
Markov Transition Model to Dementia with Death as a Competing
Event

Shaoceng Weia, Liou Xua, and Richard J. Kryscioa,b,1

aDepartment of Statistics, University of Kentucky

bDepartment of Biostatistics, University of Kentucky

Abstract

This study evaluates the effect of death as a competing event to the development of dementia in a

longitudinal study of the cognitive status of elderly subjects. A multi-state Markov model with

three transient states: intact cognition, mild cognitive impairment (M.C.I.) and global impairment

(G.I.) and one absorbing state: dementia is used to model the cognitive panel data; transitions

among states depend on four covariates age, education, prior state (intact cognition, or M.C.I., or

G.I.) and the presence/absence of an apolipoprotein E-4 allele (APOE4). A Weibull model and a

Cox proportional hazards (Cox PH) model are used to fit the survival from death based on age at

entry and the APOE4 status. A shared random effect correlates this survival time with the

transition model. Simulation studies determine the sensitivity of the maximum likelihood

estimates to the violations of the Weibull and Cox PH model assumptions. Results are illustrated

with an application to the Nun Study, a longitudinal cohort of 672 participants 75+ years of age at

baseline and followed longitudinally with up to ten cognitive assessments per nun.
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1. INTRODUCTION

In clinical trials and observational studies, it is common that the occurrence of the key event

is censored by some competing risk such as disease-related dropout, which could cause non-

ignorable missing data. More specifically, in most longitudinal studies on progression to a

certain disease when the target population is elderly subjects, death is one of the competing

risks. In the Nun study, among the total of 461 subjects – the final analytic sample for

parameter estimating, almost half (n=225) died before converting to dementia. Several
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existing approaches have been developed in joint analysis of the longitudinal measurements

and competing risks time-to-event data. Xu and Zeger (2001) proposed a latent variable

model to model the relationship between time-to-event data, longitudinal response, and

covariates, in which covariates could only affect the longitudinal response through its

influence on an assumed latent process. Elashoff et al. (2007) suggested joint modeling of

the repeated measures and competing risk failure time data by using latent random variables

and common covariates to link the sub-models. However, few involve categorical responses

that characterize these data.

Salazar el al. (2007) proposed a suitable approach to the problem by defining a multi-state

Markov chain to model the progression of dementia in which death was treated as a

competing absorbing state to dementia. A possible alternative is to model the competing risk

of death without a dementia as a continuous variable. To this end this manuscript

incorporates the Weibull model and Cox proportional hazards (PH) model into Salazar’s

Markov model assuming a shared random effect (Albert and Follmann, 2003). Specifically,

we introduced a random effect into the model to take into account for the correlation

between the survival time and the transition states that is not explained by the model based

solely on diagnostic effects in a similar spirit of Xu and Zeger (2001). The closed-form

expressions for the conditional marginal likelihood function are derived. The model’s

stability to the violation of the assumption on the distributional form of survival is tested in

simulation studies.

The manuscript is organized as follows: the model likelihood functions are constructed in

Section 2; a simulation study is presented in Section 3; the application to the Nun Study data

is presented in Section 4; and a summary of the findings is presented in Section 5.

2. MODEL AND ESTIMATION

2.1 Salazar’s multi-state Markov model

Suppose there are m subjects in the study. For a particular subject, let Y = (Y1, Y2, Y3, …, Yn)

denote the random vector representing the observed cognitive states at n different ordered

discrete occasions. Assume the Markov property holds (Bhat and Miller, 2002 or

Huzurbazar, 2005), that is, the conditional distribution f(yk|y1, …, yk−1) is identical to the

conditional distribution f(yk|yk−1) for k = 2, …, n. Then conditioned on Y1, the joint

distribution of the random vector Y can be written as

Here the subscript yk refers to the state occupied at kth occasion. In order to simplify the

notation, we can use Pyk−1yk = f(yk|yk−1) to denote the one step transition probability from

state yk−1 to state yk. So for instance, if yk−1 = s and yk = v then Psv represents the probability

of transition from state s to state v in the kth visits.

In the example to be discussed later – the Nun study data, the status of a participant at each

visit was recorded as being one of the states: 1 = intact cognition, 2 = mild cognitive
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impairments (M.C.I.), 3 = global impairments (G.I.), or 4 = dementia (Tyas et al., 2007).

The participants were followed during the study period until death occurred. The conditional

distribution of the status of an individual participant at an arbitrary examination given her

status at previous examinations was assumed to have the Markov property, i.e., that status at

the examination depended on only the most recent previous examination and was

independent of status at other previous examinations. Following Salazar et al. (2007), a

multi-state Markov chain was used to model transitions from one state to another, in which

states 1–3 were considered transient states, whereas state 4 and death (state 5) were

absorbing states as shown in Figure 1.

Thus the one-step transition probability matrix could be presented in the form of

According to Salazar et al. (2007), a multinomial logit parameterization could be applied to

link these transition probabilities with the fixed and random effects.

Here Θ represents the set of all the unknown parameters, α = (α2, α3, α4, α5) is the vector of

intercepts, βv is the vector of unknown fixed effects for covariates X and  is the unknown

fixed effects for the prior state s and current state v. Also, γ is the vector of unobserved

random effects associated with the subject. The formulation of Salazar’s model in terms of

logit functions allows us to find the closed expression for each transition probability as

follows

Therefore, based on the conditional distribution of f(y2, y3, …, yn|y1) the marginal likelihood

function for the particular subject is

(2.1)
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with Ω denoting the support for the distribution of the random vector γ. The probability

density function for γ is h(·). Here δyl−1,s and δyl,v are indicator functions valued at 1 if yl−1 =

s and yl = v, and 0 otherwise. The overall likelihood function can be obtained by evaluating

the product of (2.1) across the subjects under study.

2.2 Models with Weibull and Cox Proportional Hazards Survival

In Salazar’s model death is modeled as the competing absorbing state to dementia. A

possible alternative approach is to incorporate information on the actual survival times from

death of the subjects into the stochastic system. The data of interest involves multinomial

responses and the parameterization of a polychotomous logit under a discrete time Markov

framework complicating the problem. The hypothesis is that the survival time of those

subjects who die without incurring a dementia come from certain parametric or semi-

parametric distribution which shares the same random effects used in the Markov transition

model. Additionally, these two pieces are conditionally independent given the random

effects and their corresponding predictor variables.

In contrast with Salazar’s model, the transition probabilities among cognitive states are

modeled with a four-state Markov chain, same transient states but dementia being the only

absorbing state. The one-step transition probability matrix now becomes

Each transition probability Psv could be postulated in the form of

(2.2)

Assume the survival time (that is, time on study) could be modeled by the parametric

Weibull distribution or the semi-parametric Cox PH model. The semi-parametric Cox PH

model is used to validate the parametric Weibull model assumption. Therefore, both the

parametric and semi-parametric methods are applied to the Nun’s data and the

corresponding simulation results and real data analysis results are compared in Section 3 and

4.

When the survival time follows the Weibull distribution, the survival time S ~ Weibull(r, μ),

where μ = eη0+Z′η+W′γ. The probability of a subject failing from the competing risk of death

is
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Here τ is the indicator function valued at 1 if the subject died at time t and 0 otherwise. Θ be

the parameter vector associated with both the transition probability and the probability of

death. For each subject under study, the conditional marginal likelihood function for the ith

subject can be rewritten as

(2.3)

In the Cox proportional hazards model, we assume the hazard function has the form

Here λ0(t) is the baseline hazard and μ = eη0+Z′η+W′γ > 0. According to Cox et al. (1984), the

contribution to the partial likelihood from the ith subject failing from the competing risk of

death is

The conditional (on the baseline state) likelihood function for a subject can be rewritten as

(2.4)

2.3 Parameter estimation

The parameter estimation is implemented by maximizing the conditional likelihood (Θ|X, Z).

In particular, all the calculations are approached by SAS PROC NLMIXED procedure.

Assuming that the random effect is distributed as a N(0, σ2) both of the log likelihood

functions (in equations 2.3 and 2.4) can be maximized using the Double-Dogleg method

combined with the adaptive Gauss-Hermite quadrature method (Raudenbush et al. 2000) to

numerically evaluate the integrations and produce the parameter estimates. The likelihood

function is not convex in the parameters, therefore convergence of the optimization

algorithm is not guaranteed for an arbitrary set of initial values. It is advisable to start with

multiple sets of initial values and select the maximizers accordingly. The estimates of the

standard errors are computed by Fisher’s information method.
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3. SIMULATIONS

The main purpose of the simulation study is to examine the sensitivity of the MLEs of β to

the violations of the Weibull model assumption or Cox PH model assumption on the

survival time. The goal is to quantify how the distributional form for the survival term

affects the model estimates associated with the fixed effects in equation (2.2). The criteria

are the bias and the mean squared errors of the MLEs.

Simulations were set to have 1000 iterations, with each containing either 200 or 500

subjects. The corresponding computation time of sample size 200 and 500 by using Intel

i5-650 professor (4M Cache, 3.2 GHz) are 13.35 hours and 31.21 hours respectively. Each

subject has up to ten follow-up waves starting from a baseline state of intact cognition. Four

cases are considered:

1. Total of 200 subjects generated with prior distribution of survival being Weibull

2. Total of 500 subjects generated with prior distribution of survival being Weibull

3. Total of 200 subjects generated with prior distribution of survival being

Generalized Weibull

4. Total of 500 subjects generated with prior distribution of survival being

Generalized Weibull

The Generalized Weibull distribution WG(r, μ, θ) has the hazard function,

, where t ≥ 0, r > 0, μ > 0 and θ > 0 (Foucher et al., 2005). If θ is 1,

the Weibull formulation is obtained. In the simulation, set r to be a fixed number 2.8593 and

log(μ) be a linear function of current age and APOE4 status. The range of μ in the simulation

lies between 0.0004 and 0.0103 and the mean value of μ is 0.0013. These choices are

motivated by the application discussed in Section 4. Additionally, choose θ = 0.5, 1, 2 and 4

separately. The plots of hazard functions of the Generalized Weibull distribution with r =

2.8593 and μ = 0.0013 were shown on Figure 2. Note that the proportional hazards

assumption holds only if θ = 1.

Thus, two sets of comparisons could be explored: first, the effects of varying the sample

size, and second, the effects of violating the original model assumption on the distributional

form of survival term with a possible alternative.

In both situations, the transition probabilities were dependent on three covariates: current

age (denoted as age), prior state (IC = intact cognition or M.C.I. or G.I. (the reference

category)), and the presence/absence of an apolipoprotein E-4 allele (APOE4). The

covariates entered in the survival model were age at entry and the APOE4 status of the

subject. All the simulations were done using the IML procedure in SAS system. The results

are presented in Table 1 and Table 2.

As expected, increasing the sample size improves the estimates in terms of reducing mean

square error (MSE). The main savings is in the variance of the estimates since the bias stays

almost the same with only one exception, the effect of the transition from intact cognition

into dementia. Those biases are reduced considerably when the sample size increased. For
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example, the bias is −0.892 when sample size is 200 reduced to 0.018 when sample size is

500 for the Weibull model when θ = 0.5. The huge change is due to that the simulation

parameter for the transition from intact cognition into dementia is very small, −5.226, which

will increase the chance of observing few transitions. However, the chance of observing few

transitions will be very rare when the sample size is larger than 300. Similar results were

obtained for sample sizes of 300 and 400 (not shown). The results show that as long as the

sample size is larger than 300, then the result will have acceptable small MSE and bias.

There is not much difference in term of the bias and MSE when fitting the data assuming a

Weibull model or Cox model. The maximum differences between a Weibull model and a

Cox model are 1.4289 for MSE and 0.3699(7.08%) for bias.

In all, the results indicate that the maximum likelihood estimates are not sensitive to

violations of the assumed Weibull or Cox PH model in the case when the Generalized

Weibull Distribution is the true distribution.

4. APPLICATION TO THE NUN STUDY

The Nun Study began enrolment in 1991. The data consists of a cohort of 672 members of

the School Sisters of Notre Dame born before 1917 and living in retirement communities in

the Midwestern, eastern, and southern United States. The subjects were recruited in phases

and received annual cognitive assessments with brain donation at death. Analyses were

based on data from ten successive examinations. A total of 211 subjects were excluded from

the study due to: only one cognitive assessment (128), presence of dementia at baseline visit

(61) or missing APOE4 (22). The final analytic sample consisted of 461 participants, of

which 74 survived without dementia, 162 developed dementia and 225 died before

converting to dementia. The transitions among the cognitive states are summarized in Table

3.

The covariates of interest are age, education level, APOE4 status, and prior state. For

simplicity, education was not included in the model simulations; but was considered here

since it is a well-known risk factor and found to be significantly associated with dementia in

previous studies. The covariates entering in both of the two survival models were age at

entry and APOE4 status. As shown in Figure 3 below, subjects were sub-grouped based on

their APOE4 status and age at entry, and thus four Weibull probability plots were created as

a preliminary look at the model assumption. The estimated cumulative distribution function

was computed by Kaplan-Meier estimator in the LIFEREG procedure in SAS. The straight

line represents the maximum likelihood fit, with the point wise parametric confidence bands

on each side. The plots indicate that the assumed Weibull model fits the data reasonably

well although not perfect since skewness arises in the tail of the distribution for some of the

groups. Similar results were obtained for Cox PH model, which are not shown.

Since current age is the only interval level risk factor, there is interest in determining

whether the linearity assumption between the logit of the transition probability and current

age is adequate. To this end, we contrasted the linearity assumption against a piece wise

constant assumption and test the adequacy of the linearity via the likelihood ratio test.

Specifically, split the variable, current age, into 5, 10, 15 and 20 equally spaced bins, and
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estimate the effect of age for each bin. The resulting regression coefficients were then

plotted against the age midpoint of each bin for the cases of 10 and 20 bins given by initial

state in Figure 4. For each initial state 2, 3, or 4 the coefficients appear to increase linearly

with the age midpoints. The Likelihood Ratio Test for linearity is provided in Table 4 for 5,

10, 15 and 20 bins. Note that none of these tests are significant, supporting the linearity

assumption for each state 2, 3, and 4. A similar analysis was conducted to check the linearity

of baseline age in the survival component of the likelihood with the same result (which is

not shown).

In Table 5, the first and second column of each model lists the parameters and standard error

of parameters obtained by SAS PROC NLIMXED. The third column lists the estimated

standard error, which was obtained by using the bootstrap resampling method (Efron, 1981).

The two methods of estimating standard errors are almost the same. We found that the

standard errors of transition parameter estimates of Weibull model are uniformly smaller

than those of Cox PH model. This is likely due to the much larger estimate for the random

effect in the Cox model (last line in Table 5).

Note that in either model, the regression coefficients for all three risk factors are positive

and significant at the P < 0.05 level indicating that each factor promotes transitions into each

impaired state at the next assessment with only one exception where the p-value for the

regression coefficient is only marginally significant (P = 0.09). As noted above, the effect of

age is linear. Referring to the Weibull model, the effect of an APOE 4 carrier is to promote

transitions into M.C.I, G.I., and dementia as opposed to a transition into the intact cognition

with estimated odds ratios (OR) 2.36, 3.72 and 4.17, respectively. Low education (<16

years) versus high education (> 16 years) is associated with even larger ORs of 4.79, 5.01,

and 4.26 for similar transitions. More modest ORs are obtained when comparing 16 years of

education to > 16 years of education yielding ORs of 1.64, 1.69, 1.50 for similar transitions.

The corresponding ORs are 0.33, 0.025 and 0.0054 for prior state intact cognitive and are

2.10, 0.10 and 0.14 for prior state mild cognitive indicating that subjects tend to remain in

their prior state. For all three risk factors, the Cox model yields uniformly larger ORs but

their statistical significance is about the same due to the increase in the standard error of the

regression coefficients. Only baseline age and APOE carrier status predict time to death

without dementia.

5. CONCLUSION AND DISCUSSION

Considerable literature has focused on characterizing the relationship between longitudinal

response process and time-to-event data. In contrast, relatively little research has been done

to accommodate multinomial responses, with even fewer relying on a polychotomous logit

parameterization under a discrete-time Markov chain.

As an improvement to Salazar’s multi-state Markov model, this manuscript fits a Weibull

distribution and a Cox PH ditribution to model the time to death without a dementia and

correlate this with the Markov transition model by incorporating a shared random effect.

The simulation study showed model stability in terms of violations of the distributional

assumption on survival time. More specifically, the maximum likelihood estimates are not
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sensitive to violations of the assumed Weibull model or Cox PH model assumption when, in

fact, a Generalized Weibull model should be used instead. Also, the semi-parametric model

has almost the same effect as the parametric model.

The application to the Nun study data found that Age, APOE 4 carrier status, and low

education are significant predictors of a transition to an impaired state as opposed to a

transition to cognitively normal because all the coefficients associated with Age and APOE4

are significant and positive. Remaining cognitively intact favors the highly educated (> 16

years education) which also agrees with the results from the previous models. Age and

APOE 4 status are also significant predictors for dying without incurring a dementia. Age at

entry is “protective” for subjects from the competing risk of death since older subjects are

more likely to become demented before death.

Yu et al. (2009) incorporated the missing portion of the likelihood due to baseline demented

individuals into the follow-up likelihood by assuming the two share the same random effect.

The complete marginal likelihood function for a subject with baseline can be written as

Here Θ is the set of parameters associated with the baseline response components. The

probability of the baseline state πy1(Θ|XB, γ) was similarly modeled by using multinomial

logistic regression as for the one-step transition probability Psv(Θ|X, γ) in the follow-up

likelihood. It will also be interesting to combine this approach with our model to find a

complete likelihood function that accommodates all the three pieces baseline, follow-up, and

survival.

Due to the Markov property assumption, the proposed method works well when the follow-

up assessments are evenly spaced, but may lead to biased estimators when the visit times are

derivation from the predetermined visit times. Therefore, one potential limitation of our

proposed methods is its inability to handle the uneven assessments or skipped visits. The

general imputation approaches for the missing data can used to deal with skipped visits But

those imputation methods are generally very complex. One simple and popular strategy is so

called “last observation carry forward (LOCF)”. However, it is not recommended to use

since this approach will introduce bias in the result (Molnar et al. 2008). Uneven

assessments call for use of more complex models as discussed by Huzurbazar (2005).

Another possible drawback of the proposed method is that the computational burden will

become heavier in the current model if a complicated form of the random effects is adopted.

The model proposed in this manuscript has some obvious extensions. Only one competing

risk event is considered in this manuscript. The extension to allow for multiple competing

events is straightforward although the models will become more complex. Another

extension of the model may include considering procedures that do not require a
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proportional hazard assumption. A Generalized Weibull model will be a good choice since

the hazard can be U or inverse U shaped.

Further investigation of the related model stability and verification of the model

assumptions, such as Markov assumption for the transition component and the proportional

hazard assumption on the survival time, are both of interest. Lastly, the application to the

Nun Study data presented here emphasizes one step transition probabilities while clinically

there is interest in the long run behavior of the process. That is, instead of estimating how a

risk factor affects the odds of a transition into any impaired state at the next assessment there

is also interest in determining how each risk factor affects the risk of an eventual dementia

diagnosis relative to dying without a dementia diagnosis. Results similar to those provided

by Yu et al. (2010) are needed for the model discussed here as well.
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Figure 1.
Possible one step transitions between three transient states (1) intact cognition (2) M.C.I. (3)

G.I. and two absorbing states (4) dementia (5) death.
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Figure 2.
Hazard Function of a Generalized Weibull Distribution with r = 2.8593 and μ = 0.0013
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Figure 3.
Weibull probability plots of the survival time for different cohorts in the Nun study
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Figure 4.
Assessment of Linearity of Current Age in Transition Matrix using 10 and 20 age bins
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Table 3

Number of transitions in the Nun study

Prior Visit

Current Visit

Intact Cognition M.C.I. G.I. Dementia

Intact Cognition
593 197 54 5

69.90% 23.20% 6.30% 0.60%

M.C.I.
177 697 136 82

16.20% 63.80% 12.50% 7.50%

G.I.
16 39 184 75

5.10% 12.40% 58.60% 23.90%

Dementia
0 0 0 81

0.00% 0.00% 0.00% 100.00%
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Table 4

Fit Statistics for Linearity Test of Current Age

Bins −2Log(Likelihood) LRT D.F. P value

5 5598.2 7.3 9 0.61

10 5577.9 27.6 24 0.28

15 5572.4 33.1 39 0.74

20 5554.2 51.3 54 0.58

Linear 5605.5
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