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Abstract

Cancer is a multistep process resulting in uncontrolled cell division. It results from aberrant

signaling pathways that lead to uninhibited cell division and growth. Various recent

epidemiological studies have indicated that consumption of cruciferous vegetables such as garden

cress, broccoli, etc., reduces the risk of cancer. Isothiocyanates (ITC) have been identified as

major active constituents of cruciferous vegetables. ITCs occur in plants as glucosinolate and can

readily be derived by hydrolysis. Numerous mechanistic studies have demonstrated the anti-cancer

effects of ITCs in various cancer types. ITCs suppress tumor growth by generating reactive

oxygen species or by inducing cycle arrest leading to apoptosis. Based on the exciting outcomes of

pre-clinical studies, few ITCs have advanced to the clinical phase. Available data from pre-clinical

as well as available clinical studies suggests ITCs to be one of the promising anti-cancer agents

available from natural sources. This is an up-to-date exhaustive review on the preventive and

therapeutic effects of ITCs in cancer.
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1. Introduction

Cancer is the leading cause of deaths worldwide, accounting for 7.6 million deaths

according to recent statistics. The number of deaths due to cancer is projected to increase to

13.1 million in 2030. These figures implicate marginal efficacy of present standard available

therapies to cancer patients, implying the urgent need to identify new strategies/agents that

can be included in cancer preventive or therapeutic regimen.

Historical evidence purports nature being a prodigious source of many drugs and drug leads

for various ailments, including cancer [1]. Several epidemiological studies have been

published over the past few decades that indicate a strong correlation between intake of

fruits & vegetables and reduced risk of cancer [2–4]. Basic benefits of using bioactive

dietary agents are low cost, well known applications in traditional medicinal system,

accessibility and minimal or no toxicity.

Epidemiological and case-control studies continue to support the notion that consumption of

cruciferous vegetables reduces the risk of developing various types of cancers such as

pancreatic, prostate, ovarian and breast [5–11]. Isothiocyanates (ITCs) occur in cruciferous

vegetables as glucosinolates and are converted to ITCs by the action of the enzyme

myrosinase. ITCs from these vegetables are also released by cutting or chewing or by

intestinal micro flora present in humans [12] (Figure 1). ITCs have been shown to have

substantial chemopreventive activity against various human malignancies [13, 14]. Some of

the widely studied ITCs that have potent anti-cancer effects are Allyl isothiocyanate (AITC),

Benzylisothiocyanate (BITC), Phenethylisothiocyanate (PEITC) and Sulforaphane (SFN).

Unless stated, most of the studies mentioned in this article used 95–98% pure ITCs for

evaluating anti-cancer effects. This exhaustive review highlights the specificity of ITCs

against various targets in cancer.

2. Chemoprevention by ITCs

An individual's susceptibility to cancer is determined by numerous factors including

maintenance of a critical balance between phase I and phase II enzymes. Phase I primarily

consists of cytochrome P450 enzymes, which play an important role in metabolizing the

xenobiotics and carcinogens. However, in this process, several chemicals or pro-carcinogens

are activated or converted into highly reactive electrophilic metabolites. The generated

electrophiles can disturb the genomic stability by causing DNA damage. Chemopreventive

effects of ITCs are exerted by inhibition of the bio-activation of carcinogens by phase I drug

metabolizing enzymes [15–18]. The mechanistic studies by Morse et. al. and others indicate

that administration of ITCs prevents the tumor promoting effects of various chemical

carcinogens in different animal models [19–21]. PEITC has been shown to possess

significant chemopreventive properties against tobacco-induced carcinogens in rodent

models of lung and esophageal cancers [22, 23]. AITC also inhibits NNK (a tobacco derived

carcinogen) induced tumors in rats [24]. Similar to other ITCs, AITC induces phase II

detoxifying enzymes quinone reductase and glutathione S-transferase in the animal tissues

[25]. Cytochrome P450E1 and N-dimethylnitrosoamine demethylase (NDMAd) are major

enzymes that cause bio-activation of tobacco specific nitrosoamines. These enzymes can be
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inhibited by glutathione conjugates of ITCs [26]. ITCs also inhibit various isoforms of

CYP450 directly; for example BITC suppresses cytochrome P450 2E1 while sulforaphane

inhibits cytochrome P450 1A2 [27, 28]. Sulforaphane also has been shown to inhibit steroid

and xenobiotic receptor (SXR), a nuclear hormone receptor that regulates expression of

CYP3A4 [29]. Zhou et. al. showed specific antagonism by sulforaphane to inhibit drug

clearance due to SXR-induced activity of CYP3A4.

Phase II enzymes like glutathione-S-transferase (GST), NADPH quinine oxidoreductase and

UDP-glucuronosyltransferases play an important role in detoxifying carcinogens as well as

xenobiotics. ITCs are known to induce phase II enzymes, which further explain the cancer

chemo-preventive activity of ITCs [28, 30–34]. GST catalyzes the conjugation of

glutathione with electrophilic compounds making them more water soluble and facilitating

their removal from the body [35, 36]. It is well known that ITC-GSH conjugate is exported

out by MRPs [37]. As a result of continuous conjugation and efflux of the conjugate,

intracellular GSH level drops significantly within 3h of ITC treatment. This time also

coincides with the induction of GST and MAPK [38]. Due to non-availability of GSH, ITCs

bind with other vital cellular proteins causing their thiocarbamoylation [37]. Although being

electrophilic, no studies have reported direct binding of ITCs to cellular DNA [39]. In

addition PEITC has been shown to de-methylate the promoter region of GSTP1 to induce

the expression of GSTP1 [40]. ITCs also induce GSTs which scavenges ROS [41]. The

action of phase II enzymes is primarily regulated by the antioxidant or electrophile response

element (ARE/EpRE). The latter can be activated by the transcription factors such as the

basic leucine zipper (bZIP) Nrf2, which heterodimerizes with Maf G/K to exhibit its effects.

ITCs induce the Nrf2 transcription factor to activate ARE, which in-turn translates into the

activation of mitogen activated protein kinase (MAPK) ERK/JNK, PI3K and PKC [41–44].

SFN induces epigenetic modifications by inhibition of HDAC 1, 4, 5 and 7. In addition, SFN

induced de-methylation at the promoter region of Nrf2 causes enhanced expression of Nrf2

in the TRAMP mice model for prostate cancer [45]. SFN's chemopreventive effects mainly

depend on induction of phase II enzymes through the activation of antioxidant response

elements like Keap1/Nrf2 [31, 46, 47]. SFN mediated induction of Nrf2 was found to be

through the activation of heme oxygenase 1 and inhibition of p38 in hepatoma cells [42].

Furthermore, several studies have shown induction of thioredoxin reductase as well its

substrate thioredoxin by SFN in various cancer cell lines [48–50]. Inhibition of key survival

pathway such as NF-kB and AP-1 by ITCs also contributes to the chemopreventive effects

of ITCs [44].

ITCs thus modulate phase I and II enzymes to reduce the bio-activation of carcinogens as

well as enhanced detoxification. This dual mechanism leads to reduced binding of

carcinogens with the DNA and hence less mutagenic or carcinogenic effects.

These studies suggest existence of mutually distinct mechanisms of chemo-preventive and

chemo-therapeutic effects of ITCs. Specific targets have been identified that mediate

chemotherapeutics effects of different ITCs against human cancers [30, 41, 44, 51–53].

These targets might vary with the structural variations amongst ITCs as well as the nature

and origin of cancer. Several studies demonstrate that ITCs modulate cancer cell signaling

by acting on multiple targets to suppress growth and progression of cancer cells [41, 53].
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3. Uptake of ITC by Cancer Cells

The uptake of anti-cancer agents is an important limiting factor for efficacy. Most of the

ITCs can be taken up by the cells through passive diffusion. The cellular uptake of ITCs

correlates with the induction of phase II detoxifying enzymes important for chemo-

preventive activity. It was observed that the intracellular concentrations of ITCs can reach

up to 100–200 folds higher than the extracellular concentrations. For example when

hepatoma cells were incubated with 100μM SFN for about 30 minutes, the intracellular

concentrations reached about 6.4mM [38]. The magnification of intracellular concentration

was due to the formation of dithiocarbamates, as ITCs rapidly conjugate with thiols,

particularly GSH. Uptake of ITCs in cancer cells was GSH dependent. The uptake was

reduced if GSH concentration was increased. The ITC-GSH conjugate being the substrate of

MRPs is transported out of the cells. This mechanism of uptake and cellular accumulation

can be vital in designing the dose regimens of these ITCs. The dose will require the

adjustment for high accumulation as well as to compensate for the rapid export through

transport proteins likes MRPs [54]. The shuttling of ITC-GSH causes prompt depletion of

intracellular GSH, resulting in the perturbation of cellular redox homeostasis. This could be

one plausible mechanism of reactive oxygen species (ROS) generation by ITCs.

4. Chemotherapeutic Targets

A. Benzylisothiocyanate (BITC)

BITC occurs in cruciferous vegetables like cabbage, mustard, watercress, cauliflower and

horseradish that constitute a significant proportion of our daily diet. Accumulating evidence

suggests the anti-cancer effects of BITC through suppression of initiation, growth and

metastasis of human cancers in various mouse models [55–61]. BITC induces apoptosis

selectively in cancer cells through multiple mechanisms [55, 60, 62]. Major anti-cancer

effects of BITC are due to the generation of reactive oxygen species. BITC causes cell cycle

arrest as well as disruption of mitochondrial membrane potential to initiate mitochondrial

pathway of apoptosis [57, 63]. Studies from our laboratory have demonstrated the anti-

cancer effect of BITC against pancreatic tumor growth via inhibition of key molecules

overexpressed in cancer such as AKT, STAT3, HDAC and NF-kB (Table 1) [7, 55, 56, 59].

The targets of BITC can be divided as per their role against cancer promoting mechanisms.

A.1. Cell Proliferation and Growth—PI3K/AKT pathway has been shown to be

activated in about 59% of the pancreatic tumors, and it also promotes cell division in other

cancer forms [64, 65]. PI3K stimulation results in the phosphorylation of AKT at Thr-308

and Ser-473 through PDK1 activation [66]. Studies by Boreddy et. al. have shown that

BITC inhibits PI3K/AKT signaling. BITC prevents the phosphorylation of AKT at both

Thr-308 and Ser-473 along with suppression of PI3K (Tyr-458), PDK1 (Ser-241), mTOR

(Ser-2448) [55]. The inhibition of mTOR signaling by BITC was also observed in human

prostate cancer cells [67]. These studies showed that BITC had negligible effect on normal

human pancreatic ductal epithelial (HPDE-6) cells, suggesting the specificity of BITC

towards cancer cells [55]. These results also showed up-regulation of pro-apoptotic proteins

like Bim, p21 and p27 due to nuclear accumulation of Forkhead Box Protein 1 (FOXO1).

Inhibition of phosphorylation of FOXO1 (Ser-256) and Forkhead Box Protein 3a (FOXO3a)
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by BITC was due to the de-phosphorylation of AKT in pancreatic cancer cells [55].

Interestingly, BITC also reduced acetylation of FOXO proteins by reducing the level of

CREB-binding protein (CBP) protein [55]. FOXO1 suppression was also shown to be

responsible for BITC initiated cell-death in breast cancer cells [68].

NF-kB is a transcription factor that regulates cellular inflammation, immunity and

proliferation [69, 70]. Batra et. al. showed that BITC-mediated downregulation of HDAC1

and HDAC3 expression was associated with the acetylation of NF-kB in pancreatic cancer

cells [56]. BITC treatment significantly suppressed the phosphorylation of NF-kB at Ser-276

and Ser-536 in BxPC-3 and Capan-2 cells in a dose and time dependent manner [56, 61].

BITC reduced NF-kB protein expression in BxPC-3 cells but not in Capan-2 cells,

indicating that BITC acts differentially on different cell lines [56]. The Capan-2 cells have

wild type p53, whereas BxPC-3 cells harbor mutated p53, hence the role of p53 in BITC

mediated down-regulation of NF-kB expression cannot be ruled out and remains to be

explored further. The mechanistic studies revealed that neither IkB phosphorylation nor

expression levels were altered by BITC, whereas IKK expression was down-regulated.

Hence, down-regulation of IKK by BITC treatment could be the reason for inhibition of NF-

kB phosphorylation (Ser-536) [56, 61].

Signal Transducer and Activator of Transcription 3 (STAT3) is hyper-activated in

significant number of malignancies like breast cancer, pancreatic cancer, gastric cancer and

head & neck cancer as well as in cancer stem cells where it enhances tumor aggressiveness

and progression [71–73]. Sahu and Srivastava have shown that BITC suppresses the

phosphorylation (Tyr-405 & Ser-727) and expression of STAT3 in pancreatic cancer cells

lines such as BxPC-3, PanC-1, Capan-2 and MIA PaCa-2 [59]. The role of STAT3 in the

anti-cancer effects of BITC was confirmed by STAT3α overexpression or through activation

by Interleukin-6 (IL-6), which abrogates the effects of BITC (Table 1) [59].

A.2.Angiogenesis—The growing tumors are nourished through processes such as

angiogenesis and neovascularization. Angiogenesis is mainly promoted by hypoxia

inducible factor (HIF-1α) and vascular endothelial growth factor (VEGF) [74]. STAT-3 has

been shown to be a positive regulator of VEGF and HIF-1α [75, 76]. Boreddy et al.

demonstrated that BITC inhibits angiogenesis in chicken chorioallantoic membrane (CAM)

and rat aortic ring assay [77]. This clearly indicates the anti-angiogenic potential of BITC.

BITC-mediated suppression breast cancer xengrafts was associated with inhibition of critical

angiogenic factors like CD31 and VEGF [78]. Furthermore, BITC down-regulated the

expression of HIF1-α, VEGFR-2, MMP-2, Rho A, Rho C and RAC1, 2 and 3 in pancreatic,

but the inhibition of VEGF, HIF-1α and MMP-2 was not observed in STAT3

overexpressing BxPC-3 cells [77]. This undoubtedly suggests that inhibition of tumor

growth and angiogenesis by BITC correlates with STAT3 inhibition.

A.3.Mitochondrial Cell-death—Generation of reactive oxygen species (ROS) is an

important mechanism to induce cell death, specifically in cancer cells. As shown by us and

others, BITC significantly induced ROS generation in pancreatic cancer cells and glioma as

well as other cancer models [57, 79–82]. ROS generation leads to disruption of

mitochondrial membrane potential and release of pro-apoptotic molecules resulting in
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activation of caspase-mediated cell death [63, 81, 83]. Furthermore, BITC-mediated down-

regulation of MCL-1 in human leukemia cells was also found to be correlated with the

mitochondrial pathway of apoptosis [84]

A.4.Cell-cycle Arrest—ROS induced by BITC also DNA damage and G2/M cell cycle

arrest as detected through increased phosphorylation of H2A.X (Ser-139) and ChK2

(Thr-68) [57, 60, 61]. Antioxidants block the effects of BITC confirming the role of ROS in

cell cycle arrest [57]. BITC treatment increased the phosphorylation of the MAP kinases,

such as ERK (Thr202/Thy204), JNK (Thr183/Tyr185) as well as p38 (Thr180/Tyr182) in a

dose-dependent fashion [57, 62]. It was later found that BITC-induced cell cycle arrest was

executed only through ERK, while the other MAP kinases were playing role in the induction

of apoptosis [57].

A.5.Invasion and Metastasis—Metastasis is initiated by key regulators like matrix-

metalloproteinases, Twist and β-catenin. A study showed that BITC treatment inhibited cell

migration and invasion in lung cancer cells. This was accompanied with reduced expression

of MMP-2, Twist and β-catenin [80]. Another study showed that oral administration of 5 and

10mg/kg BITC suppressed the expression of MMP-2& 9 in the sera and lungs of mice

injected with 4T1 breast cancer cells [85]. BITC also inhibits the process of epithtelial to

mesenchymal transition through FOXQ1 suppression in breast cancer cells, leading to

reduced metastatic potential [86]. The data available for anti-metastatic effects of BITC is

insufficient to prove the anti-metastatic efficacy. Hence, additional elaborate studies are

required to establish the role of BITC in metastasis.

A. 6. In vivo Studies—Our in vivo studies indicated that BITC is well tolerated at a dose

of 12 μmol/day (72mg/kg) in mice. Interestingly, in vivo tumor growth was markedly

arrested by BITC treatment in athymic nude mice as compared to controls [59]. These

results showed that after 6 weeks of 12 μmol/day BITC treatment by oral gavage, average

tumor volume in BITC-treated mice was about 48% less as compared to the control group

[59]. LC-MS analysis showed that after 46 days of BITC (12 μmol/day) treatment, mean

concentration of 6.5±0.1 μmol/L (39mg/L) (n=10) & 7.5±0.3 μmol/g (45mg/g) (n=10) BITC

was observed in the plasma and tumors of treated mice respectively [55]. These results

suggest a reasonable bioavailability of BITC and also that the therapeutic concentration

could be achieved in vivo by oral administration. No untoward side effect or change in body

weight was observed, the suggesting that 12μmol/day BITC was relatively safe.

Furthermore, suppression of in vivo angiogenesis by 12 μmol/day (72mg/kg) treated mice

was observed by reduction of hemoglobin content by 76% in matrigel plugs implanted in the

mice as well by 61% in the excised tumor xenografts, as compared to respective controls

[77]. These results signify the potential anti-tumor and anti-angiogenic effects of BITC. The

molecular targets of BITC have been described in detail in Table 1. Interestingly, dietary

BITC also suppressed the growth of cancer stem cell in MMTV-neu breast cancer transgenic

mice model along with inhibition of major stem cell markers like Oct4, SOX-2 and Nanog

[87]. In contrast, the activation of NOTCH2 signaling by BITC was found to impede the

therapeutic benefits of BITC [88]. A recent study from our group showed that the absorption

and bioavailability of BITC can be enhanced by making the nanoemulsion of BITC [89].

Gupta et al. Page 6

Mol Nutr Food Res. Author manuscript; available in PMC 2015 August 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



A. 7. Toxicity studies—No major evidence of BITC side effect exists for the doses that

are commonly used for anti-cancer studies. A study has shown that oral administration of

BITC (0, 50, 100 and 200mg/kg) for 4 weeks caused reduction in body weight and reduced

food consumption only at highest doses [90]. In addition, the study revealed that BITC

treatment caused increase in serum cholesterol and decrease in triglycerides, accompanied

with renal dysfunction. Furthermore, in this study BITC treatment reduced the weight of

almost all the organs except the adrenals, where the weight was increased. Some transitory

hematological changes like reduced hemoglobin and lymphocyte count with increased

platelets, eosinophils and neutrophils were observed in BITC treated rats. It is pertinent to

note that no significant signs of toxicity were observed at the dose of 50mg/kg. Although

these changes were observed at higher doses (100 and 200mg/kg) of BITC, no mortality was

reported [90]. The high doses like 100–200mg/kg BITC, which were associated with some

side effects, are unlikely to be used for anti-tumor effects. So far the therapeutic doses of

BITC, which suppresses in vivo tumor growth are much lower and not associated with any

side effects and hence can be considered relatively safe.

B. Phenethylisothiocyanate (PEITC)

PEITC is another isothiocyanate that occurs conjugated with glucosinolate in many

cruciferous plants. PEITC is abundantly present in plants such as watercress, garden cress

and in some non-cruciferous plants like turnips and radishes [30, 91]. Watercress is the most

prolific source of PEITC, which can release approximately 2–6 mg PEITC/ounce (0.07 to

0.21mg of PEITC/g) in humans [91, 92].

The effective concentrations of PEITC vary from 0.12μM to 14μM [93, 94]. Like BITC,

PEITC also induces ROS generation selectively in cancer cells [95, 96]. Mechanistic studies

have shown that PEITC disrupts mitochondrial electron transport chain (ETC) by inhibiting

Complex I and III activity and reduces oxygen consumption rate in prostate cancer cells [97,

98]. Furthermore, PEITC is known to inhibit ROS-detoxifying mechanisms to enhance

ROS-mediated cytotoxicity [96–98]. This was further proven in cells with varying levels of

anti-ROS mechanisms that showed differential sensitivity towards PEITC [99, 100].

Two general mechanisms that have been identified for the anti-cancer activity of PEITC

include cell cycle arrest and apoptosis induction [44, 101, 102]. Few studies also suggest

anti-angiogenic and anti-metastatic effects of PEITC by mechanisms similar to BITC [80,

103–106]. PEITC has been shown to act on about 30 different targets present in cancer cells

[107]. Mi et al. have shown that PEITC alters the function of critical amino acids of proteins

and peptides through covalent interactions [107].

B.1.Cell Proliferation and Growth—Studies suggest that PEITC has multiple targets

like AKT, EGFR and HER2 in cancer cells, which promote anti-apoptotic mechanisms in

cancer cells. As discussed earlier, AKT (Protein kinase B) is frequently overexpressed in

cancers and regulated by oncogenes like EGFR and HER2 [108]. Our studies demonstrated

that PEITC inhibits EGFR and HER2 in ovarian and breast cancer cells [95, 109]. PEITC

caused significant inhibition of activated EGFR (Tyr1068) to suppress the growth of ovarian

cancer cells. Furthermore, PEITC reduced the phosphorylation of AKT and mTOR
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expression [109]. In this study PEITC also disrupted the complex of Raptor and Rictor with

mTORC1 and mTORC2 [109]. In another study we observed inhibition of HER2 and AKT

in breast cancer cells. These observations suggest that PEITC inhibits AKT activation by

suppressing EGFR and HER2 expressions to suppress anti-apoptotic signaling in cancer

cells (Table 1). Furthermore, PEITC also inhibits HDACs, the major epigenetic regulators

resulting in the inhibition of androgen receptor in prostate cancer cells [40].

B.2.Angiogenesis—Similar to BITC, PEITC also inhibits vascular endothelial growth

factor (VEGF), a major promoter of angiogenesis. Xiao and Singh showed suppression of

VEGF by PEITC, which was later shown to be mediated through suppression of HIF1α

[105, 110–112]. Based on the evidence provided in these studies, it can be suggested that

PEITC inhibits angiogenesis mainly by inhibiting VEGF.

B.3.Mitochondrial Cell-death—Accumulating evidence from several studies showed

induction of apoptosis signaling by PEITC. PEITC has been shown to activate death

receptors and Fas-mediated extrinsic apoptotic pathway in oral and cervical cancer cells

[113–115]. PEITC treatment also resulted in the activation of intrinsic pathway of apoptosis.

PEITC modulates mitochondrial proteins like BCL2, BID and BAX, causing the release of

cytochrome c into cytosol to induce intrinsic apoptosis pathway [94, 116–119]. However,

the release of cytochrome c by PEITC treatment into cytosol to induce apoptosis was

contradicted by a study conducted by Wu et. al. [120]. Further in-depth studies are thus

required to delineate the exact mechanism of PEITC.

B.4.Cell-cycle Arrest—PEITC as well as its N-acetyl cysteine conjugate causes

activation of Retinoblastoma (Rb) protein in prostate cancer cells, leading to attenuation of

cell cycle progression [39, 121]. Furthermore, a G0/G1 phase cell cycle arrest by PEITC was

associated with activation of p53 in oral squamous carcinoma cells, in multiple myeloma,

osteogenic sarcoma and breast cancer cells and G2/M cell cycle arrest in prostate cancer

cells [51, 52, 116, 117, 122, 123]. Interestingly, lung carcinoma cells expressing mutated

p53 were shown to be more sensitive to PEITC as compared to cells with wild type p53

expression [107, 124].

B.5.Invasion and Metastasis—PEITC inhibits cancer cell invasion by inhibiting matrix

metalloproteinases (MMP) and suppresses activity of ERK and NF-kB to inhibit metastasis

[103, 104]. We recently demonstrated in vivo anti-metastatic potential of PEITC using a

unique mouse model of breast cancer metastasis [94]. This model utilizes MDA-MB-231-

Luc2 brain-seeking breast cancer cells that lodge in the brain from blood circulation when

injected into the left ventricle of mouse heart. These cells later grow to form metastatic

tumors in brain. Oral administration of 10 μmol PEITC (65mg/kg) for 10 days significantly

prevented the seeding of breast cancer cells into the brain in this model. We also observed

that PEITC administration suppressed the growth of metastasized tumor in the brain and

enhanced the survival of mice bearing tumors in the brain [94]. This was the first evidence

of in vivo anti-metastatic effects of PEITC in breast cancer model, but further studies are

required to establish similar efficacy in other cancer forms. The molecular targets of PEITC

have been described in detail in Table 1.
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B.6. In vivo Studies—PEITC mediated inhibition of anti-apoptotic pathways was

observed in the preclinical mouse model studies [125]. PEITC has a dose dependent

bioavailability of about 70 – 110% by oral administration, which is a probable reason for in

vivo efficacy [126]. Treatment of brain metastatic breast cancer has always been a problem

due to the presence of blood brain barrier. Organ distribution study has revealed a fair

availability of PEITC in brain suggesting better chances of PEITC to cross blood brain

barrier [127]. This could be the reason for the anti-metastatic effects of PEITC [94].These

studies indicate a high anti-tumor efficacy of PEITC in all organs including brain by oral

administration. Orally administered PEITC causes significant inhibition of major oncogenic

pathways like EGFR, HER2 and AKT in various in vivo cancer models leading to tumor

growth suppression [94, 95, 109, 128]. These results clearly re-enforce potential for in vivo

efficacy of PEITC.

B.7.Toxicity Studies—In addition to the beneficial effects, it is also essential to evaluate

the probable side effects of PEITC. It was observed that i.p. administration of 80 and

160mg/kg PEITC caused increase in body weight of mice but reduction in the weights of

liver and spleen [129]. Interestingly, preventive effects of PEITC were observed on

acetaminophen induced hepatotoxicity and mortality [130]. These mutually contradicting

observations make it important to establish a well-defined toxicity profile of PEITC using

appropriate controls and population size.

B.8.Clinical Studies—Three clinical studies are currently under progress to test anti-

cancer effects in humans. A phase I lung cancer study with PEITC conducted at MD

Anderson Cancer Center was recently completed; however, the findings have not yet been

published. Another phase I clinical study at the same institution has been planned to test the

anti-leukemic effects of PEITC. Notably, a recent phase I clinical trial (NCI CN-55120)

reported that 10μM PEITC can be achieved in the plasma after intake of 200 mg PEITC

orally in human volunteers [131]. A phase II trial is also under progress in lung cancer

patients at the Masonic Cancer Center, University of Minnesota in collaboration with the

National Cancer Institute. The outcomes of these studies will provide data on the efficacy

and toxicity of PEITC in humans.

C. Sulforaphane (SFN)

SFN is an isothiocyanate mainly present in broccoli and Brussels sprouts. Studies have

shown that SFN is highly effective in blocking carcinogenesis. SFN inhibits HDAC activity

to promote cell cycle arrest and apoptosis in Nrf2−/− cells suggesting Nrf2 independent

mechanism of SFN [132, 133].

C.1.Cell proliferation and Growth—SFN acts on certain molecular targets like survivin

and NF-kB that are vital for cancer cell survival [134, 135]. SFN induces apoptosis in breast

cancer cells by the inhibition of Estrogen receptor (ER), EGFR1 and HER2, which are

particularly important for the growth of breast cancer [136]. Recently SFN was shown to

cause DNA damage through enhanced acetylation of DNA repair proteins. This effect was

shown to be specific for cancer cells as there were no epigenetic changes or DNA damage

observed in non-cancer cells [137]. Interestingly, based on the methylation of DNA and
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Cyclin D2 by SFN, a clinical trial (NCT01265953) has also been initiated at Portland, VA

Medical Center [138]. Studies suggest significant epigenetic changes induced by SFN in

various cancer models.

C.2.Angiogenesis—Very few studies have reported the anti-angiogenic effects of SFN.

The suppression of VEGF and MMP-2 has been shown by SFN treatment [139, 140].

Another study indicated that VEGF suppression was mediated through inhibition of

FOXO1/AKT pathway [141]. However, no further evidence exists for the anti-angiogenic

effects of SFN. Due to the lack of sufficient evidence, anti-angiogenic activity cannot be

considered as a critical mechanism of SFN.

C.3.Mitochondrial Cell-death—Another important mechanism of action of SFN was

inactivation of inhibitors of apoptosis proteins (IAPs) [142]. SFN-mediated IAP inhibition

was associated with BCL-2 inhibition suggesting activation of intrinsic apoptosis pathway

[143]. SFN also causes generation of mitochondrial ROS in cancer cells that further leads to

release of cytochrome c into cytosol augmenting cell apoptosis [144]. Interestingly, a ROS

independent activation of MEK/ERK pathway was shown to lead to caspase dependent

apoptosis in neuroblastoma cells [145].

C.4.Cell-cycle Arrest—SFN was shown to induce p27-mediated G0/G1 phase cell cycle

arrest [146]. In addition SFN causes irreversible cell cycle arrest in G2/M phase followed by

caspase-mediated apoptosis [147]. Recent studies have shown that SFN induces G2/M arrest

through the activation of p21 (CIP1/WAF1) and inhibition of Cdc2/Cyclin B1 complex

independent of p53 [148]. This study showed that apoptosis following G2/M arrest was

induced by caspase and PARP activation in leukemia cells [148]. Specific activation of

MAP kinases like ERK, JNK and p38 in response to SFN treatment was shown to be

involved in inducing cell cycle arrest [149, 150].

C.5.Invasion and Metastasis—SFN exhibits potent anti-metastatic effects by

suppressing cell migration and invasion. Jee et. al. observed that the anti-cell migratory

effect of SFN was associated with MMP suppression [151]. Recently EMT was shown to be

an important mechanism of SFN to inhibit cell migration and metastasis in different cancer

types [143, 151-153]. Li et. al. have shown that SFN modulates Sonic hedgehog pathway to

suppress self-renewal capacity of the pancreatic cancer stem cells and reduce EMT

characteristics [143]. Significant suppression of SNAIL and ZEB-1 marked by the re-

expression of E-cadherin was observed by SFN treatment that lead to reversal of EMT

[153]. EMT prevention by SFN was also associated with induction of miR-200c and re-

expression of the estrogen receptor [154]. The details of molecular targets of SFN have been

described in Table 1.

C.6.In vivo Studies—Kanematsu et. al. demonstrated the in vivo efficacy of SFN against

tumor growth and metastasis in breast cancer [152]. Pharmacokinetic studies show good

bioavailability of SFN after oral administration. A concentration of 20μM in plasma was

achieved after oral administration of 50 μmol SFN/rat (35 mg/kg) [155]. In a human study it

was shown that after consumption of 200 μmol SFN (35.5mg), about 2 pmol/mg (0.355

ng/mg) SFN was detected in the breast tissue suggesting its availability at the tumor site
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[156]. The cumulative concentration of SFN in the small intestine was shown to be

sufficient to inhibit tumor growth in the colonic tissue [157]. These studies clearly indicate

bioavailability and favorable pharmacokinetic profile of SFN which can be instrumental for

future development of SFN as an anti-cancer agent.

C.7.Toxicity Studies—Along with the anti-cancer activity of SFN, it is important to study

its toxicity to assess to benefit to risk ratio. An increase in hepatoxicity indicators AST, ALT

and LDH in plasma was observed with SFN (1.6mg/mouse/day (64mg/kg) for 14 weeks)

administration in mouse bearing Benzo(a)pyrene [B(a)P] (100mg/kg b.wt.) induced lung

cancer [158]. Interestingly, opposite findings were reported in another study. The rats were

pre-treated with 3mg/kg SFN by intra-peritoneal injection. One hour later an intestinal

ischemia/reperfusion surgery was performed to induce toxicity. It was observed that SFN

administration increased the SOD levels along with reduction of myeloperoxidase, ALT and

AST levels in serum [159]. Both the studies used significantly different concentrations of

SFN, which can explain the opposite observations. However, due to the lack of confirmatory

evidence, overall no conclusion can be drawn about the toxicity of SFN.

D. Allylisothiocyanate (AITC)

AITC is an aliphatic isothiocyanate derived from sinigrin and is excreted as NAC conjugates

in the urine [160]. A recent study demonstrated a short term reversible DNA damage when

AITC was provided in the diet [161]. Cancer cells in general are more susceptible to DNA

damage leading to cell death. This explains the enhanced sensitivity of cancer cells towards

AITC. The cytotoxic effects of AITC were shown to be specific to cancer cells [162]. Smith

et. al. demonstrated apoptosis induction by AITC in colorectal cancer cells [163].

D.1.Cell Proliferation and Growth—AITC targets specific signaling molecules to

suppress cancer cell growth. ERK and JNK signaling were involved in the activation of

AP-1 by AITC to suppress cancer cell growth [164, 165].

D.2.Mitochondrial Cell-death—Geng et. al. observed that AITC resulted in the

phosphorylation of BCL-2 to induce apoptosis, whereas mutated BCL-2 abrogated the

cytotoxic effects of AITC [166].

D.3.Cell-cycle Arrest—Srivastava et. al. demonstrated the in vivo efficacy of AITC in

prostate cancer [167]. This study indicated that cell growth arrest in G2/M phase by AITC

was associated with the inhibition of cyclin B1, cell division cycle (Cdc)25B and Cdc25C.

D.4.Invasion and Metastasis—The anti-metastatic effects of AITC have been

demonstrated through suppression of cell migration and invasion. It was observed that AITC

inhibits MMP2/9 to exhibit anti-metastatic effects in hepatoma cells [168]. Furthermore,

AITC exerts anti-angiogenic effects to suppress tumor growth by down-regulating

angiogenic factors like nitric oxide and tumor necrosis factor α (TNFα) (Table 1).

D.5.In vivo Studies—AITC was shown to inhibit tumor and ascites formation from

Ehrlich ascites tumor cells in mice. This study also revealed enhanced survival of ascites-

bearing mice with AITC treatment [169]. Furthermore, i.p administration of 25μg AITC/
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animal (1 mg/kg) in mice inhibited tumor-directed capillary formation suggesting inhibition

of angiogenesis. AITC treatment also reduced serum nitric oxide and TNFα levels indicating

reduction in inflammatory markers by AITC [170]. These studies suggest a good in vivo

efficacy of AITC. Nonetheless, more studies are required to confirm the in vivo activity

against contemporary targets in cancer.

D.6.Toxicity Studies—Pre-clinical studies have demonstrated some toxicity induced by

AITC. Significant hematological changes were observed with AITC treatment.

Subcutaneous administration of 20 mg/kg AITC reduced WBC counts by 25% along with

marked reduction of lymphocytes and monocytes. In addition, increase in neutrophil and

corticosteroid levels were observed indicating stress induced by AITC. The AITC treatment

caused reduction in thymus weights while increasing the weights of adrenals [171]. These

observations suggest significant effect of AITC on blood profile and organ weights.

Interestingly in another study, i.p administration of 25μg AITC/animal every day for 5

consecutive days showed reduced WBC count at the 9th day after starting the treatment

[172]. Perhaps the differences between these observations could be due to different doses

and the time points of analysis after AITC administration. Another study showed increased

AST levels at high doses of AITC (100–150 mg/kg), but no change was observed at lower

dose (50 mg/kg) suggesting dose dependent toxicity induced by AITC [173]. Interestingly,

oral administration of AITC resulted in bladder toxicity in rats. This was found due to free

AITC cleaved from urinary metabolites [174]. Taken together studies suggest that AITC

exhibits toxic side effects, cautioning its use. Further in-depth studies are required to

establish the toxicity profile of AITC so that the dose for anti-cancer effects can be titrated

effectively.

5. Potential for Combination Therapy

Cancer cells contain multiple aberrant signaling pathways which lead to drug resistance and

therapy failure in many patients. Combination therapy is known to kill cancer cells more

effectively through diverse mechanisms simultaneously. ITCs exhibit a diverse range of

cellular targets for anti-cancer effect. This property of ITCs makes them highly desirable for

combinatorial therapeutic approaches. Several combination strategies have been tested in

pre-clinical studies by combining ITCs amongst themselves or with conventional or new

anti-cancer therapies (Table 2) [58, 175-182].

Radiation therapy is an important intervention for majority of cancers. Radiation has been

shown to activate some important cancer cell survival signaling molecules like AKT, ERK

and MCL-1 which lead to reduced efficacy. Our studies have shown that when BITC was

combined with radiation therapy, a 2.8 fold increase in apoptosis and cleavage of caspase-3

was achieved in pancreatic cancer cells [58]. In addition to increased apoptosis, inhibition of

NF-kB and activation of p38 was also observed with the combination of BITC and radiation

therapy [58]. The combination of BITC or SFN with the radiation therapy caused increased

G2/M cell cycle arrest [58, 175]. Combination of SFN with radiation therapy also showed

inhibition of activation of critical molecules like AKT, ERK and MCL-1 along with

induction of endoplasmic reticulum stress, explaining its efficacy [175, 183-187].
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TNF-related apoptosis-inducing ligand (TRAIL) is a potential chemotherapeutic agent.

Interestingly, TRAIL death receptors are highly expressed on cancer cells but not on normal

cells making the cancer cells more susceptible to TRAIL-induced apoptosis as compared to

normal cells [188, 189]. However, resistance to TRAIL is reported in many cancer cells

[189, 190]. Our studies showed that BITC sensitized pancreatic cancer cells to TRAIL-

induced apoptosis by activating both intrinsic and extrinsic pathway [191].

Accumulating evidence shows that combination of ITCs with conventional

chemotherapeutics improves the efficacy against resistant cancer cells. Studies suggest

synergistic activity of ITCs with common anti-cancer agents like cisplatin, adriamycin,

etoposide, paclitaxel, metformin, vorinostat and docetaxel [176, 181, 192-194]. Both BITC

and PEITC increased the apoptotic effects of cisplatin through depletion of beta-tubulin, but

the combination did not affect DNA platination [180, 192]. Furthermore, reversal of the

resistance to cisplatin was observed with PEITC, which was mediated by depletion of

cellular GSH [176]. The combination of Metformin and PEITC also showed high efficacy in

cisplatin resistant cancer cells [177]. PEITC and SFN caused inhibition of anti-apoptotic

proteins like protein kinase C (α, β, ε and ς) and telomerase, while increasing pro-apoptotic

protein kinase Cб to enhance the apoptosis caused by adriamycin and etoposide [194]. Also,

the combination of adriamycin with SFN-induced sensitivity in resistant cancer cells by the

effect of adriyamycin independent of p53 [193]. An HDAC inhibitor, vorinostat induced

ROS to increase resistance in cancer cells. PEITC treatment suppressed the cytoprotective

antioxidant response through depletion of cellular ROS, to reverse the resistance in leukemia

cells [178]. The efficacy of taxanes was also enhanced by PEITC in different forms of

cancer [97, 195]. The combination of SFN with oxaliplatin caused increased DNA

fragmentation, suggesting synergism through oxaliplatin dependent mechanism [196]. NF-

kB is a known target of SFN [197]. NF-kB inhibition by SFN mediated synergism with

sorafenib and 5-fluorouracil (5-FU) to inhibit pancreatic cancer stem cell survival and

salivary gland adenoid cystic carcinoma respectively [179, 181]. These observations suggest

that ITCs can utilize the mechanisms of action of conventional agents or can induce

independent effects to exhibit synergism.

Although most of the combinations exhibited synergistic effects in cancer cells, a

combination of 5-FU with SFN showed antagonistic activity in the normal cells by

modulating G2/M cell cycle phase [198]. This suggests that ITCs protect normal cells from

the toxic effects of conventional therapeutic agents. Another study showed that the

combination of cisplatin with ITCs was selectively effective in cancer cells [180]. Although

the mechanism of selectivity remains to be elucidated, these observations clearly suggest an

urgent need for clinical testing of the combination therapies of ITCs with conventional anti-

cancer chemotherapeutics.

ITCs have been shown to offer synergism amongst themselves and other anti-cancer

compounds. 3, 3'-diindolylmethane (DIM) is an important constituent of cruciferous

vegetables and exhibits anti-cancer effects [199]. DIM synergizes with SFN leading to

enhanced cell cycle arrest in colon cancer cells [200]. Amongst other ITCs, combination of

BITC with SFN or PEITC was more effective in preventing pancreatic and lung cancer than

the individual treatment [201, 202]. Curcumin is a well-known dietary agent with
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remarkable anti-cancer activity [203, 204]. The combination of curcumin with ITCs caused

significant reduction in the levels of inflammatory markers. These observations advocate the

possible synergistic or additive effect of curcumin in combination with ITCs [205, 206].

Several other studies re-enforce the enhanced anti-cancer effect of PEITC with curcumin

through inhibition of pro-survival pathways like AKT, EGFR and NF-kB [207–209].

Epigallocatechin gallate (EGG), a green tea agent, has significant anti-cancer potential

[210]. The chemo-preventive effects of the combination of SFN with EGG were

successfully shown in transgenic model of prostate cancer through the induction of Nrf2 and

AP-1 in Nrf2-deficient mice [211]. Furthermore, the combined treatment of SFN with EGG

enhanced apoptosis in paclitaxel-resistant cancer cells by inhibiting hTERT and BCL-2

expression, showing therapeutic anti-cancer potential [212]. Taken together, it is clear from

the above the studies that ITCs can be used for combination therapeutics in cancer treatment,

especially for the resistant cancers. The combinations of ITCs with various anti-cancer

agents and their prime mechanism of action have been summarized in Table 2.

6. Conclusion

Current epidemiological studies have certain limitations, such as differential exposure of the

populations leading to misclassification, improper controls and possibility of recall bias.

Hence, better designed studies are required to establish the role of ITCs as neutraceuticals

for cancer prevention and treatment. Furthermore, better designed studies along with

detailed mechanistic studies can provide us with an opportunity to use ITCs as the lead for

synthesis of more potent and safe drugs through chemical modifications. It is important to

note that some studies were done using extracts of ITCs from the vegetables. Few studies

have shown that ITCs are susceptible to hydrolytic degradation at high temperatures and

basic conditions [213, 214]. Thus the observations made by extracts of ITCs could be

questionable especially if the extraction procedure was not appropriate or standard. These

observations require further confirmation using pure forms of ITCs.

Recent studies have revealed many novel cancer targets. Specifically targeting these can

enhance the efficacy of new as well as conventional therapies. Hence, it is important to test

the efficacy of ITCs against new targets. Current preclinical evidence presented in the

review provides an insight into potential anti-cancer mechanisms of action of the ITCs as

well as their selectivity towards the cancer cells. Some clinical studies have been initiated

already for some ITCs. Nonetheless, further detailed studies are required to establish the

safety and efficacy profiles of these agents based on which they can be streamlined for

further human studies. Based on the current data, it is evident that ITCs possess highly

potential anti-cancer activity, but further detailed toxicity and clinical studies are required to

warrant their future clinical benefits.
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Figure 1.
Mechanism of cellular uptake of ITCs
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Figure 2.
Chemopreventive effects of ITCs
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Figure 3.
Chemotherapeutic targets of ITCs
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