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ABSTRACT

Biomarker validation, like any other confirmatory process
based on statistical methodology, must discern associations
that occur by chance from those reflecting true biological
relationships. Validity of a biomarker is established by au-
thenticating its correlation with clinical outcome. Validated
biomarkers can lead to targeted therapy, improve clinical
diagnosis, and serveasuseful prognostic andpredictive factors
of clinical outcome. Statistical concerns such as confounding

and multiplicity are common in biomarker validation studies.
This article discusses four major areas of concern in the
biomarker validation process and some of the proposed
solutions. Because present-day statistical packages enable the
researcher to address these common concerns, the purpose of
this discussion is to raise awarenessof these statistical issues in
the hope of improving the reproducibility of validation study
findings. The Oncologist 2014;19:886–891

Implications for Practice: Statistical concerns such as confounding andmultiplicity, for which solutions have existed for years, are
common in biomarker validation studies; however, published validation studies may not address these issues. By not only raising
the issues butalso describing possible solutions, this discussionmayhelpdecrease falsediscovery andenhance the reproducibility
of validation study findings.

INTRODUCTION

The fundamental goal of a large number of statistical analyses
is to identify factors important to the outcome.Whether using
a simple two-sample t test, a more complex generalized linear
model, or multivariate analysis methods (e.g., principal
components analysis, factor analysis, and discriminant anal-
ysis), the goal is to determinewhether the outcome is affected
by measurable covariates. For oncology research, biomarkers
have become an important covariate because biomarker
identification can lead to targeted therapy and thus become
the first step to personalized cancer treatment. Because
biomarkersareexploredasprognosticandpredictive factorsof
clinical outcome, it is important to understand the common
statistical issues of biomarker validation.

Biomarker validation, like any other confirmatory process
based on statistical methodology, must discern associations
that occur by chance from those reflecting true biological
relationships. As noted by Genser et al., most researchers use
astatistical significance level todecidewhether the result of an
analysis (i.e., the p value) is likely to be the result of chance [1].
Intrapatient correlation andmultiplicity are twomajor factors
to address in calculating the appropriatep value for an analysis
and thus are two important factors of biomarker validation.
Multiplicity can be an issue due to the investigation of several
potential biomarkers or due to the investigation of multiple
endpoints or measures of response. Studies with multiple

endpoints require multiple testing corrections of the per-
comparison significance levels, prioritization of the outcomes,
or development of a composite endpoint. Many studies used
to assess the prognostic or predictive value of biomarkers are
retrospective case-control studies that carry the typical
baggage inherent to retrospective observational studies, such
as selection bias. The aim of this paper is to discuss these four
important statistical issues that should be addressed in the
design and analysis of biomarker studies.

METHODS

Clinical references contained in this review were identified
through queries of the PubMed and Medline databases. Only
articles published in English were considered. The search
was conducted with the term “biomarker validation” cross-
referencedwith “issue” and/or “limitation.” The literaturewas
also queried with respect to “multiplicity,” “selection bias,”
“multiple endpoints,” and “intra-class correlation.”

DISCUSSION

The primary statistical concerns about biomarker validation,
for the most part, are not new to data analysis. Assessing
whether an individual biomarker is associated with a clinical
outcome such as tumor response is no different than assessing
whether smoking is associated with lung cancer and thus
possess many of the same inherent issues. Retrospective
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biomarker studies may suffer from selection bias, the same as
any retrospective observational study. Longitudinal biomarker
studies (i.e., multiple observations per subject) require the
same attention to within-subject correlation as any other
statistical modeling exercise. Unique nuances, however, arise
because multiplicity may not only be the typical inferential
multiplicity caused by multiple comparisons due to subset
analyses but also be caused by the investigation of a large
number of candidate biomarkers. The number of candidate
genes is quite large in the biomarker-discovery phase and is in
the tens of thousands. As the number of genes investigated in
the discovery phase has increased, the number of candidate
genes for biomarker validation has increased, and the line
between discovery and validation may be blurred as studies
attempt to discover and validate biomarkers in small samples.
Biomarkers are used not only as prognostic and predictive
factors but also as surrogate endpoints. Because agents are
developed with the goal of inhibiting specific cellular and
molecular targets, it is appropriate to consider the use of
biomarkers that reflect the proposed mechanism of action of
the agent being studied as surrogate endpoints in clinical trials
[2]. Surrogate endpoints may be useful when the pathophys-
iology of the disease and the mechanism of action of the
intervention are thoroughly understood [3]. Change in the
expression level of a pharmacodynamic biomarker could be
used as a surrogate for clinical benefit. Are biomarkers
differentially expressed at different levels of the clinical
endpoint? Do patients with pathologic complete response
exhibit a higher or lower level of biomarker expression than
patients with stable disease or patients experiencing disease
progression? The validation of a biomarker as a surrogate
endpoint requires proof that the biomarker correlates well
with clinical benefit (or lack thereof). The question is, how
does one define clinical benefit (e.g., overall survival, disease-
or progression-free survival, tumor response)? Surrogate-
endpoint studies must address this issue if multiple clinical
endpoints are considered.

Within-Subject Correlation
When multiple observations of the same metric (unordered
repeatedmeasures) arecollected fromthesamesubject, there
is a distinct possibility of correlated results. Often this occurs
when specimens from multiple tumors are obtained from
individual patients.Within-subject correlation (or intrapatient
correlation) is a form of intraclass correlation. The earliest
attempts to quantify intraclass correlationweremodifications
of Pearson’s product-moment correlation coefficient. Fisher’s
discovery of analysis of variance is a byproduct of his work to
obtain linearequations composedof thevariancecomponents
required to estimate the intraclass correlation from a com-
pletely randomizeddesign [4].Thewithin-subject correlation is
theproportionof the total variance attributable to the random
subjects that is explained by the variance between subjects
and is typically estimated by dividing the estimate of the
between-subject variance by the sum of the estimates of the
between- and within-subject variances.

Bartley et al. investigated the complex patterns of altered
microRNA (miRNA) expression during the adenoma-
adenocarcinoma sequence of 69 matched specimens from
21 colorectal patients [5]. They found that 36 of 230 miRNAs

identified were significantly differentially expressed for four
tissue-type pairwise comparisons (mucosa vs, adenocarci-
noma, mucosa vs. high-grade dysplasia, mucosa vs. low-grade
dysplasia, and low-grade dysplasia vs. adenocarcinoma) along
the entire sequence to adenocarcinoma. However, they found
that none of the 36 miRNAs was significantly differentially
expressedwhenanalyzed for stage ofdisease after adjustment
for within-patient correlation. Such studies underscore the
need to account for within-subject correlationwhen analyzing
biomarker data. Anti-5-hydroxymethyl-29-deoxyuridine anti-
body shows, for example, stability and low intraindividual
variancewith data from individuals rarely crossing over values
of other subjects in a study by Hu et al. [6]. They noticed an
intraclass correlation of 0.99 in their data when analyzing this
potential cancer risk biomarker, signifying nearly complete
dependence of measurements within patient. Analyzing such
data assuming independent observations will almost surely
inflate the type I error rate and result in spurious findings of
significance. The use of mixed-effects linear models, which
account for a dependent variance-covariance structurewithin
subject, to analyze biomarker data are becoming more
common in the literature [7, 8]. Comparisons based on the
generalized estimating equations generated by these mixed-
effectsmodels producemore realistic p values and confidence
intervals. In the biomarker validation process, researchers
should not hesitate to make the most of the potential of their
data and embrace more sophisticated statistical approaches
when warranted.

O’Conner et al. developed biomarkers of tumor microvas-
culature from pretreatment dynamic contrast-enhanced
magnetic resonance images [9]. Their study consisted of 10
patients with 26 colorectal cancer liver metastases. A linear
model was used to model the percentage of remaining tumor
volumeat theendof treatmentcycle 5. Because somepatients
had more than one tumor, a mixed-effects model was used to
explore potential within-patient correlation. Because none
was observed, the tumors were subsequently treated in-
dependently [9]. Intra- and interobserver variability of
computed tomography measurements and their use as
imagingbiomarkers in oncologywas studied byMcErlean et al.
[10]. A linear model with a random subject effect was fitted to
their data to account formultiple lesions froma single patient.
These authors’ willingness to explore the potential depen-
dence of within-patient measurements underscores the
evolution of data analysis in the clinical literature and their
realizationof thepotential impact of ignoring such correlation.

Multiplicity
It is common for clinical researchers to use a statistical
significance level to decide whether the result of an analysis is
likely due to chance. Concerns about multiplicities in bio-
marker validation must be addressed to improve the re-
producibility of the findings.The probability of concluding that
there is at least one statistically significant effect across a set of
tests (subset analyses) when in fact no effect exists increases
witheachadditional test; therefore, it isnecessary tocontrolor
limit the type I error rate (i.e., false discovery) [11]. Awealth of
articles have been dedicated to the conduct of planned and
unplanned subset analyses and addressing multiple testing
issues [12–16].
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As Berry noted, controlling for false-positive results may
increase the rate of false negatives [17]. His thorough dis-
cussion of the issues of multiple testing in empirical studies
includes what he describes as silent multiplicities (unreported
and unrecognized comparisons) and such may be particularly
relevant forbiomarkervalidation.Biomarkervalidationstudies
typically involvemultiplevariables,multiplepotentialoutcomes
ormarkers ofclinical benefit, andmultiple subsets of patients in
the investigation to study possible associations and biological
relationships. The null hypothesis for biomarker validation is
that the measured characteristic has no relevance or effect
on prognoses, predictive power for therapeutic response,
biological process, and so forth. Multiplicities are not just the
spawn of data dredging; we know they arise fromwell-planned
subset and interim analyses that require multiple comparisons
of the data. However, Berry noted that silent multiplicities
may exist and are potentially problematic because many
comparisons may go unreported in the literature [17].

Biomarker validation studies are sensitive to falsepositives
because the list of potential markers is characteristically
extensive. Although one must be sensitive to methodology
that increases potential false negatives, it is essential to
attempt to limit false discovery so that the literature is not
burdened with unreproducible biomarker findings. The
primary goal when multiple simultaneous comparisons
are conducted should be to control false discovery while
maximizing power to detect meaningful associations. As
multiple-comparison methodology evolved, controlling the
family-wise error rate was of primary importance [11]. The
medical literature is replete with the use of the methods
of Tukey, Bonferroni, Scheffe, and others that attempt to do
just that: control false discovery at the experiment or study
level rather than the individual-comparison level. The analysis
of microarray data led to a rethinking of the approach to
controlling the type I error rate. Because the number of
simultaneous hypotheses considered matches the number
of genes, the probability of a false-positive finding is likely.
Benjamini andHochberg pioneered the approach to controlling
the falsediscovery rateused inbiomarker studies [18].Their less
stringent, more powerful approach controls the proportion of
false discoveries rather than controlling the family-wise type I
error rate.Today, the major statistical analysis packages include
several approaches to handling multiplicities and should be
a common part of biomarker validation.

Biomarker validation studies are sensitive to false
positives because the list of potential markers is
characteristically extensive. Although one must be
sensitive to methodology that increases potential
false negatives, it is essential to attempt to limit false
discovery so that the literature is not burdened with
unreproducible biomarker findings.

Brand et al. noted that serum biomarker-based screening
for pancreatic cancer could greatly improve survival in ap-
propriately targeted high-risk populations [19]. Their study of
83 biomarkers was composed of 333 patients with histolog-
ically diagnosed pancreatic ductal adenocarcinoma (PDAC),

144 patients with benign pancreatic conditions, 227 healthy
controls, and 203 patients diagnosedwith other cancers.Their
analysis made use of two techniques to control for multiplic-
ities. Pairwise differenceswere investigatedamong the groups
within each of the 83 biomarkers using Tukey’s range test. In
order to identify serum biomarkers that discern those with
PDAC from healthy controls, the false discovery rate method
developedbyBenjamini andHochbergwas thenapplied to the
83 Tukey-adjusted p values for comparing PDAC and healthy
controls across all biomarkers. Similarly, important biomarkers
for distinguishing PDAC frombenign diseasewere determined
[19]. This process controlled the analysis not only for multiple
pairwise comparisons of groups (e.g., PDAC to healthy con-
trols, PDAC to benign disease) but also for the investigation of
multiple biomarkers.

Multiple Clinical Endpoints
Multiple endpoints can lead to multiplicities. As Berry sug-
gested, there may be silent multiplicities because analyses of
uncorrelated endpoints may go unreported [17]. It is not
unusual to see studies reported in the literature that
investigate several metrics of clinical benefit such as overall
survival, progression-free survival, duration of response,
complete response rate, objective response rate (complete
and partial), and clinical benefit rate (complete and partial
response plus stable disease) simultaneously with no correc-
tion for multiplicity. The evaluation of multiple endpoints in
a search for a relationship that yields a “significant” p value
greatly inflates the risk of a false-positive finding and, at the
very least, requires some adjustment for multiple testing [20,
21].The problem of multiple endpoints may be aggravated by
multiple start dates for the time-to-event endpoints. Overall
survival may be reported starting from the date of diagnosis,
the start date of neoadjuvant therapy, or the date of surgery.
Under such conditions, how can one reach a consensus as to
the validity of a biomarker? What is the decision as to a
biomarker’s validity when the results of the analyses of two
endpoints are contradictory?

Pocock et al. offered, as a possibility, the selection of
a single primary endpoint for formal statistical inference,
adjusting the analysis of each endpoint for multiple testing
and deriving an appropriate global test, considering that
the endpoints are possibly biologically related and positively
correlated [21]. Several approaches have been proposed in
the literature to create a univariate outcome by combining
multiple clinical endpoints [22–25]. A possible issue of
composite endpoints is the fact that often they are not of
equal clinical importance. Consequently, simple composite
metrics such as overall rates and averages that, by definition,
give equal weight to each component may not mirror clinical
behavior.Weighted measures can be used, but the weighting
function must be appropriately accounted for in the calcula-
tion of standard errors and such that it accurately determines
significance levels. A very intuitive approach to the multiple-
endpoint problem for the comparison of two samples was
suggested by Buyse [26]. His idea is to compare the two
samples based on the endpoint of highest priority first, and
if—and only if—no winner can be determined with respect to
this endpoint, would one move to the endpoint of the next
highest priority. This very instinctive algorithmic approach
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would continue until either a winner were declared or all
candidate endpoints were considered. Rauch et al. gave a
thorough treatment of the pros and cons of using priori-
tization in confirmatory studies to contend with the ex-
istence of multiple clinical endpoints of interest [27].

A possible issue of composite endpoints is the fact
that often they are not of equal clinical importance.
Consequently, simple composite metrics such as
overall rates and averages that, by definition, give
equal weight to each component may not mirror
clinical behavior.

A composite endpoint should be clinically relevant and
merge individual endpoints coherently. Rather than investi-
gate several endpoints, such as overall survival, time to
progression, time to toxicity, and time to treatment discontin-
uation, a primary analysis of one composite endpoint such as
event-free survival (EFS) may be reasonable. Cheson et al.
suggested defining EFS as the time from study entry to any
treatment failure, including disease progression, or discontin-
uation of treatment for any reason (e.g., disease progression,
toxicity, patient preference, initiation of new treatment
without documented progression, or death) [28]. Psyrri et al.
evaluated the correlation between tissue biomarker expres-
sion (measured by automated quantitative protein analysis)
and clinical outcome for an Eastern Cooperative Oncology
Group phase II trial of induction chemotherapy with weekly
cetuximab, paclitaxel, and carboplatin followed by chemo-
radiation with the same regimen in patients with operable
stage III/IV head and neck squamous cell carcinoma. The
authors of this study chose EFS as the primary endpoint;
however, they also report overall and progression-free survival.
This study is a prime example of a mixed message because
overall and progression-free survival are statistically significant
for extracellular signal-regulated kinase (ERK) status (high vs.
low); however, ERK status is not significant for EFS. Retinoblas-
toma protein status (high vs. low) is significant for EFS but not
for overall and progression-free survival [29]. It is imperative
that we do not overtest. We must decide on an endpoint and
accept the findings based on said endpoint if we ever expect to
achieve reproducibility and consistency in research.

Selection Bias
The typical study design in molecular epidemiology is case
control for reasonsof feasibility, that is, retrospectivedatatend
to be more readily available. However, there are inherent
limitations of cross-sectional data collected retrospectively in
such approaches. In particular, the assignment of causality
generally eludes observational studies. As Spivack et al.
indicated, a note of caution should be sounded in examining
the correlations noted by analyses of retrospective observa-
tional data [30]. As the list of genes studied during the
biomarker-discovery phase grows, the need to validate their
prognostic and predictive power intensifies. The greatest
potential to validate these biomarkersmay lie in retrospective
studies due to the wealth of data that exist.The time required
to conduct a time-to-event study with an endpoint such as

progression-free or overall survival is greatly reduced for
retrospective trials compared with prospective trials. How-
ever, as researchers identify biomarker strata (e.g., normal vs.
overexpressed), these strata may not be homogeneous with
respect tootherpotential predictorsofclinical outcome. Itmay
notbe fair to call this problem “selectionbias,”but it is bias and
the same techniques that are used to address selection bias
must be applied to the biomarker validation process.

The fact that other predictors of clinical benefit are most
likely not to be balanced between the levels of the biomarker
strata represents a huge inferential problem. Such confound-
ing limits the researcher’s ability to comfortablydetermine the
prognostic and predictive power of individual biomarkers.
Using a multivariate model to address this issue is common.
For example, the literature is full of proportional hazards
regressions used to compare the impact of biomarker status
on survival endpoints that are adjusted for age, stage,
treatment, and so forth. But these models only attempt to
assess the biomarker’s impact by simultaneously adjusting for
the other known predictors of survival. Care must be taken
such that adjustment is made only for covariates that are
relatedtoboththebiomarker levelandtheoutcomeof interest
so that the relationship of biomarker expression and anyof the
covariates is not driven by the biological process. If the
relationship is not just chance selection but in fact the model
controls for what are known as “intermediate variables,” the
effect of biomarker expression on the outcome will be
underestimated. Assume, for example, that clinical benefit is
being measured by overall survival and we have measured
both age at diagnosis and biomarker expression level (normal
vs. overexpressed). If the age distribution is not homogeneous
between the two levels of biomarker expression, this could
lead to inaccurate findings. One might adjust a proportional
hazardsmodel forage; however, theassumption is that there is
no natural association between the age of the patient and the
expression level, that is, the observed imbalance was just
chance. Now consider a similar scenario, only instead of age,
the researcher measures tumor stage. Further assume that as
stage increases, sodoesexpression level,not justbychancebut
as a natural relationship. By adjusting the model for stage, the
impact ofexpression level of the biomarkermaybe completely
masked.Consequently,using formsof linearmodels toaccount
for confounding is not a perfect solution.

Matched samples are a possible solution to selection bias
or confounding. The first step is to identify the important
factors on which to match (i.e., the factors that need to be
balanced). The same care taken to identify linear-model
covariates should be given to the matching process to avoid
what is known as “overmatching,” which causes bias.What is
known as “hard matching” finds pairs of individuals in each
strataof biomarkerexpression thatmatch (or nearlymatch)on
each of the factors to be balanced. Propensity score matching
can also be used to attempt to produce balanced samples
between the overexpressed and normal-level biomarker
groups. Austin provides a comprehensive introduction to
using propensity score methods to reduce the effects of
confounding in observational studies and provides a strategy
for assessing covariate balance postmatching [31]. Use of
a quasi-experimental design such as propensity scorematch-
ing allows the researcher to mimic the characteristics of
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a randomized controlled trial, which is the gold standard for
estimating factor effects. As Austin discusses, matched
samples require the researcher to use statistical methodolo-
gies that are relevant to dependent samples [31]. A concern
among researchers is the loss of data. Not all subjects from the
overexpressed-biomarker group will have a suitable match in
the normal-level biomarker group and vice versa, thus these
unmatched individuals would be excluded from the analysis.
Another method to address imbalance between the normal-
level andoverexpressedbiomarker groups is to use the inverse
of the propensity score to weight each observation in the
overexpressedgroupand1minus the inverseof thepropensity
score (i.e., the propensity of not being in the overexpressed
group) in the normal group. Using weighting allows the
researcher to include all of the data and does not depend on
random sampling, thus providing for reproducibility while
controlling for confounding [32].

Janinetal. investigatedwhether serum2-hydroxyglutarate
would predict the presence of IDH1/2mutations at diagnosis
and provide a marker of minimal residual disease for acute
myeloid leukemia patients. Their study concludes that
a significant difference in overall survival exists between
patientswithandwithoutNPM1mutations among53patients
with acute myeloid leukemia with IDH mutations [33].
However, patient characteristics such as age, sex, white blood
cell level, percentage of circulating blasts, and bone marrow
blasts are not balanced between patients with and without
NPM1mutations. One cannot know whether the effect is real
or an artifact of the confounders. Although the studymethods
discuss the use of a multivariate Cox model to determine
significant predictors of survival, the multivariate model is
focused on determining the significant predictors among the
set of biomarkers (IDH1 R132, IDH2 R140Q, FLT3-ITD, and
NPM1mutations). Only age is accounted for in the analysis of
the individualbiomarkersandonlywhenthenon-age-adjusted
comparison is significant.What if the imbalance is the reason
the comparison is insignificant? Addressing the patient-
characteristic imbalance between the two groups using
inverse propensity score weighting or a multivariable-model
approach would strengthen the analysis.

CONCLUSION
Major statistical issues present in biomarker validation are
addressable. This article has attempted to discuss four major
issues that are easy to manage with present-day statistical

packages but are not always addressed in the literature.
Table 1 summarizes these concerns. If multiple specimens are
obtained from individual patients, the researcher must ac-
count for the intrapatient correlation that may be present.
Only a minor reduction in power is experienced when using
a model that accounts for intraclass correlation when no
within-subject correlation is present. However, notaccounting
for intraclass correlation when it is present may greatly
overestimate the significance of the findings. Regardless of
whether the researcher chooses to control the family-wise
error rate or the false discovery rate, some attempt to limit
false discovery as part of the biomarker validation process is
warranted. We should not “throw the baby out with the
bathwater” by overzealously controlling false discovery to the
point of limiting discovery and producing false negatives.
Reproducibilitydependsona reasonable approach to the issue
of multiplicity. The literature is full of examples of biomarker
validation studies with multiple endpoints, yet many ignore
the problem. Addressing this issue is critical if we want the
literature to be awash with reproducible findings. To address
the issue of multiple endpoints in the process of biomarker
validation, the researcher must (a) agree to adjust the
comparisons for multiplicity, thus lowering the power of the
study; (b) create a composite endpoint that fairly reflects
clinical behavior; or (c) use analgorithmsuchas aprioritization
that a priori clearly decides how a winner will be determined.
Although randomized controlled trials are considered the
gold standard approach for estimating factor effects, there
is growing interest in using observational studies due to
feasibility that manifests as cost savings in both time and
money. Issues of covariate confounding must be addressed
to ensure reproducibility. Although concerns are present in
biomarker validation, most can be resolved with present
statistical methodologies that are readily available through
common analysis packages.
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Table 1. Potential biomarker validation study issues and strategies

Issue or concern Potential cause Strategy to address concern

Correlated
observations

Multiple observations per subject,
multiple lesions per subject

Analyze data using a mixed-effects linear model that can
accommodate dependent variance-covariance structure.

Multiplicity Testing multiple biomarkers or endpoints Analyze data using a methodology that controls the
family-wise error rate (i.e., a).

Multiple clinical
endpoints

Interest in more than one relevant endpoint Analyzedatabyprioritizing the relevantendpointsorbyusing
a composite endpoint.

Selection bias Retrospective data or observational study Analyze data using a multivariate model to simultaneously
adjust forconfounders, aquasi-experimentaldesign toobtain
matched samples, or propensity score weighting to create
a synthetic sample in which the potential confounders are
balanced between comparison groups.
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