], and specific

leptin-binding sites have been identified in both bronchial and alveolar epithelial cells [30–

32], airway smooth muscle cells, and (infiltrating) inflammatory cells. Multiple observations

that leptin is actually present in induced sputum [33–35], proximal airway biopsies [18],

bronchoalveolar lavage (BAL) fluid [36,37], and peripheral lung tissue [13] of patients with

lung disease, strongly suggest the lung as a peripheral site of action for leptin. The present

review aims to summarize our current understanding on leptin and its functional role in the

respiratory system in homeostasis and inflammatory lung diseases.

2. Leptin signal transduction

Leptin acts via the Ob-R transmembrane receptor, which shares structural similarities with

the class I cytokine receptor superfamily [38,39]. Members of this family have signature

extracellular domains (so-called cytokine receptor homology or CRH domains)

characterised by a set of four cysteine residues and the highly conserved Trp-Ser-Xaa-Trp-

Ser motif. Several alternative splice isoforms of Ob-R exist in humans and rodents,

designated Ob-Ra, Ob-Rb, Ob-Rc, Ob-Rd, Ob-Re (only in rats and mice) and Ob-Rf (only in

rats). All isoforms contain the same extracellular domain of over 800 amino acids consisting

of two CRH domains, separated by an immunoglobulin (Ig)-like domain and followed by

two membrane-proximal fibronectin type III domains [38–40]. With the exception of Ob-Re

which is a secreted receptor variant, they all share a similar transmembrane and
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juxtamembrane JAK-binding domain of 34 and 29 amino acids respectively, followed by a

variable intracellular domain. The isoforms can thus be classified into short isoforms (Ob-

Ra, Ob-Rc, Ob-Rd and Ob-Rf), a full-length long isoform Ob-Rb, and a secreted isoform

Ob-Re. Of note, the latter only exists in rodents. In man, a secreted Ob-R ectodomain is

generated by proteolytic cleavage by the ADAM10 and ADAM17 metalloproteases [41].

Ob-Rb was initially considered to be the only functional isoform of the leptin receptor,

based on its extended intracellular domain of approximately 300 residues containing various

motifs required for activation of multiple signalling pathways [38]. Although signalling

functions have been ascribed to short Ob-R isoforms in over-expression studies [42], their

role in physiological leptin-mediated effects remains to be established.

The early recognition of Ob-R as a class I cytokine receptor rapidly led to the identification

of the JAK/STAT pathway as the primary signalling route. Leptin-induced JAK-2 activation

results in the rapid phosphorylation of three, conserved, cytoplasmic tyrosine-based motifs

that act as binding sites for different signalling molecules, including STAT-1, STAT-3,

STAT-5 and STAT-6. In addition to signalling through the JAK/STAT pathway, leptin is

also able to induce alternative pathways, including the MAPK cascade, the PI3K/PDE3B/

cAMP pathway, AMPK and mTOR. These different signalling cascades activated by leptin

have extensively been reviewed by Wauman and Tavernier [2]. Given the multitude of

signalling pathways activated via the Ob-R, leptin’s effects on different cell types can be

expected to be highly cell-specific. A very well studied, direct target of leptin-induced

STAT-3 is SOCS-3, a key negative feedback regulator of Ob-R signalling [43]. Changes in

SOCS-3 expression have been postulated to underlie the phenomenon of leptin resistance in

the context of obesity [44]. Another negative regulator of leptin signalling is PTP1B, which

acts primarily via dephosphorylation of JAK-2 [45,46].

To summarize, leptin signal transduction, especially the pathways that are activated upon

Ob-R activation, how Ob-R expression is controlled and the molecular mechanisms leading

to leptin resistance, are all well-characterized. However, it is not currently known whether

these individual signalling routes can indeed be activated in the respiratory system.

3. Role of leptin in respiration and lung development

Multiple studies have shown that leptin participates in the regulation of pulmonary

development and remodelling. Huang et al. characterized the effect of leptin deficiency on

postnatal lung development in leptin-deficient (ob/ob) mice [47] and showed that the lung

volume and alveolar surface area were lower in obese mice compared with wild-type and

heterozygote (ob/+) mice, and that the alveolar size did not increase with age. Leptin

replacement in ob/ob mice resulted in increased lung volume, enlarged alveolar size and

surface area, suggesting a role for leptin in remodelling of lung parenchyma. Leptin

receptor-deficient (db/db) mice [29] exhibit a 75% decreased rate of tracheal epithelial

proliferation compared with wild-type littermates, emphasizing a potential role for leptin in

pulmonary growth. Along these lines, leptin treatment was shown to increase the weight of

the lungs in relation to the total body weight [48,49]. Insufficient maturation of the foetal

lungs, a condition that can be characterized by the production of inadequate amounts of

pulmonary surfactant by epithelial type II cells, is a leading cause of human neonatal
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morbidity and mortality following premature birth. In this light, Torday, et al. reported that

leptin was expressed by fibroblasts and that the leptin receptor was expressed by type II cells

in foetal rat lung [19], suggesting a paracrine signalling mechanism in developing

pulmonary tissue. Leptin receptor was also identified in foetal rabbit type II cells [31] and

additional evidence supported correlations between leptin, maturation of the pulmonary

epithelium and surfactant production. Furthermore, leptin is present in the foetal baboon

lung and its receptor is enhanced during late gestation in type II cells responsible for the

synthesis of pulmonary surfactant [14]. A mechanistically integrated link between leptin and

its function in respiration and lung development was recently provided by the finding that

leptin stimulates Xenopus laevis tadpole lung development [17]. However, a recent study by

Sato et al. shows that neither leptin deficiency in ob/ob mice nor treatment with exogenous

leptin in sheep and wild type mice influenced foetal lung maturation or surfactant production

[50]. An explanation for these paradoxical results can be found in the different models that

were used in these two studies. In addition, the responses of foetal lung to the leptin

treatment might vary by dose, duration, dosing interval, route, and gestation age.

Gnanalingham investigated the impact of chronic leptin administration on the abundance of

UCP2 in the neonatal lung [49]. UCP2, a recently discovered member of the inner

mitochondrial membrane carrier subfamily, is highly abundant in the lung [51,52] and has

postulated roles in energy regulation, reactive oxygen species production, and apoptosis, but

its exact role and function in the neonatal lung have yet to be determined. Chronic leptin

administration was shown to decrease the abundance of UCP2 protein in the lung, which

might promote reactive oxygen species production and maintain host immunity through

augmentation of alveolar macrophage phagocytosis and leukotriene synthesis [49]. The

decrease in UCP2 with leptin administration on later lung function needs further study.

Leptin also has also been shown to participate in the regulation of respiratory function. In

the ob/ob mouse, respiratory abnormalities including tachypnoea, decreased lung

compliance, and aberrant respiratory muscle adaptations, such as alterations in

diaphragmatic muscle MHC composition, are common with the obese phenotype [53].

Tankersley et al. showed that these respiratory abnormalities were attenuated following

prolonged leptin administration [53]. Similarly, in wild-type mice that were obese due to a

high-fat diet, respiratory depression was reversed by leptin treatment [54], suggesting a

significant role of leptin as a neurohumoral modulator of central respiration, and in general

pulmonary health as well.

Collectively, these findings suggest a modulatory role for leptin in pulmonary development

and identify leptin receptor as a physiological marker of foetal lung maturity. In addition,

there is increasing evidence showing that leptin is an important player in respiration, but

additional research is needed in order to unravel the underlying mechanisms.

4. Role of leptin in inflammatory lung diseases

Numerous studies demonstrate that leptin has a potentiating role in the function of both

innate and adaptive immunity [55], making it an ideal candidate for a central role in

inflammatory respiratory diseases such as COPD, asthma, and pneumonia. Leptin is known
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to stimulate neutrophil and macrophage chemotaxis and enhance functional responses such

as oxidative burst [56], phagocytosis [57] and cytokine secretion [58,59]. Neutrophil

chemotaxis response was shown to be blunted in leptin-resistant db/db mice as well as in

mice with diet-induced obesity [60], which may indicate a crucial role for leptin signalling

these cells. In addition, leptin promotes differentiation, survival, and immunostimulatory

functions of dendritic cells (DCs), resulting in stronger heterologous T cell responses.

Furthermore, leptin exerts proliferative [61] and anti-apoptotic effects [62] on T-

lymphocytes and promotes Th1 cell differentiation [63]. The possible effects of leptin on the

different (resident) cell types of the lung during inflammation will be discussed in the

context of three major respiratory conditions: chronic obstructive pulmonary disease

(COPD), asthma, and pneumonia.

4.1. COPD

Chronic obstructive pulmonary disease (COPD) is a leading and increasing cause of

morbidity and mortality worldwide. COPD is recognized as a multi-organ disease [64],

manifest by airflow limitation associated with both structural changes and an abnormal

pulmonary inflammatory response to noxious particles or gases, including tobacco smoke

[65], accompanied by various extra-pulmonary manifestations such as low-grade systemic

inflammation [66] and an increased prevalence of cardiovascular co-morbidity [67].

4.1.1. Circulating leptin—The role of circulating leptin in the systemic manifestation of

COPD is poorly understood and has in the past mainly been examined in male COPD

patients with a low BMI (<21 kg/m2) [68–70]. In women with COPD, serum leptin

concentrations are increased compared to normal healthy women [71]. In addition,

circulating leptin levels are higher in women with COPD than men with COPD, and increase

with rising fat mass to a greater extent in women with COPD than in their male counterparts

[71]. Moreover, Breyer et al. recently showed that there is a complex relationship between

adipokine metabolism and low-grade systemic inflammation in COPD, with a significant

relationship between circulating leptin and CRP and fibrinogen [72].

Both the BODE index (the body-mass index (B), the degree of airflow obstruction (O) and

dyspnea (D), and exercise capacity (E), measured by the 6-minewalk test) [73] and fat-free

mass index (FFMI) have been shown to be associated (positively and negatively,

respectively) with circulating levels of leptin in COPD patients. In addition, leptin is the

most significant predictor of low FFMI in those patients [74]. To date, however, longitudinal

studies investigating the relationship between increased circulating leptin concentrations and

clinical outcomes in COPD are lacking.

4.1.2. Pulmonary leptin—As the lung is highly vascularized, increased circulating levels

of leptin may also contribute to the pathogenesis of lung inflammation and injury in COPD.

Different types of inflammatory cells such as macrophages, neutrophils, dendritic cells,

CD8+ T-lymphocytes have been implicated in the chronic inflammation associated with

COPD, and a distinct inflammatory pattern has been described in each lung compartment

[75]. In light of the immunomodulating effects of leptin, leptin may be a good candidate for

the regulation of pulmonary immune function in COPD. Indeed, Broekhuizen and
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colleagues demonstrated that leptin is present in induced sputum samples of mild-to-

moderate COPD patients, and showed a strong correlation between sputum levels of leptin

and both CRP and TNFα [33]. A more recent study on the expression of leptin in peripheral

lung tissue of COPD patients, asymptomatic smokers, and never-smokers suggested that

bronchial epithelial cells, type II pneumocytes, and alveolar macrophages are significant

sources of pulmonary leptin [13]. Numbers of leptin-expressing bronchial epithelial cells

and alveolar macrophages were markedly higher in smokers with and without COPD versus

never-smokers, indicating that tobacco smoke may be a trigger for pulmonary leptin

expression. This was confirmed by aireliquid interface cultures of primary epithelial cells,

which demonstrated a dose-dependent increase in leptin mRNA expression and protein

production after cigarette smoke concentrate stimulation [13]. Bruno et al. [18] also reported

positive immunostaining for leptin protein in central airway epithelium from human

bronchial biopsies, but found a decrease in leptin-positive epithelial cell counts in smokers

and COPD patients compared to never-smokers. This difference may, however, be explained

by different tissue specimens used in the two studies. Furthermore, in a more recent study,

Bruno et al. [35] suggests that leptin plays a role in both pulmonary and systemic

inflammation in current and former smokers with COPD. The leptin/Ob-R pathway may

contribute to the improvement in host defence seen in COPD patients after smoking

cessation, by augmenting neutrophil function. Lastly, associations between genetic

polymorphisms in leptin and Ob-R genes and (severity of) COPD were investigated. Hansel

et al. [76] examined the association between genetic variants in the Ob-R gene and lung

function decline in European Americans selected from the National Heart Lung and Blood

Institute Lung Health Study. significant associations between multiple SNPs in the Ob-R

gene and lung function decline were identified and confirmed by haplotype analyses in a

population of smokers with COPD. In addition, Ye et al. [77] recently showed a significant

association between the polymorphism −2548 G/A in the leptin gene (linked to enhanced

gene expression and increased circulating leptin levels [78] and the severity of COPD in a

Chinese population.

In summary, increasing data suggest that leptin is present in induced sputum and lung tissue

of COPD patients. Pulmonary leptin may be associated with greater disease severity in

COPD.

4.1.3. Smoke-induced lung inflammation—Cigarette smoke is a profound stimulus of

the innate immune response leading to inflammation that drives COPD pathogenesis.

Subsequent host defence mechanisms appear to be altered, rather than suppressed. The

functional role of leptin in smoke-induced lung inflammation and pathology is still under

investigation. Specific leptin-binding sites have been identified in BEC and type II

pneumocytes [30–32], suggesting a potential autocrine and/or paracrine pathway for leptin

to activate epithelial cells in COPD. Indeed, leptin was shown to activate several

intracellular signal transduction pathways in bronchial epithelial cells [13,79,80], including

JAK/STAT and MAPK pathways. Interestingly, Woo et al. showed that leptin upregulates

mucin production in human airway epithelial cells [79], hereby suggesting that leptin may

contribute to mucus hypersecretion in inflammatory lung diseases. Further studies are

clearly needed to determine additional effects of leptin on airway epithelial cells.
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An interesting study published by Hansel and co-workers [76] showed a reduction in the

expression of Ob-R receptor isoforms in the airspace and airway wall after 4 months of

smoke exposure in AKR/J mice. It has yet to be determined whether these findings

correspond to reduced leptin signalling in the lung. In another smoking mouse model,

characterized by increased accumulation of neutrophils, DCs, macrophages, and

lymphocytes in the lung, leptin expression in BEC and pneumocytes was significantly

increased in cigarette smoke-exposed wild-type mice compared to air-exposed controls.

Evidence that leptin is in fact involved in innate and adaptive immune cell recruitment is

provided by studies of mice deficient in leptin signalling (ob/ob and db/db mice), which

show significantly higher numbers of neutrophils and lower numbers of CD4+, CD8+ and

dendritic cells compared to cigarette smoke-exposed wild-type mice [15]. Increases in

neutrophil and monocyte chemoattractants CXCL1 and CCL2 seen in this model were

significantly enhanced in the BALF of cigarette smoke-exposed ob/ob and db/db mice

compared to wild-type mice.

To summarize, there is increasing literature showing the presence of the functional leptin

receptor in the lung together with evidence of local leptin production in the respiratory

compartment. Together, this supports the concept of autocrine and/or paracrine cross-talk

between resident pulmonary epithelial cells and immune cells in response to inhaled noxious

particles or gases. Further validation of this hypothesis by additional experimental and

clinical studies is obviously needed to better understand the immunomodulating role of

leptin in the pathogenesis of smoking-related COPD.

4.2. Asthma

Asthma is a prevalent and complex disorder that can occur in genetically predisposed

individuals through a series of genee environment interactions [81]. Acute and chronic

inflammation of the bronchi and the conducting airways plays a central role in the

pathogenesis of asthma, and lead to airflow obstruction and the respiratory symptoms of the

disease, such a wheezing, coughing, chest tightness, and dyspnea. inflammation is also

important in the development of the airway hyperresponsiveness observed in asthmatics, as

well as in the emergence of more permanent structural alterations to the airway walls,

termed ‘airway remodelling’. Originally, a TH1/TH2 imbalance was proposed to explain the

TH2 mediated allergic airway inflammation in asthmatics. However, recent research has

focused increasingly on the failure of endogenous tolerance mechanisms, including impaired

function of regulatory T-cells (Tregs) [82] and airway epithelial cells [81].

4.2.1. Obesity and asthma—Over the past decade, the interaction between obesity and

asthma pathogenesis has become apparent. Several epidemiological studies reported a higher

prevalence and incidence of asthma in obese versus lean individuals [83–87]. Moreover,

obesity appears to increase asthma severity and impair effective treatment and control of the

disease [88,89]. However, the underlying mechanisms of this obesityeasthma relationship

have not yet been elucidated. Several possibilities have been postulated [90], including

common genetic and environmental factors [91], reduced lung volume and airway diameter

in obese individuals [92], comorbidities of obesity such as sleeping-disordered breathing

[93] and last but not least, the chronic low-grade systemic inflammation that accompanies
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obesity [94]. The latter includes increased serum levels of cytokines, chemokines, acute

phase proteins and energy regulating hormones such as leptin [95,96].

4.2.2. Mouse models—The possible role of leptin in allergic airways disease has been

studied extensively in mouse models. Mice sensitized to and challenged with ovalbumin

(OVA) exhibit many features of asthma, including increased airway hyperresponsiveness

(AHR) to methacholine, increased airspace eosinophils, neutrophils and lymphocytes, and

TH2 cytokine expression, and increases in serum IgE. Interestingly, OVA-treated mice show

increased serum levels of leptin, while exogenous administration of leptin augments OVA-

induced AHR and serum IgE levels [97]. These augmenting effects of leptin on AHR may

be due to a direct effect of leptin on airway smooth muscle (ASM) cells or may be related to

the effects of leptin on IgE production. Cross-linking of high-affinity IgE receptors (FcεRI)

on mast cells upon binding of allergen to IgE results in degranulation of these cells and

subsequent release of mediators such as histamine, prostaglandin D2 and cysteinyl

leukotrienes, which are all powerful bronchoconstricting agents [98]. Importantly,

exogenous administration of leptin has no apparent effects on the OVA-induced eosinophil

recruitment to or TH2 cytokine expression in the airways, suggesting that leptin is capable of

augmenting AHR independently of TH2 inflammation. This supports the hypothesis that

leptin may instead be acting on the innate immune system. Along these lines, studies have

shown that exogenous leptin increases the pulmonary inflammatory response following

acute exposure to ozone (O3) [99], a common trigger for asthmatic episodes, known to act

through activation of Toll-like receptors [100]. These augmented responses to O3 have also

been observed in obese Cpefat mice [101] and in mice with diet-induced obesity [102], both

of which manifest high circulating levels of leptin. However, as similar responses to O3 are

also observed in ob/ob [99] and db/db [101] mice, which lack leptin signalling, additional

factors appear to be involved in the augmented response to O3 in obese mice.

In conclusion, experimental mouse studies support an augmenting role for the leptin-axis in

airway hyperresponsiveness, possibly independently of TH2 inflammation but via a direct

effect of leptin on airway smooth muscle.

4.2.3. Circulating leptin—Several human studies have reported on the relationship

between serum leptin levels and the occurrence of asthma. Guler et al. found that serum

leptin levels of asthmatic children and especially of asthmatic boys were increased

compared to healthy controls, in spite of no difference in BMI levels [103]. In adult

asthmatics, increased serum leptin levels compared to non-asthmatics have been described,

however this association appeared stronger in women than in men [104]. Jartti et al. studied

the link between leptin and asthma in individuals who were followed 21 years from

childhood to adulthood. They found high serum leptin levels to be associated with asthma

only in adulthood. However, this association did not persist when clinical data, such as age,

parental asthma and active smoking status, were included in the statistical model [105].

Other studies have found no correlation between serum leptin levels and asthma [106,107].

Altogether, evidence of a link between asthma and serum leptin remains unclear and further

studies are needed to elucidate whether leptin directly participates in the pathogenesis of

asthma, perhaps in certain subsets of this heterogeneous disease, or whether increased serum
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leptin levels are merely the result of the systemic inflammation that accompanies both

asthma and obesity.

4.2.4. Pulmonary leptin—Although several studies have reported on the possible

relationship between asthma and systemic levels of leptin, less is known regarding the

presence and role of leptin in the pulmonary compartment. Expression of both leptin and its

receptor has been described in the lung, especially in bronchial epithelial cells (BECs) and

type II pneumocytes [13,29,108], but how these may be affected by obesity or allergic

airway inflammation remains unclear. In mice, it has been shown that obese db/db mice,

which lack the leptin receptor and show innate AHR, have higher leptin levels in

bronchoalveolar lavage (BAL) fluid [109]. Moreover, these levels are modulated by PPARg

ligands, which have been shown to reduce allergic inflammation and AHR. In humans,

preliminary studies show increased BAL leptin levels in obese individuals compared to lean

individuals, with positive correlations between BAL leptin levels and BMI, lung function,

and BAL levels of TNFα, nitrates, and 8-isoprostanes, particularly in asthmatics [110–112].

In addition, Lugogo et al. recently demonstrated that primary alveolar macrophages derived

from overweight/obese subjects with asthma are uniquely sensitive to leptin [110–112]. Ex

vivo studies indicated that leptin alone was sufficient to induce production of pro-

inflammatory cytokines from primary macrophages derived from overweight/obese subjects

with asthma and pre-exposure to high-dose leptin enhanced the LPS-induced

proinflammatory response [110–112]. This leptin-sensitive macrophage phenotype, in the

context of higher levels of soluble leptin in the pulmonary compartment, may contribute to

the pathogenesis of airway diseases associated with obesity.

On the other hand, Holguin et al. [36] showed that BAL adipokine levels (leptin and

adiponectin) were not associated with the airway biomarkers of oxidation and inflammation.

In addition, Bruno et al. reported a decreased expression of leptin and its receptor in BECs

isolated from patients with mild or severe, uncontrolled asthma, compared to healthy

individuals [108]. Moreover, these investigators found leptin and leptin receptor expression

in isolated BECs to be inversely related to features of airway remodelling such as basement

membrane thickening and TGF-β expression.

In summary, leptin is present in the pulmonary compartment of asthmatics. There is

developing – but conflicting – literature suggesting a potential role for pulmonary leptin in

inflammatory asthma. More studies are warranted to investigate mechanisms of leptin action

in asthma and to determine whether modulation of pulmonary leptin may be helpful in

asthma prevention or treatment.

4.2.5. Leptin and eosinophils—Important to review with respect to asthma

pathogenesis are the effects of leptin on eosinophils as one of the major effector cells in

asthma. Human eosinophils are known to express the leptin receptor Ob-Rb [113] and

several studies investigated the role of leptin in the functioning of eosinophils. Leptin was

shown to be a direct chemoattractant factor for eosinophils [114,115], possibly through the

activation of the ERK1/2 and p38 MAPK signalling pathways. In addition, leptin has a

priming effect on eotaxin-induced eosinophil migration [114,116]. Other studies suggest that
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leptin is an activating factor for human eosinophils and may prolong eosinophil survival by

suppressing eosinophil apoptosis [113,115].

However, as discussed previously, exogenous administration of leptin in mice has no

apparent effects on the OVA-induced eosinophil recruitment to the airways [97].

Furthermore, leptin deficiency has recently been suggested to potentiate eosinophilopoiesis

and the accumulation of eosinophils in the lung following OVA [117]. These apparent

conflicting data may be explained by the fact that there are key differences between murine

asthma and human asthma, and that human studies are limited by the greater heterogeneity

among subjects while murine studies are controlled experiments.

In conclusion, current studies indicate a strong association between asthma and obesity,

however the direction of causality is yet unclear. Adequately powered longitudinal and

interventional studies are needed to establish a clear direction in association. The current

evidence supports an emerging central immune modulating role for leptin in the pulmonary

compartment. Further studies targeting leptin signalling are currently under way to clarify

the role of pulmonary leptin in asthma pathogenesis.

4.3. Pulmonary infections

Pneumonia is most commonly caused by bacteria, viruses, or – less frequently – fungi or

parasites. The associated symptoms, such as cough, chest pain, fever and dyspnea, are

accompanied by an inflammatory response in the lungs. Malnutrition, which is often seen in

patients with chronic diseases such as COPD or cancer, greatly increases the susceptibility

to pulmonary infections [118,119]. The mechanisms responsible for this impaired host

defence against infections are poorly understood, but may be related to reduced leptin levels.

Furthermore, growing evidence suggests an effect of high BMI, and hence leptin resistance,

on susceptibility to both bacterial and viral pulmonary infections [120–122], as highlighted

by the recent H1N1 influenza epidemic [123,124].

4.3.1. Bacterial infections

The possible role of leptin in the immune response to pulmonary infections has mainly been

studied in experimental murine models. Mice infected by intratracheal challenge with

Klebsiella pneumoniae, a gram-negative bacteria, show increased leptin levels in serum,

BAL fluid, and whole lung homogenates [125]. It is not clear whether increases in leptin in

the pulmonary compartment are due to increased synthesis of leptin in the lung itself, or

rather due to leakage of leptin from the circulation that may accompany pulmonary

inflammation. Interestingly, leptin deficient ob/ob mice show impaired survival following

administration of K. pneumoniae, Streptococcus pneumoniae, and Mycobacterium

abscessus, suggesting that the presence of leptin is required for an effective immune

response against diverse bacterial challenges [125–127]. The reduced bacterial clearance

witnessed in leptin-deficient (ob/ob) mice does not appear to be due to impaired recruitment

of inflammatory cells, but rather to result from defective macrophage and neutrophil

phagocytosis of bacteria [57,125,126]. Moreover, macrophages from leptin-deficient mice

show diminished leukotriene synthesis in vitro. Leukotrienes have been shown to enhance

macrophage phagocytosis, and impaired leukotriene synthesis has been found in some
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individuals found to be particularly susceptible to pulmonary infections [128,129]. Both the

phagocytic response of macrophages and neutrophils and the synthesis of leukotrienes can

be restored by exogenous administration of leptin in leptin-deficient mice [57,125,126].

More recently, Kordonowy et al. studied the effect of leptin on neutrophil trafficking in a

sterile model of lipopolysaccharide (LPS)-induced lung injury [60]. Early airspace

recruitment (2–6 h) was reduced in db/db mice, and neutrophils of uninjured mice

demonstrated diminished chemotaxis towards the chemokine KC compared with control

mice. In addition, adoptive transfer of db/db mouse neutrophils into injured control mice

revealed a defect in airspace migration in these cells, suggesting that leptin is effective in

driving alveolar airspace neutrophilia [60]. Herewith in line, Ubags and colleagues recently

showed that pulmonary leptin is induced in injured lungs and that this cytokine is effective

in driving alveolar airspace neutrophilia via a direct effect on neutrophils [130]. Further

studies are warranted to better characterize and dissect the role of leptin in neutrophil

recruitment and function in pneumonia and acute lung injury.

Experiments in lean mice fasted for 48 h, a physiological stimulus that reduces circulating

leptin levels, show a 20-fold increase in S. pneumoniae burden compared to ad libitum fed

mice [131]. Similar to leptin-deficient mice, macrophages from fasted animals exhibit

defective phagocytosis of S. pneumoniae, while treatment with exogenous leptin restored

bacterial clearance in fasted mice [131]. In recent studies, Mancuso and colleagues

convincingly showed by means of mutant s/s and l/l mice deficient in leptin receptor-

mediated STAT3 activation and ERK activation, respectively, that both signalling routes

play an essential role in host defence against bacterial pneumonia and in leucocyte

antibacterial effector functions [132,133]. In contrast to the above mentioned reports,

Wieland et al. failed to detect differences between wild type and leptin deficient ob/ob mice

in host response to both K. pneumoniae and S. pneumoniae [134]. This may be due to

differing routes of bacterial administration (intratracheal versus intranasal) or to differences

in mouse gender or age (with older, male mice being less susceptible to infections).

However, the same group has also reported an increased susceptibility to infection with

Mycobacterium tuberculosis in these mice [135]. Interestingly, the pulmonary response to

M. tuberculosis was recently suggested to be affected by the host’s nutritional status via the

regulation on non-bone marrow-derived cells, and not through direct action of leptin on Th1

immunity [136]. Future studies are needed to better understand the role of non-bone

marrow-derived cell like pulmonary epithelium involved in leptin-mediated immune

regulation in bacterial infections.

4.3.2. Viral infections

To date, only a few studies report on the effects of obesity, and thus increased leptin levels

and leptin resistance, on the immune response to viral infections. Diet-induced obese mice

showed a higher mortality rate upon infection with influenza virus [137,138] and along with

this increased mortality rate an altered immune response, including diminished NK-cell

cytotoxicity and delayed pro-inflammatory cytokine expression [137]. The chronic leptin

elevation in these mice appears to cause a state of leptin resistance [139], which may lead to

an inadequate immune response and increased mortality upon viral infection. Zhang et al.
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recently suggested that leptin has no effect on viral replication itself [140]. Furthermore, it

has been shown that diet induced obesity results in selective impairment of DC functions

and that obesity leads to delayed recruitment of mononuclear cells to the infected lung

during influenza infection. In addition, while migration of antigenloaded DCs to the lymph

node appears to be normal in obese mice, the ability of DCs to present antigens to CD8+ T-

cells is impaired, and this may be caused by a lack of co-stimulation by DCs [141]. Karlsson

et al. showed that increased morbidity and mortality during a secondary influenza infection

is due to impairment in the ability to generate and maintain functional influenza specific

memory T-cells [142]. Furthermore, it has also been shown that diet-induced obesity can

affect the maintenance of influenza-specific memory T-cell populations in the lung and this

may be due to peripheral leptin resistance in the obese lung microenvironment affecting

IL-15 function [143]. These studies highlight potentially different effects on the host’s

immune system seen in diet-induced obesity and obesity that arises from a leptin-deficient

state.

In conclusion, there is a lack of – particularly clinical and translational – research, which is

necessary to gain a more comprehensive understanding concerning the possible role of

leptin in the human immune responses against bacterial or viral pulmonary infections.

5. Conclusions

The pleiotropic functions of leptin are of growing interest, and significant progress has been

made in understanding leptin’s role in inflammatory respiratory diseases and the underlying

immune response. As a type-I cytokine, leptin appears to serve as far more than a satiety

hormone for the regulation of food intake and energy expenditure. The presence of the

functional leptin receptor in the lung on both leukocytes and lung epithelial cells together

with evidence of local leptin production in the respiratory compartment, supports the

concept that leptin plays an important role in respiration, lung development and the

pathogenesis of diverse respiratory diseases.

Further studies are however needed to elucidate the functional – possibly autocrine and/or

paracrine – targets and effects of leptin signalling in the respiratory system in homeostasis

and disease. It will be critical to distinguish the effects of leptin signalling in both acute and

chronic respiratory diseases, as it appears that leptin may have dichotomous effects

depending on the acuity of the disease process. Furthermore, in order to fully understand the

role of leptin in clinical disease, more longitudinal or weight-intervention studies are

required that focus on the mechanisms by which human obesity – and hence leptin

resistance – influences respiratory diseases, and in particular respiratory immunity. Future

investigations that reveal the mechanisms by which leptin influences pulmonary

inflammation may eventually contribute to the development of novel therapeutic

interventions in respiratory diseases.
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