Skip to main content
. Author manuscript; available in PMC: 2015 Aug 1.
Published in final edited form as: Exp Eye Res. 2014 May 2;0:30–40. doi: 10.1016/j.exer.2014.04.015

Table 1.

ER chaperones and molecular components of the UPR.

Protein/Gene Function(s) Reference
ER stress sensors
Bip (GRP78)/HSPA5 Dissociation with ER stress sensors activates the UPR (Bertolotti et al., 2000; Ng et al., 1992)
IRE1/ERN1 Splices the mRNA encoding XBP1 to activate XBP1
Mediates degradation of ER-targeted mRNA (RIDD)
Binds to TRAF2 and activates pathways of Ask1/JNK and IKK/NF-κB
(Hollien et al., 2009; Urano et al., 2000; Yoshida et al., 2001)
PERK/EIF2AK3 Phosphorylates eIF2α to downregulate global protein translation (Harding et al., 2000)
ATF6/ATF6 Activated in Golgi apparatus and upregulates ER-targeted genes (Chen, 2002)
Transcription factors
XBP1/XBP1 Induces ER chaperones (Bip, p58IPK, ERdj4, HEDJ, PDI-P5, EDEM, etc)
Regulates other UPR genes (ATF6 and CHOP)
Regulates genes in ER biogenesis
Regulates oxidative stress, immune response and lipogenesis
(Glimcher, 2010; Lee, 2002; Reimold, 2000; Zhong et al., 2012)
ATF6/ATF6 Regulates UPR genes (XBP1, BIP/GRP78, CHOP)
Regulates proteins involved in ERAD
(Yamamoto et al., 2007; Yoshida et al., 2000)
ATF4/ATF4 Induces pro-apoptotic gene CHOP
Regulates stress response genes
Regulates genes in oxidative stress and angiogenesis
(Harding et al., 2003; Lange et al., 2008; Roybal et al., 2004)
CHOP/DDIT3 Regulates pro- and anti-apoptotic genes and initiates apoptosis
Induces eIF2α dephosphorylation via upregulation of GADD34
(Marciniak SJ, 2004; McCullough et al., 2001)
CREBH/CREBH Activates acute-phase genes and regulates inflammatory response (Zhang et al., 2006)
Regulator of protein translation
eIF-2α/EIF2A Inhibits eIF2B to arrest general protein translation
Increases translation of ATF4 and CHOP during ER stress
(Harding et al., 1999; Ron and Walter, 2007)
ER Chaperones
Bip (GRP78)/HSPA5 Binds unfolded or misfolded proteins and promotes protein folding/refolding (Ting and Lee, 1988)
Calnexin/CANX Recognizes oligosaccharide and promotes glycosylated protein folding (Ware et al., 1995)
Calreticulin/CALR promotes glycosylated protein folding and quality control
Binds to calcium and functions as calcium buffering chaperone in ER
(Michalak et al., 1999)
PDI/PDIA2 Catalyzes disulfide bond formation (Hatahet and Ruddock, 2009)
ERdj5/ERdj5 Functions as a disulfide reductase to degrade misfolded proteins in the ER (Ushioda et al., 2008)