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Abstract: Commonly used in biotechnology applications, filamentous M13 phage are non-lytic viruses that infect E. coli and 
other bacteria, with the potential to promote horizontal gene transfer in natural populations with synthetic biology implications for 
engineering community systems. Using the E. coli strain TG1, we have investigated how a selective pressure involving elevated levels 
of toxic chromate, mimicking that found in some superfund sites, alters population dynamics following infection with either wild-
type M13 phage or an M13-phage encoding a chromate reductase (Gh-ChrR) capable of the reductive immobilization of chromate 
(ie, M13-phageGh-ChrR). In the absence of a selective pressure, M13-phage infection results in a reduction in bacterial growth rate; 
in comparison, in the presence of chromate there are substantial increases in both cellular killing and biomass formation following 
infection of E. coli strain TG1with M13-phageGh-ChrR that is dependent on chromate-reductase activity. These results are discussed in 
terms of community structures that facilitate lateral gene transfer of beneficial traits that enhance phage replication, infectivity, and 
stability against environmental change.
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Introduction
Bacteriohage (phage), a bacterial virus, is about 1/40th 
the size of most bacteria and represent the simplest, 
most abundant organism on earth, thriving wherever 
bacteria grow—with an estimated 1030 viral particles 
in the Earth’s oceans alone.1 Metagenomic studies indi-
cate that phage genes are widely present in bacterial 
genomes from groundwater samples, including those at 
major superfund sites (eg, Rifle, CO).2–5 Phage are sug-
gested to play an important role in the biogeochemical 
cycle by controlling marine and other bacterial and phy-
toplankton communities, thereby influencing pathways 
of matter and energy transfer within global ecosystems.6 
At the population level, phage-mediated bacterial lysis 
results in boom-bust cycles of virus and bacterial host 
abundance increases, and imposes a well-understood co-
evolutionary fitness in which hosts evolve novel phage 
adaptations to avoid infection, while viruses evade host 
defenses to retain their infectivity. Such measurements 
form the basis for theoretical models that support what 
has become known as “kill-the-winner” hypothesis,7 in 
which successful bacterial hosts that become abundant 
in the environment become targets of viral attack. This 
negative density-dependent selection leads to increased 
host diversity, and has been suggested to be critical to 
community stability. The co-evolutionary dynamics of 
the model are characteristic of the well known “Red 
Queen” effect,8 whereby both viruses and hosts show 
continual evolutionary adaptation while maintaining 
broad constancy in relative fitness. While such models 
are broadly consistent with a large number of ecological 
theories that describe population dynamics, these mod-
els typically do not take into account positive selective 
pressures whereby non-lytic phage might act to provide 
an ability for host to exhibit enhanced fitness through 
lateral gene transfer, and the potential of population 
dynamics to allow shifts in the metabolic capacities of 
populations that enhance their fitness against environ-
mental change.

Prior measurements indicate that unlike lytic phages, 
which can dramatically disrupt microbial communities 
and the formation of biofilms through bacterial cell 
wall lysis,9 that M13 and other temperate (filamentous) 
phages can enhance growth and biofilm formation.10,11 
Although the underlying mechanisms remain uncer-
tain, it has been suggested that a major contribution to 
community stability involves the presence of extracel-
lular DNA arising from cell death, which is thought to 

represent an important matrix element necessary for the 
formation of biofilms. Additional factors that enhance 
microbial growth may be related to the ability of many 
nonlytic phage, including M13, to promote horizon-
tal gene transfer and the rapid acquisition of desired 
metabolic functionalities (eg, enzyme activities) that 
favor community stability.12–14 Examples include the 
ability of microbial populations to mobilize natural 
genetic variation in response to environmental change 
that enhance fitness. While these latter mechanisms 
are commonly suggested to involve the presence of 
naked DNA that arises through natural mechanisms of 
cellular death unrelated to mechanisms of lateral gene 
transfer, recent data suggests a coordination between 
DNA release and uptake within the population.14

To better understand the possible role of phage in 
promoting lateral gene transfer, and their relevance 
to possible applications involving bioremediation, we 
have investigated the community dynamics associated 
with the phage M13 and an E. coli host. In these 
measurements, a phagemid vector was constructed 
that encodes a chromate reductase (Gh-ChrR) 
(ie, M13-phageChrR), where Gh-ChrR has previously 
been demonstrated to efficiently reduce toxic chromate 
(Cr(VI)) in the presence of extracellular reductants 
naturally present within soils as humic compounds 
(such as quinones).15–19 Infection only occurs in 
the presence of a helper phage, which is essential 
for phage maturation and assembly, permitting an 
understanding of possible differences between initial 
infection and subsequent transfer of Gh-ChrR within 
the bacterial population. Using these constructs, we 
have assessed how the presence of toxic chromate 
modifies E. coli growth and viability, focusing on 
the possible role of phage infection in promoting 
community stability. We find that in comparison to 
wild-type M13 phage (not expressing Gh-ChrR), 
that M13-phageGh-ChrR infection of E. coli results in 
substantial increases in the population dynamics, 
resulting in enhanced bacterial growth, cell death, 
and total biofilm formation of E. coli strain TG1.

Results
Expression of dimeric chromate 
reductase on the surface of M13 phage
The DNA sequence of the Gh-ChrR gene from  
Gluconacetobacter hansenii ATCC 23769 (ZP_06834583)  
was codon optimized for expression in E. coli, 
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synthesized, and inserted into the expression vector 
pJexpress411. As chromate reductase (ChrR) from 
Gluconacetobacter hansenii functions as a dimeric 
enzyme,18 we have created a fusion protein containing 
two copies of the gene encoding Gh-ChrR. The fusion 
construct was engineered to allow in-frame expression 

of ChrR with the heterodimeric subunits Fos and 
Jus, whose high-affinity enhances the likelihood that 
Gh-ChrR will form a stable protein complex on the 
cell surface20 (Fig.  1A). The sequence of the engi-
neered construct was confirmed by DNA sequencing. 
To ensure that Gh-ChrR forms a functional protein 
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Figure 1. Functionally active chromate reductase is expressed on the surface of purified M13-phageGh-ChrR. (Panel A) Map of engineered pCDisplay-4 
phagmid vector endcoding Gh-ChrR (green arrows) expressed as a fusion protein with Fos-Gh-ChrR and Jun-Gh-ChrR to facilitate dimerization following 
phage display. (Panel B) Kinietic reduction of chromate (monitored at 370 nm) by purified M13-phageChrR (red squares) in comparison to M13 helper phage 
(blue triangles).
Notes: Measurements involved purified phage (5  ×  1010 pfu/mL) in 50  mM Tris-HCl (pH 7.4), 100  mM NaCl, 0.5  mM Cr2O4, and 0.1  mM NADH. 
Chromate reduction rates for M13-phageGh-ChrR (∆OD370nm = 0.006/min) are significantly increased in comparison to that observed for helper phage alone 
(∆OD370nm = 0.004/min) (P = 0.00015).
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on the surface of M13-phageGh-ChrR, we isolated 
individual phage following overnight infection of 
E. coli strain TG1 host in the supernatant following 
cell pelleting. Phage concentrations were deter-
mined following infection of E. coli TG1 host with 
dilutions of phage stock based on counts of ampicil-
lin-resistant plaques visible on an E. coli lawn. The 
ability of purified M13-phageGh-ChrR (5 × 1010 pfu/mL) 
to reduce chromate, as previously observed for the 
purified protein,18 was measured at 37 °C in triplicate 
under aerobic conditions (Fig. 1B). In comparison to 
wild-type phage (or M13 helper phage not express-
ing Gh-ChrR) there is a substantial increase in the 
rate of chromate (Cr(VI)) reduction, consistent with 
the presence of a functional dimer of the Gh-ChrR 
enzyme (P-value 0.00015). In comparison with the 
functional dimeric complex, expression of a mono-
meric ChrR protein on the M13 phage surface does 
not promote enhanced chromate reductase activity. 
This latter result is consistent with prior measure-
ments of ChrR structure, which suggest that the 
catalytic center is near a dimeric interface.21–24 The 
requirement that the Gh-ChrR dimeric complex be 
stabilized as a fusion protein through complexation 
of the well understood Jun/Fos interaction suggests 
that the Gh-ChrR dimer is not sufficiently stable 
upon expression on the cell surface to maintain the 
native oligomeric state formed within the crowded 
cellular milieu. Our results are consistent with prior 
suggestions that functional chromate reductase activ-
ity requires a dimeric association.

Enhanced biomass formation upon 
infection of E. coli with M13-phageGh-ChrR
Using high concentrations of toxic chromate as a selec-
tive pressure, we examined the influence of infection 
with M13-phageGh-ChrR on E. coli viability and growth 
(measured as total biomass). In these experiments, 
static biofilms of E. coli strain TG1 (with and with-
out early infection of M13-phageChrR) were formed in 
96-well polystyrene plates. In comparison to wild-type 
cells (or those infected with either phagmid–Gh-ChrR 
or helper phage alone), there are substantial increases 
in total biomass of E. coli strain TG1  infected with 
M13-phageGh-ChrR (Fig.  2). Corresponding increases 
in chromate reduction are observed in the presence 
of M13-phageGh-ChrR that are apparent approximately 
34 hours following infection; increases in chromate 

reduction rates require the presence of both phagmid–
Gh-ChrR and helper phage (ie, propagation of phage 
encoding Gh-ChrR). These results indicate that the 
enhanced reduction of chromate and corresponding 
tolerance of toxic chromate represent a selectable 
pressure that can promote bacterial growth and 
enhanced remediation.

Further examination of biofilms formed using the 
E. coli strain TG1 involved their visualization using 
confocal microscopy. In these experiments, parallel 
measurements were made using an 8-well chamber 
slide using equal densities of dilute E. coli TG1 bacte-
ria in LB media at 37 °C, permitting side-by-side com-
parisons (in duplicate) of biofilms comprised of TG1 
alone, following tranformation with either phagmid-
Gh-ChrR or helper phage alone, or the simultaneous 
transformation with both phagmid and helper phage 
necessary for the maturation and propagation of M13-
phageGh-ChrR. Following phage exposure (16 hr), bacte-
rial biofilms were washed twice, incubated with both 
BacLight Live/Dead stain, fixed, and analyzed using 
confocal microscopy. Irrespective of whether E. coli 
biofilms were exposed to wild-type phage, phagmid-
ChrR alone, or helper phage alone, we observe that 
the majority of cells are viable (ie, green), with mini-
mal cell death (visulalized by staining by propidium 
iodide)(PI) (ie, red) (Fig. 2, top panels). In compari-
son, upon co-infection with both phagmid-Gh-ChrR 
and helper phage it is apparent that there is a substan-
tial amount of cell death, despite the large increase 
in biofilm thickness. These latter results suggest that 
phage infectivity promotes enhanced growth despite 
concurrent increases in cell killing.

Discussion
We have demonstrated that the need for host tolerance 
to high concentrations of toxic chromate limits the 
ability of hosts to evade viral attacks and creates an 
evolutionary trade-off between growth rate maximi-
zation and defense that enhances microbial commu-
nity co-evolution. In our experiments, the host E. coli 
bacterium challenged with infective phage encoding 
a functional chromate reductase experiences substan-
tial amounts of both cellular killing and enhanced 
growth, leading to increases in biomass production 
and biofilm formation. These results indicate that 
phage infectivity can stabilize community structures, 
leading to more bacteria proliferation and initiation 
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of a beneficial boom-bust cycle to produce more 
phages. Our measurements build on prior biodesign 
principles that indicate the ability of M13 and other 
temperate phages to enhance biofilm formation.10,11 
Central to this capability is the functional capacity 
of the M13-phage to express a function (ie, chromate 
reductase activity) that enhances fitness to a defined 
selective pressure (ie, chromate toxicity). Under 
these latter conditions, there are substantial increases 
in total biomass and biofilm thickness, despite sub-
stantial increases in phage-mediated cellular killing. 
These results indicate that the enhanced bioreme-
diation of chromate and corresponding tolerance 
of toxic chromate by microbial communities rep-
resent a selectable pressure that can be engineered 

to promote community stabilization and enhanced 
remediation.

In nature bacteria commonly form biofilms, which 
represent natural microbial communities that form on 
virtually any surface exposed to water. Such biofilms 
are a common target of antimicrobials that seek to min-
imize contamination in medical, industrial, and food 
processing. However, the establishment of beneficial 
microbial communities is now recognized to have con-
siderable importance for human heath, and in natural 
environments may enhance stability to environmental 
change. In this respect, biofilm formation has been 
suggested to be critical for the environmental radio-
nuclide waste bioremediation process, as observed 
following acetate injection experiments from US 
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Figure 2. Phage-dependent lateral gene transfer of chromate reductase by M13-phageGh-ChrR results in enhanced biomass formation. Confocal images of 
live (Cyto9; green) or dead (PI; red) cells (top panels), rates of chromate reduction (middle panels), and measured biomass (bottom panels) for mature 
biofilms comprised of E. coli strain TG1 alone (left panels), in the presence of either phagmid Gh-ChrR or helper phage alone (center panels), or follow-
ing infection (right panels). Chromate (5 mM) reduction was monitored by measuring the absorbance at 370 nm wavelength, and is normalized following 
correction for the absorbance of the LB medium. Total biomass was estimated by crystal violet staining and measured absorbance at 595 nm, and is 
normalized to that of TG1 alone (left panel).
Note: Significant differences (*) in comparison to TG1 alone (P-value , 0.01) were based on a Student’s t-test (n = 3).
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Department of Energy environmental subsurface 
bioremediation projects.25,26 Indeed, subsurface envi-
ronmental bacterial biofilms contribute to the long-
term reductive immobilization of uranium (U(IV)) 
or chromium (Cr(III)) through formation of precipi-
tates on sediment grain surfaces.27 As a result, strat-
egies that stabilize bacterial biofilms, such as those 
described here, are expected to improve the biore-
mediation efficiency in the subsurface environment. 
Our results suggest that bacteriophage may play an 
important role in the biogeochemical cycle by con-
trolling bacterial and phytoplankton communities. As 
a result, strategies that enhance formation of bacterial 
biofilms are expected to improve the bioremediation 
efficiency in the subsurface environment.

Bioremediation of chromate and uranyl toxic 
metals in contaminated soils remains a major 
technological challenge. Current solutions involve 
a range of biological approaches that include the 
targeted feeding of specific anaerobic microbes 
(eg, Geobacter sulfurrenducens) whose specialized 
metabolism permits the biosorption, biosequestration, 
and reductive immobilization of extracellular 
chromate and uranyl metals, which can serve as 
terminal electron acceptors of cellular respiration.28–34 
Likewise, Shewanella oneidensis MR-1 contains 
specialized metal reductases located on the outer 
membrane that selectively associate with metal 
oxides to mediate their reduction.35,36 The recent 
structural determination of these metal reductases 
and the understanding of how cellular machinery 
regulates the targeted assembly of a metal reductase 
complex on the outer membrane, all suggest possible 
synthetic biology approaches to enhance these 
pathways and promote more effective bioremediation 
of contaminated sites.37–40 Likewise, identification of 
soluble enzymes capable of reductive immobilization 
of chromate and uranyl under both anaerobic and 
aerobic conditions offers a means to re-engineer 
microbes to enhance bioremediation.18 In this latter 
respect, bacteriophage present at natural sites offer a 
potential means to serve as gene delivery vectors for 
these synthetic biology applications.41,42 Additional 
mechanisms of bioremediation may take advantage 
of the ability to display catalytic protein moieties on 
the surface of bacteriophage, such as we describe, 
where the reducing potential of available humic 
compounds act as electron shuttles to allow transfer 

of reducing equivalents to extracellular catalysts. 
In this respect, it is necessary to further develop 
bioengineering strategies to retain viable phage in 
microbial populations responsive to environmental 
contaminates, permitting long-term immobilization 
of toxic metals such as chromate (Cr(VI)).

Materials and Experimental 
Procedures
Materials
Restriction endonuclease enzymes were from 
New England Biolabs (Ipswich, MA). The expres-
sion vector pJexpress411 (DNA 2.0 Inc., Menlo Park, 
CA, USA). Phagemid pCDisplay-4 and E. Coli strain 
TG1 were from Creative Biolab Inc. (Shirley, NY). 
Isolation of chromosomal DNA, plasmids, and the 
purification of polymerase chain reaction (PCR) prod-
ucts involved kits obtained from Qiagen (Valencia, 
CA). BacLight Live/Dead stain was carried out with 
Live/Dead Bacterial Viability Kit (Molecular Probes, 
Inc., Eugene, OR) using SYTO9 for green fluorescent 
nucleic acid stain and PI (propidium iodide) for the 
red fluorescent nucleic acid stain.

Construction of dimer chromate 
reductase on M13 phage
In-frame fusion mutants of Gh-ChrR-Fos and Gh-
ChrR-Jun were designed and synthesized using 
overhang PCR methods,43 and then they were cloned 
into the phagemid of pCDisplay-4 (Creative Biolab 
Inc., Shirley, NY). The first subunit Gh-ChrR was 
cloned into pCDisplay-4 with restriction enzyme 
sites SphI/SpeI, and the second Gh-ChrR frag-
ment was ligated into pFos-Jun-Gh-ChrR-I with 
SacI/XbaI sites. The recombinant phagemid vector 
pFos-Jun-Gh-ChrR-II was confirmed using DNA 
sequencing. The schematic map of pFos-Jun-
Gh-ChrR-II is depicted in Figure 1A.

Amplification and isolation  
of recombinant M13 phages
Luria broth (LB) medium (500  mL) was inoculated 
with host E. coli strain TG1 transformed with the 
phagemid pFos-Jun-Gh-ChrR-II in the presence 
of ampicillin (100  µg/mL) and incubated at 37  °C 
(250 rpm) until the optical density at 600 nm reaches 
0.8∼0.9. To promote phage infection, M13 KO7 helper 
phage (Life Technologies, Grand Island, NY) was 
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added (5 × 109 pfu/mL) in the presence of kanamycin 
(50  µg/mL); cultures were not shaken for 30  min 
to facilitate infection, followed by gentle agitation 
(200 rpm) for 30  min prior to cellular recovery 
(2200 × g, 15 min). The pellet was resuspended in LB 
(500 mL) and grown overnight at 30 °C (300 rpm) in 
the presence of ampicillin (100 µg/mL) and kanamycin 
(50  µg/mL). Following cell pelleting (7,000  ×  g 
for 15  min at 4  °C), the supernatant containing the 
phage were separated into prechilled 1 L bottles and 
precipitated upon addition of PEG8000 (20 g) for 1 h 
on ice. Phage were isolated by centrifugation (7,000 × g 
for 15 min in the same bottle at 4 °C) and resuspended 
in 8 mL of phosphate buffered saline (PBS). Debris and 
cellular contamination was removed by centrifugation 
(12,000  g for 10  min), phage were isolated in the 
supernatant, and phage titer was determined by 
infecting TG1 cells with dilutions of phage stock and 
following incubation and the counting of the numbers 
of ampicillin resistant plaques visible. Phage were 
stored as aliquots at 4 °C.

Chromate reduction assays
The ability of Gh-ChrR expressed on phage to reduce 
Cr(VI) was assayed at 37 °C in a 100 µL assay buffer 
(50 mM Tris-HCl, 100 mM NaCl, pH 7.4) containing 
100 µM NADH, 0.5 mM chromate (K2Cr2O4) and puri-
fied phage (5 × 1010 pfu/mL). The chromate reduction 
rates were measured by monitoring the absorbance of 
A370. Data were measured on a SpectraMax 384Plus 
microplate reader (Molecular Devices, Sunnyvale, CA). 
Values for the chromate reduction rate from wild type 
phage and phage expressing Gh-ChrR were estimated 
by the chromate reduction (based A370) in 2 hours. 
Both fit well with the linear equation, but the phage 
expressing Gh-ChrR has significant stronger reduc-
tion rate. All measurements were conducted in trip-
licate under aerobic conditions (Fig. 1B). The ability 
of Gh-ChrR expressed on phage in biofilms to reduce 
Cr(VI) was assayed directly by mearing the A370 
from 100 ml of an aliquot from the culture in 1 mL 
deep well 96-well microplate with 5  mM chromate 
(Fig. 2).

Biofilm formation
Overnight cultures of E. coli strain TG1 were diluted 
1:30 in LB medium and grown in polystyrene micro-
titre plates (170 µl per well) at 37 °C for approximately 

3 hours in order to reach mid-log phase. In some cases, 
added crystal violet (0.5% (w/v)) retained following 
washing was measured at 595 nm to assess total bio-
film formation, as previously described.44 Alternative 
experiments measured living and dead cells using 
BacLight Live/Dead stain added to each well prior to 
fixation.44 Biofilms were visualized using a Zeiss 710 
laser scanning confocal microscope with a 20 × NA 
1.0 water-dipping objective, simultaneously exciting 
green (Cyto9) and red (PI) fluorophores respectively 
at 488-nm and 633-nm. Fluorescence emission was 
collected using broad-band emission filters with 
bandwidths allowing 493–628 nm emission to be col-
leted for the green channel and 638–759 nm emitted 
light for the red channel. Images of the 3-D biofilm 
projection used the software ImageJ (http://rsb.info.
nih.gov/ij/).
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