
Send Orders for Reprints to reprints@benthamscience.net 

 Current HIV Research, 2014, 12, 111-120 111 

Macrophage Derived Cystatin B/Cathepsin B in HIV Replication and 
Neuropathogenesis 

Linda E. Rivera, Krystal Colón, Yisel M. Cantres-Rosario, Frances M. Zenón and Loyda M. Meléndez* 

Department of Microbiology and Medical Zoology, School of Medicine, University of Puerto Rico, Medical Sciences 
Campus, San Juan, 00935, Puerto Rico 

Abstract: Mononuclear phagocytes including monocytes and macrophages, are important defense components of innate 

immunity, but can be detrimental in HIV-1 infection by serving as the principal reservoirs of virus in brain and triggering 

a strong immune response. These viral reservoirs represent a challenge to HIV-1 eradication since they continue 

producing virus in tissue despite antiretroviral therapy. HIV-1 associated neurocognitive disorders (HAND) involve 

alterations to the blood-brain barrier and migration of activated HIV-1 infected monocytes to the brain with subsequent 

induced immune activation response. Our group recently showed that HIV replication in monocyte-derived macrophages 

is associated with increased cystatin B. This cysteine protease inhibitor also inhibits the interferon-induced antiviral 

response by decreasing levels of tyrosine phosphorylated STAT-1. These recent discoveries reveal novel mechanisms of 

HIV persistence that could be targeted by new therapeutic approaches to eliminate HIV in macrophage reservoirs. 

However, cystatin B has been also associated with neuroprotection. Cystatin B is an inhibitor of the cysteine protease 

cathepsin B, a potent neurotoxin. During HIV-1 infection cystatin B and cathepsin B are upregulated in macrophages. 

Reduction in cystatin/cathepsin interactions in infected macrophages leads to increased cathepsin B secretion and activity 

which contributes to neuronal apoptosis. Increased intracellular expression of both proteins was recently found in 

monocytes from Hispanic women with HAND. These findings provide new evidence for the role of cathepsin /cystatin 

system in the neuropathogenesis induced by HIV-infected macrophages. We summarize recent research on cystatin B and 

one of its substrates, cathepsin B, in HIV replication in macrophages and neuropathogenesis. 
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INTRODUCTION 

 Cystatin B is a reversible and competitive inhibitor of 
cysteine proteases, cathepsin L, S and B, widely distributed 
in most cell types and tissues [1]. Structurally, human 
cystatin B is a protein composed of 98 amino acid residues 
arranged in a single chain with a molecular mass of 
approximately 12 kDa. Its tertiary structure consists of five 
stranded beta-sheet wrapped around a five turn alpha-helix, 
with a carboxyl-terminal strand running on the convex side 
of the sheet [2]. Cystatin B has an important role as an 
inhibitor of a cysteine protease cathepsin B, a potent 
neurotoxin. Cathepsin B is a lysosomal cysteine protease 
with several roles in maintaining the normal metabolism of 
cells including the turnover of proteins in normal cells and 
tissues [3]. It is synthesized as a preproenzyme of 330 
aminoacid residues with a molecular mass of approximately 
37 kDa [3,4]. Activation of cathepsin B occurs by excision 
of 62 residues that produce a two-chain form of the enzyme 
with the excision of a dipeptide [3,4]. This protein can retain 
its enzymatic activity in the cytosol and in the extracellular 
space, in response to different stimuli [5-7]. 

 Oxidized or reduced forms of glutathione can modify the 
inhibitory activity of cystatin B [8]. Reduced glutathione can  
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react with cystatin B to form a disulfate-bond that produces 
two inactive forms of cystatin B: the glutathionated or the 
dimmer [8]. These forms are unable to insert into the binding 
pocket of cathepsins. Therefore, the activities of cathepsins 
are regulated by the intracellular redox potentials since the 
oxidized or reduced forms of glutathione can modify the 
inhibitory activity of cystatin B [8]. 

 Mutations in the cystatin B gene cause a hereditary 
neurodegenerative disorder called Progressive myoclonus 
epilepsy of Unverricht-Lundborg type (EPM1). In this 
disease, cystatin B deficiency is linked to increased oxidative 
stress and neuronal degeneration mediated by the lysosomal 
protease cathepsin B [9]. Interestingly, cystatin B has a new 
role in HIV-1 infection that depends on its tissue and cellular 
localization (i.e., intracellular vs extracellular). Our group 
demonstrated that intracellular cystatin B induces HIV 
replication in blood monocyte-derived macrophages (MDM) 
[10,11]. These discoveries suggest that the role of cystatin B 
changes from that of neuroprotective cysteine protease 
inhibitor to a novel, detrimental role of inducing HIV 
replication in macrophages. Another study reported that 
cystatin B was significantly over-expressed in the 
cervicovaginal mucosa proteome of HIV-1-resistant women, 
suggesting a protective role of cystatin B [12]. These 
apparently divergent roles of cystatin B in HIV replication in 
different tissues deserve further study. In this review, new 
evidences for a role of cathepsin-cystatin system in HIV 
replication and the neurodegeneration induced by HIV-
infected macrophages are discussed. 
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MACROPHAGE DERIVED CYSTATIN B / 

CATHEPSIN B IN HIV REPLICATION 

Cystatin B in Monocyte Differentiation and Inflammatory 

Responses 

 Although monocytes have been described as important 
HIV reservoirs, relatively few monocytes in the blood harbor 
HIV-1 DNA in HIV-infected individuals (<0.1%) [13]. The 
susceptibility of monocytes to HIV-1 replication depends on 
their differentiation status. Monocytes are refractory to 
infection and become permissive upon differentiation into 
macrophages [14], although their tissue localization and host 
factors also influence their susceptibility to infection [15,16]. 
Interestingly, Hashimoto showed that gene transcripts of 
cystatin B were significantly increased upon differentiation 
of monocytes (which resist HIV-1 infection) into 
macrophages (which are permissive for infection) [17]. 

 Depending on their tissue localization and the inducing 
stimulus, macrophages are induced for polarization by a 
variety of factors, including cytokines and bacterial products. 
Through cell macrophage polarization, programmed macro-
phages can respond with classical M1 (pro-inflammatory), or 
alternative M2 (anti-inflammatory) responses. The different-
ially expressed markers of human macrophage polarization 
have been summarized by Cassol and others [18,19]. The 
classical response mediated by M1 cells is activated by IFN-
γ, TNF-α, and bacterial products such as LPS [20-22] and is 
characterized by high levels of IL12 and low levels of IL10. 
The classical response activates Th2 to kill microorganisms 
and produces pro-inflammatory cytokines such as IL1, IL6, 
IL12, and TNF-α. A role of cystatin B in the classical (M1) 
response activated by LPS has been suggested. Treatment 
with LPS causes upregulation of cystatin B expression in 
human monocytes, whereas cystatin A is decreased and 
cystatin C is not affected, indicating a possible role of 
cystatin B in the innate immune response against bacterial 
infections [23,24]. The alternative response mediated by M2 
cells is activated by IL4, IL13 (M2a; involved in tissue 
repair), immune complex (M2b; immune regulation) and 
IL10 (M2c; immune suppression and regulation). In contrast 
to the M1 response, the M2 response is characterized by low 
levels of IL12 and high levels of IL10 [reviewed by 13]. 
M2a cells activate Th2 and the type II inflammation 
response, and induce high levels of anti-inflammatory 
cytokines (such as as IL1 and IL1 receptor antagonist), 
whereas M2b cells produce pro-inflammatory cytokines 
(such as IL1, IL6, TNF-α and the anti-inflammatory IL10), 
and M2c cells produce IL10 and TGF-β. The expression of 
cystatin B and/or its role in alternative (M2) response 
remains to be determined. 

A Novel Detrimental Role of Cystatin B as an Inducer of 

HIV Replication in Macrophages 

 Although cystatins are known as cysteine protease 
inhibitors, additional functions of cystatins have been found. 
For example, cystatin B induces TNF-α and IL10 synthesis 
and stimulates nitric oxide production [26,27]. These studies 
suggest that cystatin B could induce oxidative stress in HIV -
1 infection (Fig. 1). In another recently reported novel  
 

function, cystatin B expression has been positively correlated 
with HIV replication in MDM. Specifically, our group 
reported that cystatin B is up-regulated in blood MDM 
compared to placental macrophages or Hofbauer cells, which 
are less susceptible than blood MDM to HIV-1 infection 
[28]. HIV-infected MDM show increased levels of both 
intracellular [10] and secreted cystatin B [29,30], with 
similar mRNA levels, suggesting that this protein is 
activated during HIV infection at the post-transcriptional 
level [31]. A direct connection of cystatin B and HIV 
replication was demonstrated with siRNA against cystatin B 
[10]. Subsequently, the signaling mechanisms for cystatin B 
in HIV replication were related to its interaction with STAT-
1 [32]. It is known that HIV infection of macrophages 
activates STAT-1 [33]. Furthermore, high levels of tyrosine 
phosphorylated STAT-1 (STAT-1PY) have been associated 
with HIV-1 inhibitory activity [34]. However, another study 
reported the opposite: that HIV infection causes an increase 
in STAT-1PY at 6 days until 20 days after infection [33]. 
Our group demonstrated that placental macrophages, a 
restrictive cell for HIV replication compared to MDM 
[10,28,35], had higher levels of STAT-1PY, while MDM 
had very low levels of STAT-1PY at 12 days after infection 
[32]. Since STAT-1PY has been associated with HIV-1 
inhibitory activity [34] and recent studies by our group 
showed that cystatin B decreases STAT-1PY in Vero cells 
[11], cystatin B may play a role in inducing/enhancing HIV 
replication by decreasing STAT-1PY levels. 

 Our group also demonstrated that cystatin B inhibited the 
interferon beta (IFN-β) response in Vero cells by preventing 
STAT-1 translocation to the nucleus and decreasing levels of 
STAT-1PY [11]. Whereas serine phosphorylated STAT-1 
(STAT-1PS) is detrimental by inducing blood-brain barrier 
damage [36], STAT-1PY is beneficial since it has been 
associated with HIV-1 inhibitory activity mediated by CD8-
T-lymphocyte antiviral factor (CAF). CAF inhibits LTR-
mediated HIV replication by inducing the expression of 
interferon regulatory transcription factor 1 (IRF-1). This 
mechanism is STAT-1PY-dependent, since it requires the 
formation of the IRF-1/STAT-1PY complex. Activation of 
NF-kappa B (NF-κB) occurs in oxidative stress during HIV 
replication and in resistance to TNF-induced macrophage 
apoptosis to promote monocyte and macrophage survival 
[37,38]. It is postulated that HIV uses this mechanism as part 
of a strategy to regulate viral persistence by manipulating the 
apoptotic machinery. We propose that HIV-induced 
oxidative stress in macrophages acts in combination with 
cystatin B to activate NF-kB. Since cystatin B decreases 
STAT-1PY, this effect would release IRF-1 from the IRF-
1/STAT1PY complex and allow the formation of NF-
kB/IRF-1, which activates HIV-LTR induced HIV-1 
replication (Fig. 1). Further studies are being conducted to 
elucidate the signaling pathways mediated by cystatin B. 

Cathepsins and HIV Replication 

 Cathepsin B function is altered during HIV-1 infection of 
macrophages. We recently reported that during HIV-1 
infection of MDM, cathepsin B no longer shows its normal 
cellular localization, and shows reduced interactions with its 
endogenous inhibitors, cystatin B and cystatin C [31]. The 
shuttling of cystatin B from the cytosol to the cytoplasmic 
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membrane during HIV-infection also interferes with the 
formation of cystatin B/cathepsin B complexes [39]. The 
dysregulation of cystatin B/cathepsin B after HIV infection 
and its connection with HIV-1 associated neurocognitive 
disorders (HAND) were important in vivo findings reported 
recently by our group [31,40]. 

 Cathepsin B has been associated with some aspects of 
HIV replication. For example, cathepsin B facilitates the 
release of HIV-Gag particles but also inhibits CD4 
independent HIV-1 infection. A role for cathepsin B in the 
release of HIV-Gag particles has been demonstrated in 
studies with cathepsin B knockout mice and the specific 
cathepsin B inhibitor CA-074Me. The absence of cathepsin 
B leads to defects in the release of HIV-Gag particles and 
causes their accumulation in intracellular compartments, 
such as autophagosomes, in HEK293T transfected cells [41]. 
Cathepsin B may therefore be required for proper cleavage 
of HIV-Gag particles. In the endocytic pathway, the acidic 
late endosomes merge with the lysosomes, forming 
endolysosomes. If a viral particle enters a cell through the 
acidic late endosomes, the cathepsin B inside the lysosomes 
will degrade the viral particles. However, HIV entry into 
CD4-dependent cells occurs principally at the membrane and 
early endosomes escaping from late endosome; therefore 
inhibition of cathepsin B will not affect HIV replication. 
CD4-independent cell entry occurs through acidic 

endosomes and is inhibited by cathepsin B [42]. As reviewed 
[43], these findings suggest that HIV-1 may have developed 
an acidification-independent entry mechanism to overcome 
cathepsin B digestion in late endosome. Lysosomal 
permeabilization has also been linked with HIV replication, 
as diffusion of cathepsins B, L and D into the cytosol is 
enhanced when CD4+ lymphocytes are infected with HIV-1, 
and inhibited by addition of 2',3'-dideoxyinosine (didanosine 
or ddI), an HIV reverse transcriptase inhibitor [44]. 

CYSTATIN B AND CATHEPSIN B IN NEURODE-

GENERATION 

Cystatins B and Cathepsin B in Neurodegenerative 

Disorders 

 Cystatins comprise a large superfamily of proteins, and 
have protease inhibitory activity that is essential to maintain 
the homeostasis and physiological conditions of the cells 
[45,46]. Based on their inhibitory activity, cystatins are 
classified into three families: family I or stefins (also called 
cystatin A and cystatin B), family II or cystatins C, F, E/M, 
and finally, family or kininogens [47]. In addition to the 
roles discussed above, cystatin B and cathepsin B have been 
also implicated in neurodegenerative disorders. Cystatin B, 
as described above, has been associated with Progressive 
myoclonus epilepsy of Unverricht-Lundborg type (EPM1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Proposed mechanism for cystatin B in HIV-1 replication and neurotoxicity induced by macrophage reservoirs. HIV 

replication in macrophages is associated with increased cystatin B and oxidative stress. Oxidative stress induces neurotoxicity via NF-kB. 

Cystatin B decreases STAT1PY and inhibits the IFN-induced antiviral genes that activate LTR-mediated HIV-1 replication. 
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[9]. In an in vitro model of EPM1, cystatin B can protect 
cerebellar granule neurons prepared from postnatal day 6 rat 
or postnatal day 5 mouse from oxidative stress-induced death 
and this effect is dependent on cathepsin B. Moreover, 
cystatin B in EPM1 mutant mice can form oligomers and 
protein aggregates that cause cytotoxicity [48]. A protective 
role for cystatin B was also proposed in another 
neurodegenerative disease, Alzheimer ‘s (AD), from in vitro 
studies with inhibition of amyloid fibril formation via 
regulation of Ab peptide oligomerization and aggregation 
[49]. 

 Cathepsin B may also play an important role in AD [50]. 
For example, cathepsin B has been recently identified in 
secretory vesicles acting as β-secretase, and may thereby 
contribute to the production of neurotoxic β- amyloid (Aβ) in 
AD [51-54]. Consistent with this idea, the cysteine protease 
inhibitor E64d can reduce brain amyloid-β accumulation and 
improve memory deficits in AD transgenic mice [55]. 
Furthermore, deletion of the cathepsin B gene in AD 
transgenic mice improves memory deficits [56]. In contrast, 
other studies have suggested lysosomal modulation as a 
possible therapeutic approach to diseases involving protein 
accumulation [57,58]. For example, in AD, cathepsin B 
activity could be upregulated to degrade beta-amyloid 
aggregates [59]. It has been observed that lysosomal 
cathepsin B and D plays a degradative role in autophagy 
[60]. Both cathepsins are required to degrade dysfunctional 
cellular components through the lysosomal machinery [60]. 
In certain lysosomal storage genetic disorders, such saposin 
C deficiency, accumulation of autophagosomes occurs in 
fibroblasts due to decreased enzymatic activity of cathepsins 
B and D [61]. Another study suggests that dysregulation of 
cathepsins affects cellular homeostasis in multiple sclerosis 
(MS) [62], and post-mortem studies of patients with MS 
showed increased cathepsin B activity in brain [63]. Previous 
studies also described increased cathepsin B activity in 
peripheral blood mononuclear cells from MS patients [64]. 
Moreover, cathepsin B contributes to traumatic brain injury 
via induction of mitochondria-mediated apoptosis [65,66]. 
Cathepsin B is also involved in brain glioma invasiveness 
and migration [67]. Therefore, cathepsin-cystatin system 
plays important roles in the context of neurodegenerative 
disorders, brain injury, and cancer. 

Cystatin B and cathepsin B in HIV-1 neuropathogenesis 

 Neurons are not susceptible to HIV-1 infection, but their 
dysfunction and loss are an important feature of HAND [68-
70]. A hallmark of HIV neuropathology is the formation of 
multinucleated giant cells by the fusion of infected 
macrophages and microglia, and these are a common 
findings in patients with HIV encephalitis (HIVE) [71-73]. 
HIVE is the result of the severe inflammatory response 
ongoing in the brain parenchyma. As previously mentioned, 
a massive cellular activation occurs, involving perivascular 
macrophages, microglia and astrocytes. These activated cells 
orchestrate an immune defense network in which several 
important reactions take place. (1) Reactive oxygen species 
(ROS) are formed and cells undergo oxidative stress 
triggered by viral proteins. The antioxidant response may 
have a role in neuropathogenesis [74]. (2) Chemoattractant 
molecules such as cytokines, chemokines and viral factors 

disrupt the BBB and recruit more immune cells to the brain 
[75,76]. (3) Cytokines are secreted in order to activate the 
surrounding cells and trigger degranulation, which can also 
harm the tissue itself. (4) Cells productively infected also 
secrete viral proteins such as Tat, Nef and gp120. These 
proteins have been demonstrated to be neurotoxic, and Tat 
has been found inside neurons [77-79]. Tat within neurons 
can cause disruption of the endolysosome membrane and 
inhibition of autophagy, leading to neuronal damage [80]. 
Conditioned media from Nef-expressing astrocytes contains 
inflammatory cytokines that induce neuronal death [79]. 
Gp120 directly injected into the mouse caudate putamen 
induces oxidative stress and neuronal death [81]. (5) Finally, 
activated cells not only secrete ROS, cytokines and 
chemokines, but also show activation, and in many cases 
secretion of many enzymes and proteases, including the 
lysosomal cysteine protease cathepsin B [31]. 

 The literature indicates that cells, under stress, suffer 
lysosomal permeabilization and leakage of proteases to the 
cytosol, which contribute to cell death in different conditions 
including cancer, liver injury and traumatic brain injury [82-
85]. Cathepsin B can retain its activity once it is released into 
the cytosol under a range of pH from 4 to 7, and is capable 
of cleaving capases. In the context of HIV 
neuropathogenesis, cathepsin D together with other 
lysosomal enzymes, was found to be increased in post-
mortem brains of patients with AIDS and HIVE. Moreover, 
this increase in lysosomal enzymes correlated with increased 
density of activated microglia [86], suggesting a potential 
connection with HIV-1 replication in the brain. Later, 
another group discovered that lysosomal cathepsins B and D 
increase and diffuse into the cytosol of HIV-infected 
lymphocytes, and the immunostaining intensity was 
correlated with the infection [44]. The authors also 
concluded that Nef can cause lysosomal permeabilization, 
leading to leaking of lysosomal contents, including cathepsin 
B [44]. Expression of Nef alone is also able to produce 
lysosomal permeabilization in CD4+ lymphocytes [44]. 
Although this work was done in lymphocytes, it suggests 
that HIV-1 infection is a potential trigger for lysosomal 
permeabilization, which is part of cellular pathway to 
apoptosis and/or necrosis. In HIV-1 neuropathogenesis, the 
main sources of productive viral infection in the brain are 
monocytes, macrophages and microglia. Lysosomal protein 
leakage from infected cells could be a marker of 
uncontrolled proteolysis and brain tissue injury. Cathepsin B, 
via its cysteine protease activity, is also involved in 
extracellular matrix modification and cellular migration 
[6,67,87]. Involvement of cathepsin D in cellular migration 
and cytoskeletal arrangements has been also reported [88]. 
There is also new evidence that, during HIV-1 infection in 
vitro, cathepsin B translocates outside of MDM lysosomes 
and into the extracellular space, in an active form. The 
molecular mechanisms underlying this translocation are not 
well understood. However, MDM-conditioned media 
(MCM), collected from HIV-1 infected MDM at 12 days 
post-infection, causes increased neuronal apoptosis in vitro. 
Moreover, this increased apoptosis can be reversed by 
pretreating the MCM with a monoclonal anti-cathepsin B 
antibody or a specific cathepsin B inhibitor, CA074 [31]. 
Similar results were obtained with supernatants from an 
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HIV-infected microglial cell line (CHME-5) (unpublished 
results). 

 One hypothesis that could explain the dysregulation of 
cathepsin B in HIV-infected MDM is that the increase in 
oxidative stress induced by HIV-1 induces post-translational 
modifications in cathepsin B and/or cystatin B that block 
their interaction. We found that the two proteins no longer 
interact in MDM after HIV-infection [31]. The interaction 
between cathepsin B and cystatin C in the cytosol of MDM 
was also disrupted after infection. In a recent study of the 
plasma membrane proteome of monocytes conducted by our 
collaborators, HIV-infected monocytes exhibited an 
increased movement of cystatin B to the plasma membrane 
[39], supporting the idea that cathepsin-cystatin complex 
formation is altered during infection. We are now in the 
process of elucidating the link between cathepsin-associated 
neurotoxicity to the brain neuropathology seen after HIV-1 
infection. We are also exploring the possibility that protein-
protein interactions in the extracellular space are involved in 
triggering cathepsin B-associated neuronal apoptosis. 

Cathepsin B and Cystatin B Profiles in HIV-Seropositive 
Women in Different Tissue Compartments and Stages of 

HAND 

 Given the associations of cystatin B with HIV replication 
and cathepsin B with neuronal toxicity, we recently studied 
these proteins and another cathepsin B inhibitor, cystatin C, 
as candidate biomarkers of progression to HIV-associated 
dementia (HAD). We found that the monocytes of Hispanic 
women with HAD (and being treated with cART) have 
higher levels of intracellular cathepsin B and cystatin B than 
do those of HIV-seropositive women with normal cognition 
[40]. Cathepsin B levels and activity were increased in the 
plasma of HIV-seropositive women with normal cognition or 
with HAD compared to healthy individuals. In our study, 
cystatin B was upregulated in the plasma of all HIV-
seropositive women regardless their cognitive status. 
Interestingly, while no differences in levels or activity of 
cathepsin B were found in cerebrospinal fluid (CSF), 
cystatin B was upregulated in the CSF of HAD patients 
despite cART therapy. In contrast, no differences in cystatin 
C expression levels in CSF were observed. The higher 
concentrations of cystatin B in the CSF of HAD patients 
could be related to HIV-1 replication and oxidative stress in 
the brain reservoirs, and deserves further study to elucidate 
its potential as a drug target or as a candidate biomarker. The 
ratio of cathepsin B to cystatin C levels in monocytes of 
HIV-seropositive women who progressed to a more severe 
form of HAND over two consecutive visits were almost two-
fold higher than in the monocytes of women whose cognitive 
status remained stable. Further studies are being conducted 
to determine the potential of cathepsin-cystatin system as 
candidate biomarker or therapeutic target in HAND [40]. 

Cystatin B/Cathepsin B as Inducer of Oxidative Stress-

Mediated Neurotoxicity 

 HIV patients are under severe oxidative stress, which 
correlates with progression of disease [89]. Massive 
oxidative stress during HIV progression is indicated by 
elevated levels of two-4-hydroxynonenal (HNE) in post-

mortem brain tissue and increased levels of mitochondrial 
toxins in the CSF [90]. It is widely believed that the principal  
HIV target cells in brain are the perivascular macrophages 
and microglia. However, although neurons are rarely 
infected, they are affected by the reactive oxygen species 
(ROS) generated by glia cells [91], and by viral proteins 
such as Tat and Gp120 [81]. ROS can cause oxidative 
damage to cellular polysaccharides, DNA, proteins, 
alteration of immune function, apoptosis, and modification 
of the redox-dependent metabolism [92]. Upon HIV 
infection, the binding of HIV, or gp120 alone, to the CD4 
receptor induces macrophages to secrete the pro-
inflammatory cytokines IL-1 and TNF-α [93], depletes 
intracellular glutathione (GSH) levels, and increases free 
radicals, causing peroxidation of lipids [94]. ROS can also 
stimulate viral replication through the activation of the HIV 
LTR via post-translational control of NF-κβ [95]. As we 
proposed above, HIV-induced oxidative stress, cystatin B 
and LTR-induced HIV replication in macrophages may all 
be connected with NF-κB activation (Fig. 1). 

 As discussed above, cystatin B has additional functions 
besides being an active cysteine protease inhibitor, including 
the induction of nitric oxide production. For example, 
chicken cystatin was used as treatment for experimental 
visceral leishmaniasis. The curative effect of cystatin was 
linked to upregulation of inducible nitric oxide synthase 
(iNOS) and mediated by the induction of IL10 and TNF-α. 
Induction of iNOS usually occurs in an oxidative 
environment when high levels of nitric oxide (NO) react 
with superoxide to form peroxynitrite and cause cell toxicity 
(Fig. 1). Recent studies from our laboratory revealed 
increased levels of intracellular cystatin B and cathepsin B in 
monocytes of patients with HAD, while previous studies 
showed decreased antioxidants including Cu/Zn superoxide 
dismutase (SOD), peroxiredoxins, thioredoxins [96], 
glutathione peroxidase, and catalase [97] in HAD patients. 
All of these antioxidants, together with reduced Cu/Zn 
superoxide dismutase, contribute to oxidative stress. We 
have also observed a down-regulation in Cu/Zn SOD 
expression and activity in monocytes from Hispanic women 
with HAD [96,97] and in in vitro assays comparing viral 
isolates from individuals with HAD to those without 
neurocognitive impairment [98]. The absence of SOD in 
combination with increased levels of NO leads to elevated 
oxidative stress that causes neurotoxicity. In summary, we 
propose that cystatin B contributes to macrophage-mediated 
HIV neurotoxicity by the induction of NO levels via 
induction of iNOS, and increasing pro-inflammatory 
cytokines associated with oxidative stress and blood-brain 
barrier damage. 

IMPLICATIONS FOR THERAPY 

 In vitro studies by our group have linked cystatin B with 
oxidative stress and HIV-1 replication in macrophages, and 
cathepsin B to neuronal dysfunction and death after exposure 
to serum-free supernatants from HIV-infected MDM. These 
findings suggest that the cathepsin-cystatin system is a 
potential target to control HIV-1 replication and prevent or 
reduce cognitive impairment in HIV-1 patients. Cystatin B is 
one of the HIV Dependency Factors (HDFs), a group of 
human proteins that are essential for HIV replication, but are 
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not lethal to the host cell when the gene is knock-out (KO). 
Cystatin B KO mice survive but serve as a model for EPM1 
because they develop some symptoms typically observed in 
EPM1 human patients [99]. Other HDF’s that affect HIV-1 
replication in monocytes/macrophages, including Alix, 
C/EBPβ (large), cyclin-T1, and CCR5, are druggable. 
Druggability is a term used in drug discovery to indicate the 
likelihood that a particular target can be modulated with a 
small-molecule drug [100]). Cystatin B might be druggable 
by modulation of its expression in the macrophages instead 
of at the systemic level using immunoliposome targeted 
delivery of cystatin B siRNA. 

 Cathepsin B inhibitors have been studied for several 
conditions, including cancer and neurological conditions 
(extensively reviewed in [101]). The cathepsin B inhibitor 
CA074 is currently under study by another research group 
for Alzheimer’s disease therapy, and it has been 
demonstrated that treatment with this inhibitor improves 
memory deficits in mouse models of AD [53-56]. Other 
reseach group has demonstrated that cathepsin B inhibitors 
prevent cell death after ischemic injury [85,102]. As both 
cystatin B and cathepsin B are ubiquitous, the biggest 
concern is that of possible side effects. But with the 

advancement of technology in drug delivery to the brain 
parenchyma, especially nanotechnology in HIV field, 
therapies could be targeted to specific tissues and thereby 
avoid side effects to other tissues [103-107]. In addition, 
although cathepsin B and some members of the cystatin 
family have specific functions in some tissues, it has been 
suggested that there is redundancy in the roles of these 
proteins [108,109], supporting the idea that partially 
inhibiting cathepsin B might be beneficial (reviewed in 
[46,110]). However, more experiments are needed to further 
assess the potential of cathepsin B-cystatin B system for 
drug targeting during HIV-1 infection, and its potential 
benefits to cognitive performance in HIV seropositive 
patients. 

CONCLUSION 

 Our studies demonstrate that cystatin B plays a dual role 
in HIV replication and macrophage-mediated neurotoxicity: 
(a) induction of HIV replication by decreasing STAT-1PY 
(Fig. 1), and (b) loss of its normal inhibitory interaction with 
cathepsin B secreted from HIV-1 infected MDM in vitro, 
which results in increased cathepsin B neurotoxic activity, 
(Fig. 2). Both functions are associated with HIV-induced 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Roles of cathepsin/cystatin system in the neuropathogenesis induced by HIV-infected macrophages. (1) After HIV infection, 

ROS and cathepsin B are induced and macrophages undergo oxidative stress triggered by viral proteins. (2) Increased oxidative stress can 

also induce lysosome disruption and release of cathepsin B from lysosomes (3) with reduced cystatin/cathepsin interactions (4) leading to 

increased cathepsin B secretion and (5) activity that induce neuronal apoptosis. 
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oxidative stress and NF-κB activation. HIV-1 infection of 
macrophages induces NF-kB activation and secretion of 
TNF-α and IL1, leading to increased ROS and the release of 
cathepsin B and cystatin B to the cytosol and extracellular 
space. Extracellular cathepsin B in the CNS can promote 
neuronal apoptosis. The ROS can also activate the LTR via 
NF-kB, which further enhance HIV replication. Intracellular 
cystatin/cathepsin B interaction is important in maintaining 
cellular homeostasis in the brain. Dysregulation of this 
interaction could be detrimental for brain development and is 
observed in other neurological conditions such as 
Progressive myoclonus epilepsy of EPM1, AD, MS and 
traumatic brain injury. HIV infection also promotes 
cystatin/cathepsin B dysregulation as observed in MDM 
infected in vitro. This dysregulation results in increased 
expression, secretion, and activity of cathepsin B and 
neuronal apoptosis (Fig. 2). The cystatin/cathepsin B system 
is also deregulated in plasma and CSF of HIV-seropositive 
women on cART, supporting a possible role of these proteins 
in HIV chronic infection and the development of HAND 
despite antiretroviral therapy. The potential of cathepsin and 
cystatin as candidate therapeutic agents in HIV infection and 
HAND deserves further investigation. 
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