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Abstract

Introduction—Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are the

acute onset of non-cardiac respiratory insufficiency associated with bilateral lung infiltrations.

During the past decade, mechanical ventilation strategies using low tidal volumes have reduced

the mortality of ALI/ARDS to around 20-40%. However, ALI/ARDS continues to be a major

factor in global burden of diseases, with no pharmacologic agents currently available.

Areas covered—In this review we discuss several inflammatory proteins involved in the

molecular pathogenesis of ALI/ARDS. The complement cleavage product, C5a, is a peptide acting

as a potent anaphylatoxin. C5a may trigger the formation of neutrophil extracellular traps (NETs)

and release of histone proteins to the extracellular compartment during ALI/ARDS.NETs may

activate platelets to release TGFβ which is involved in tissue remodeling during the later phases of

ALI/ARDS. Interception of C5a signaling or blockade of extracellular histones has recently shown

promising beneficial effects in small animal models of ALI/ARDS.

Expert opinion—Novel protein-based strategies for the treatment of ALI/ARDS may inspire the

hopes of scientists, clinicians and patients. While neutralization of extracellular histones / NETs,

C5a and TGFβ is effective in experimental models of ALI/ARDS, controlled clinical trials will be

necessary for further evaluation in future.
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1. Introducing the problem

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are defined by the

following diagnostic criteria: acute onset, bilateral lung infiltrates on chest X-rays and

respiratory failure with exclusion of cardiac etiologies. Respiratory failure is due to

pulmonary edema, resulting in diminished gas diffusion capacity. This is detectable by

reduced ratios of arterial oxygen tension (paO2) and fraction of inspired oxygen (FiO2). In

this nomenclature, ALI (paO2/FiO2 < 300 mmHg) is defined as the less severe form of

respiratory insufficiency as compared to ARDS (paO2/FiO2 < 200 mmHg). In 2012, the

novel ‘Berlin definition’ of ARDS was introduced, which classifies three categories of

ARDS depending on the degree of hypoxemia: mild (paO2/FiO2 < 300 mmHg), moderate

(paO2/FiO2 < 200 mmHg), and severe (paO2/FiO2 < 100 mmHg) 1.

It is estimated that 200,000 cases of ALI/ARDS occur annually in the United States 2, 3. The

overall survival rates of ALI/ARDS are around 20-40% 4-7. The prognosis of survival is

better for mild ARDS as compared to severe ARDS with an intermediate risk for moderate

ARDS (according to the ‘Berlin definition’) 1. During the past two decades improved

survival rates of ALI/ARDS have been accomplished 8. Most likely this is attributable to

advances in critical care medicine. In particular, novel mechanical ventilation schemes using

low tidal volumes (e.g. 6 ml/kg body weight) have reduced the risk of ventilation-induced

pulmonary barotrauma and significantly increased survival rates and ventilator-free days in

patients with ALI/ARDS 4.

A long list of predisposing factors may raise the risk for the development of ALI/ARDS.

Clinical conditions that frequently precipitate ALI/ARDS include pneumonia, sepsis, fluids

aspiration, severe trauma, massive transfusions and inhalation burns.

The pathophysiology of ALI/ARDS is characterized by initial injury (infection, chemical,

mechanical) of the small airways (alveolar epithelium, lung endothelium) 8. Lung tissue

injury initiates acute inflammation of the alveoli and bronchioles 9. This includes activation

of Toll-like receptors, the complement system, plasmatic coagulation pathways as well as

activation of platelets, alveolar macrophages, adjacent endothelial cells and type II alveolar

epithelial cells 10, 11. The activation of coagulation pathways creates intra-alveolar fibrin

depositions (‘hyaline membranes’). Chemotactic migration of innate immune cells to these

sites results in the accumulation of polymorphonuclear neutrophils (PMNs) in the alveolar

spaces within a few hours, while adaptive immune cells such as T lymphocytes mainly

participate during the later phases of ALI/ARDS 12, 13. PMNs are phagocytic cells and clear

infectious microorganisms and debris from the alveolar spaces. Furthermore, PMNs release

cytotoxic granules and reactive oxygen species 14, 15.

Immune cells (PMNs, macrophages, T cells) and resident lung cells (epithelium,

endothelium, fibroblasts) communicate by the release of a plethora of cytokines /

chemokines. IL-1β, TNFα, Interferon-γ and IL-6 orchestrate and perpetuate lung

inflammation during ALI/ARDS 16-18. These inflammatory cytokines also promote

plasmatic coagulation in the small airways, for example via up-regulation of tissue factor in

alveolar epithelial cells 19.
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While these inflammatory responses are designed to provide pathogen clearance and restore

homeostasis of the lung, they may also cause additional injury in the setting of ALI/ARDS.

Loss of barrier function of the epithelial-endothelial interface in alveoli is considered a

hallmark of ALI/ARDS. Apoptosis, necrosis and necroptosis of endothelial cells and type I

alveolar epithelial cells results in disintegration of the alveolar lining (e.g. disruption of

vascular-endothelial cadherin bonds), which is followed by influx of alveolar edema fluid

and hemorrhage 11, 20, 21. Subsequently, pulmonary gas diffusion capacity is compromised

leading to hypoxemia and respiratory failure. The later phases (>7 days) of ALI/ARDS may

be dominated by proliferative and fibrotic responses. The mechanisms that distinguish

healing and full recovery from ALI/ARDS versus progression to interstitial inflammation

and fibrotic lung disease are currently not completely known, but may involve mesenchymal

stem cells 22, 23.

To date clinical trials using pharmacologic approaches for the treatment of ALI/ARDS have

largely failed to demonstrate beneficial effects. The primary endpoints of most studies have

been survival at 28 days (or longer) and reduction of days of mechanical ventilation

(ventilator-free days) in ALI/ARDS patients. Protein-based strategies have tested the

administration of recombinant human proteins such as activated protein C (drotrecogin α),

granulocyte macrophage colony stimulating factor (GM-CSF) and surfactant protein C

based agents to ALI/ARDS patients 24-26. Additional trials have used methylprednisolone,

nitric oxide, β2-adrenergic receptor agonists (albuterol, salbutamol), and antioxidants (N-

acetylcysteine) 7, 27-30. All of these pharmacologic interventions were unable to demonstrate

significant clinical efficacy (Table 1). Therefore, there remains a desperate need for better

understanding of the pathophysiology of ALI/ARDS. Such knowledge will be helpful to

direct future clinical trials testing novel strategies to ameliorate the adverse outcomes of

ALI/ARDS. In this review, we will discuss recent progress in identifying potential target

proteins, which may be key factors during the unfavorable course of ALI/ARDS.

2. Potential protein targets in Acute Lung Injury

2.1. Blocking of complement component C5a in acute lung injury

The complement system is an ancient part of the innate immune system, which is found in

all vertebrates and many invertebrate species 31. In analogy to the coagulation system,

complement proteins constitute a cascade of proteases with the capacity for specific

cleavage of its factors during activation. The classical, alternative, MB-lectin and ficolin

pathways may all initiate activation of complement during ALI/ARDS 32. The major

effector functions of complement are direct lysis (membrane-attack complex) and

opsonization (C3b) to facilitate phagocytosis of targeted cells (e.g. microbes). In addition, an

abundant generation of chemotactic complement anaphylatoxins (C3a, C4a, C5a) occurs,

which subsequently activate innate and adaptive immunity. C5a and C3a activate PMNs,

macrophages and promote chemotactic migration of those cells to the alveolar spaces during

ALI/ARDS 17, 33. C5a and C3a are substrates for rapid enzymatic cleavage of the C-terminal

arginine residue by plasma carboxypeptidase R and carboxypeptidase N 34. The cleavage

product, C5adesArg, displays a 10-fold lower biological activity as compared to C5a, while

C3adesArg is regarded as completely inactive 35. C5a has the strongest biological potency as
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compared to C3a and C4a. C5a binds with high affinity to its two receptors, which have

been termed C5aR (CD88; C5aR1) and C5L2 (GPR77; C5aR2) 36, 37. Both receptors, C5aR

and C5L2, are encoded in vicinity on chromosome 19 in humans (mouse: chromosome 7),

contain the structural motifs of seven-transmembrane spanning domains and display an

amino acid homology of around 38% 38.

The first evidence that C5a is involved in the development and progression of ALI/ARDS

was uncovered several decades ago 39, 40. Administration of cobra venom factor (CVF),

which activates complement in circulation, resulted in PMN-dependent ALI 41. CVF is a

three chain protein and functional analog of C3b, which is purified from cobra venom or

recombinantly expressed 42. In plasma, CVF assembles with other complement proteins to

form a C3/C5 convertase complex resulting in uncontrolled complement activation

(including generation of C3a and C5a) and, ultimately, consumption of complement

components.

The effects of C5a are partly mediated by the production of reactive oxygen species in

PMNs (respiratory burst) 41. Administration of blocking anti-C5a antibody protects non-

human primates from sepsis-induced ALI and mortality following live E. coli challenge 43.

The complement degradation products, C5adesArg and C3adesArg, are detectable in blood of

human patients with ALI/ARDS and sepsis, indicating complement activation 44. Gene-

targeted disruption of the C5aR receptor reduces the severity of immune-complex-induced

ALI in mice 45. Vitamin D binding protein deficient mice are protected against C5a-induced

ALI and influx of inflammatory cells 46, while serum Vitamin D concentrations appear not

to influence the severity of LPS-ALI 47.

C5a-signaling in alveolar macrophages is modulated by urokinase-type plasminogen

activator and its receptor 48. C5 may play a profibrotic role in chronic stages of ALI, as

studied in the bleomycin-induced lung injury model using C5-deficient mice 49. While in the

acute phase of ALI the C5aR receptor clearly promotes inflammation 17, 45, the function of

the C5L2 receptor is still controversial. We have recently reported that the C5L2 receptor is

involved in promoting inflammation and disruption of the alveolar/epithelial barrier during

ALI, while an earlier report has described an anti-inflammatory role of C5L2 during

immune-complex ALI 17, 50.

In summary, C5a (via C5aR and C5L2) recruits PMNs and other inflammatory cells to the

alveolar spaces during ALI 32. The intracellular effects of C5a are related to the activation of

Ca2+-currents as well as activation of PI3K/Akt and MAPK signaling pathways 32, 51. Only

recently, the down-stream effects of C5a-induced tissue injury have been associated with the

appearance of neutrophil extracellular traps (NETs) 17. These findings may suggest a close

pathophysiological link of C5a and NETs in the setting of ALI.

2.2 Targeting neutrophil extracellular traps (NETs) in acute lung injury

Accumulating evidence suggests the biological relevance of neutrophil extracellular traps

(NETs) for the pathogenesis of inflammatory diseases. NETs are structures of nuclear

chromatin, which contain DNA, histone proteins and other microbicidal / nuclear proteins.

NETs are an effector defense mechanism of innate immunity 52, 53. PMNs may undergo
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programmed cell death and actively release their nucleus to create NETs 54. The process of

formation of NETs may occur either in blood circulation or following chemotactic migration

of PMNs to the local site of inflammation. NETs and their major component, extracellular

histones, ensnare and kill bacteria in septic blood 55. Similarly, NETs are capable of killing

Candida species 56. PMNs invading tissues form NETs following encountering Aspergillus

fumigatus in vitro and during lung infection 57, 58. Furthermore, certain lung pathogens such

as Streptococcus pneumonia have evolved counter strategies such as genes encoding for

endonucleases to escape killing by NETs 59. This demonstrates that NETs are a part of the

complex host-pathogen interactions, which have formed during evolution. While NETs may

have been evolved to clear infectious pathogens, NETs may also cause adverse tissue injury

to the host. Extracellular histones (the major components of NETs) are highly toxic and

induce respiratory failure when infused intravenously into healthy research animals (Figure

1) 60. The cytotoxic activity of extracellular histones / NETs is in line with the fact, that

several other intra-cellular proteins (e.g. HMGB1, hemoglobin) have detrimental effects

following release to the extracellular compartment 61, 62.

Many factors typically present during ALI/ARDS have the potential do induce NET-

formation. For instance, live bacteria, LPS, IL-8 or reactive oxygen species (ROS) may all

trigger the appearance of NETs 54. The generation of NETs is an active process and requires

an intra-cellular signaling program. Engagement of Raf-MEKERK kinase pathways occurs

during NET formation 63. In addition, mammalian target of rapamycin (MTOR) and hypoxia

inducible factor 1 (HIF-1) regulate the formation of NETs 64. The down-stream events of the

aforementioned signaling pathways include chromatin decondensation, which is a

prerequisite for NET generation. This is accomplished by enzymatic hypercitrullination of

core histone proteins 65, 66.

When NETs derived from activated human PMNs are incubated with mouse or human cell

lines of lung epithelial cells, NETs induce cell death of such epithelial cells 67. NETs are

also cytotoxic for lung endothelial cells 60, 67. Components of NETs (MPO/DNA/histones)

are detectable in broncho-alveolar lavage fluids (BALF) and lung sections by

immunofluorescence microscopy of mice following LPS-induced ALI 67.

The major studies which have investigated the role of NETs (DNA/histones) during ALI/

ARDS are summarized in Table 2. In experimental transfusion-related acute lung injury

(TRALI), NETs are detectable in the lung microcirculation by immunofluorescence

microscopy 68. In this study, NET formation in TRALI lungs was prevented by inhibition of

platelet aggregation using acetylsalicylic acid 68. The blockade of NETs by administration

of neutralizing antibodies directed against extracellular histones reduced lung vascular

permeability and the volume of extravascular lung water during TRALI 68. Similarly, in

vivo degradation of NET-derived DNA structures using DNAse1 reduced the severity of

lung injury and mortality in the murine TRALI model 68. Moreover, myeloperoxidase

(MPO)/DNA aggregates as makers of NETs were elevated in plasma samples of human

patients with TRALI as compared to healthy controls 68. In addition, extracellular histones

were co-localized with MPO and DNA in lung tissue sections of TRALI patients 68.
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Trauma-associated ALI/ARDS has been recently associated with extracellular histones in

blood circulation 69. In patients with severe nonthoracic blunt trauma, levels of circulating

nucleosomes and extracellular histones increase with injury severity scores 69. When

purified histones are infused intravenously in mice, the lung is the most susceptible organ,

showing histological signs of inflammation and microvascular thrombi 17, 69. This

observation may be explained by the fact, that the lungs contain the first capillary bed

following intravenous administration of any substance. In response to severe trauma,

extracellular histones may be released by dying cells other than PMNs. Circulating histones

may be transported via the venous blood flow to the lung endothelium, resulting in extensive

lung injury. In fact, it has been described, that extracellular histones derived from dying

parenchymal cells rather than NETs can aggravate organ dysfunction 70. Neutralizing anti-

histone single chain variable fragments (scFv) have been used to suppress histone-induced

toxicity and reverse coagulation activation 69.

Treatment of C57BL/6J mice with antibodies targeting histone H4 and H2A is protective in

a model of C5a-induced ALI (Figure 2) 17. Extracellular histones are released in BALF

during ALI, when induced by LPS, recombinant C5a or IgG immune-complexes 17. In all

three models, the appearance of extracellular histones requires the presence of the C5a

receptors, C5aR and C5L2 17. Extracellular histones and nucleosomes are also detectable in

BALF of around 50% of human patients suffering von ALI/ARDS 17. Extracellular histones

mediate the intracellular influx of Ca2+ in type II alveolar epithelial cell lines, most likely

related to provoking cell death 17. In rats, the direct administration of purified histones to the

airways results in severe respiratory acidosis, compromised respiratory excursions,

pulmonary edema and acute lung inflammation 17. Histones induce the release of a wide

spectrum of inflammatory mediators such as IL-1β, TNFα, IL-6, Eotaxin, G-CSF, KC,

MCP-1, MIP-1α, MIP-1β and RANTES 17, 69. Extracellular histones may directly or

indirectly recruit the activity of TLR2 and TLR4 receptors for promoting inflammation 71.

In influenza A virus mediated ALI, the accumulation of PMNs, NETs and lung epithelial

injury was reduced by a potent arthropod-derived C5-binding inhibitor of complement

activation (OmCI) 72.

Intra-alveolar hemorrhage is a typical histologic finding of ALI/ARDS. A growing list of

evidence suggests the interactions of NETs / extracellular histones with the coagulation

system. The major components of NETs, extracellular histones and DNA, are detectable in

venous thrombus formations 73. In detail, NETs can activate the intrinsic plasmatic

coagulation pathway by direct interaction with coagulation factor XII, resulting in

generation of the fibrin clot 74. During severe sepsis, platelets are activated via their TLR4

receptor and bind to PMNs, which triggers the formation of NETs in pulmonary

capillaries 55. On the other hand, platelets can bind to preformed NETs. In fact, NETs

provide a scaffold for platelet aggregation under shear stress, thereby promoting

thrombosis 73. Extracellular DNA and histones are detectable during acute thrombotic

microangiopathies and may potentially precipitate the formation of microthrombi 75. In co-

incubation studies of human PMNs with platelets, the formation of NETs was induced, when

platelets were pre-activated using proteinase-activated receptor (PAR-1) agonist or thrombin

receptor-activating peptide (TRAP) 68.
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Platelets are a major source of TGFβ in plasma. NET-induced platelet activation would be

expected to promote the release of TGFβ from the α-granules of platelets. As highlighted

below, TGFβ is considered a critical factor especially during the later stages of ALI that

determine tissue repair and remodeling.

2.3 Manipulation of transforming growth factor-beta in acute lung injury

Transforming growth factor-beta (TGFβ) is a highly conserved cytokine with several

existing isoforms (TGFβ1, TGFβ2, TGFβ3) 76. TGFβ typically forms homodimers.

The release of TGFβ occurs as a large latent protein complex (LLC) consisting of TGFβ,

latency-associated peptide (LAP) and latent TGFβ-binding protein (LTBP) 77. The LLC

binds to components of the extracellular matrix. Latent TGF can also bind to glycoprotein A

repetitions predominant (GARP) expressed on regulatory T cells 78.

The multiple molecular events transforming latent TGFβ into active TGFβ are not

completely understood. One mechanism of activation is dependent on integrins such as

αVβ6 integrin, which is expressed by lung epithelial cells 79. In addition, integrin-

independent activation steps may include reactive oxygen species, pH reduction

(acidification), metallo-proteases (e.g. MMP-2, MMP-9, MMP-14) and

thrombospondin-1 80-82.

TGFβ initiates intracellular signaling by binding to the tetrameric TGFβ receptor complex.

This complex is composed of two homodimers of TGFβ receptor I (TGFbRI) and two

homodimers of TGFβ receptor II (TGFbRII) 83. Initially, TGFβ binds to TGFbRII and

subsequently TGFbRI is recruited. Both receptors have intracellular domains with serine/

threonine kinase activity. In addition, a TGFbRIII is required for optimal signaling of the

TGFβ2 isoform 84. For intracellular signaling, TGFβ recruits activin receptor-like kinases

(ALK1, ALK5), that subsequently phosphorylate SMAD proteins 85, 86. In addition, non-

Smad-dependent signaling pathways such as p38 MAPK and DAXX are activated 87, 88.

Mice with targeted genetic disruption of TGFβ1 die prematurely from spontaneous

generalized inflammation 89. TGFβ is a central player of acute lung injury 79, 90. A soluble

chimeric TGFβ type II receptor has the activity of reducing pulmonary edema fluid

following LPS-induced ALI 79. In monolayers of type II alveolar epithelial cells,

recombinant TGFβ decreases the transepithelial resistance via depletion of the intracellular

amounts of the reduced tripeptide, glutathione 79. A genetic defect in TGFβ activation, as

present in mice with deficiency of αVβ6 integrin, results in reduced pulmonary edema and

lung epithelial permeability during ALI 79. Furthermore, TGFβ1 directly regulates the

transport of ions and water in type II alveolar epithelial cells by MAPK-dependent and

ERK1/2-dependent suppression of ion transporter proteins such as the epithelial sodium

channel alpha subunit (alphaENaC) 91. In addition, wounded epithelial cell monolayers

release HMGB1, that appears to accelerates healing of the alveolar lung epithelium via

αvβ6-dependent activation of TGFβ1 92.

TGFβ is a prototypic cytokine for promoting pulmonary fibrosis 93, 94. TGFβ facilitates the

proliferation and chemotaxis of fibroblasts 95. The local transformation of fibroblasts or lung
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epithelial cells into myofibroblasts is promoted, while the apoptosis of myofibroblasts is

limited by TGFβ 96-98. Myofibroblasts are important for the production of extracellular

matrix components and produce additional TGFβ in a positive feedback loop 99. TGFβ

reduces the activity of matrix metallo-proteases and other matrix-degrading proteases 100. In

addition, TGFβ facilitates the production of several other profibrotic cytokines such as

platelet-derived growth factor (PDGF) in vascular endothelial cells 101.

In summary, TGFβ may be especially important during the later profibrotic stages of ALI/

ARDS, although there is also the view that TGFβ might be active early in ALI 102. Blockade

of TGFβ activation (e.g. anti-αvβ6 integrin antibody) or modulation of TGFβ signaling (e.g.

ALK5 inhibitors) are currently evaluated as therapeutic strategies to prevent adverse tissue

remodeling and pulmonary fibrosis 103, 104.

3. Conclusion

In this review, we have discussed three potential protein targets for future therapies of ALI/

ARDS (Figure 3). The complement fragment, C5a, NETs and TGFβ orchestrate the

development and progression of ALI/ARDS at different stages of disease. C5a is considered

an early proinflammatory mediator of the innate immune system. Accumulating evidence

suggest, that NETs are an integral effector mechanism of immunity but may mediate adverse

outcomes of ALI/ARDS. Extracellular histones and DNA are major components of NETs,

but may also be passively released by lung epithelial or endothelial cells. Finally, the later

profibrotic phases of ALI/ARDS may involve TGFβ, resulting in healing (restoration of

homeostasis) or progression to fibrosis with impaired organ function. Therapeutic

modulation of the activity of C5a, NETs or TGFβ (e.g. by specific neutralizing antibodies)

may be helpful in future for patients with ALI/ARDS. However, the clinical efficacy and

feasibility of such strategies remains to be seen.

4. Expert opinion

The improvement in survival rates of ALI/ARDS which has been observed during the past

1-2 decades are mainly explained by advances in supportive critical care medicine 8. The

optimization of mechanical ventilation strategies has been clearly beneficial. On the other

hand, even with best supportive care, death occurs in at least 20% of patients with ALI/

ARDS. To date all clinical trials investigating novel or traditional pharmacologic substances

have failed to show an advantage in the treatment of lung injury. Despite these sobering

results, emerging experimental studies have recently raised new enthusiasm to achieve a

better pathophysiologic understanding of ALI/ARDS in future.

The role of NETs and extracellular histones during the development and perpetuation of

ALI/ARDS may turn out to be an important aspect for this disease. However, it should also

be mentioned that the reports on NETs have been faced with some degree of skepticim. 105

Some scientists have questioned that the presence of extracellular DNA and histones on

microscopic slides of activated PMNs may represent laboratory artefacts due to mechanical

disruption of cells during isolation and staining procedures rather than a phenomenon of

biological significance. On the other hand, several studies have successfully employed intra-
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vital imaging of NETs or strategies to antagonize NETs in vivo (e.g. treatment with DNAse

or anti-histone antibodies). The controversy extends to the level of importance that NET-

formation may play for innate host defense. While it is recognized that certain bacteria

encode DNAses for degradation of NETs as a strategy of immune evasion 106, it is not

entirely clear how essential NETs are to achieve pathogen clearance.

In analogy to NETs and appearance of histones, the release of other intracellular proteins

such as myoglobin (e.g. during rhabdomyolysis) or hemoglobin (e.g. during destruction of

red blood cells) has long been recognized as a risk factor for tissue damage and organ

dysfunction 107. In the area following the discovery of penicillin many substances had been

evaluated for their bactericidal activity. Indeed, it was already in the 1940s when extracts of

purifies histone proteins were demonstrated to effectively kill bacteria in culture media 108.

It is somewhat tragic, that it took modern science until the 21st century to appreciate that the

endogenous release of histone/DNA in the form of NETs may constitute an innate defense

mechanism 52. As true for several immune effector mechanisms, NETs may not only be

beneficial for clearance of infectious pathogens, but may rather cause collateral damage to

endothelial and epithelial cells during ALI/ARDS. In our opinion, extracellular histones /

NETs clearly display adverse effects in the setting of ALI/ARDS. The bactericidal effects of

extracellular histones / NETs may not be needed in patients with ALI/ARDS, as long as

control of pathogen growth can effectively be achieved by the administration of antibiotics.

Hence, selective suppression of certain host immune defense systems (NETs, C5a), which

cause tissue injury, may be save to exploit as a pharmacologic principle. It was a key finding

that C5a via C5aR and C5L2 promotes the appearance of extracellular histones, which can

subsequently mediate cell death of epithelial cells and production of inflammatory mediators

in the alveolar compartment during ALI/ARDS 17.

Histone H4 appears to be the histone protein with the highest cytotoxic activity. Blockade of

H4 using antibodies reduced the severity of ALI by around 50% in several studies 17, 68. An

important development in future would be the identification of antibodies with higher

avidity for the cytotoxic domains of several core histones in order to fully maintain normal

alveolar/endothelial barrier function during ALI/ARDS.

The ultimate goal in the field of research on ALI/ARDS would be the availability of an

easy-to-administer recombinant protein / enzyme to efficiently antagonize the unfavorable

effects of certain endogenous proteins (NETs/extracellular histones, C5a, TGFβ). Protein-

based therapies for ALI/ARDS may hold the promise to reduce mortality rates and prevent

the need for invasive mechanical ventilation, which can be a traumatizing event for patients

and their relatives. Current treatment strategies with supportive critical care treatment result

in substantial costs for the national health systems. It is unclear, if a cost benefit of protein-

based anti-ALI/ARDS drugs would be accomplished, especially when such agents may

require de novo pharmacologic development and extensive clinical testing.

The humanized monoclonal anti-C5 antibody, eculizumab, would have the advantage that it

has already been FDA-approved for the treatment of atypical hemolytic uremic syndrome

(aHUS) and paroxysmal nocturnal hemoglobinuria (PNH) 109. It is tempting to speculate
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that eculizumab may also block C5a-induced release of NETs / extracellular histones in the

setting of ALI/ARDS. At least, this could be easily tested in experimental models of ALI.

We may at least expect a good amount of scientific progress in the coming years. In

particular, the area of experimental research on the role of NETs / extracellular histones

during ALI/ARDS may provide additional insights how NETs are situated in the

immunologic networks.

A weakness of the current data on NETs is that it was mainly (but not exclusively)

accumulated in animal models of ALI/ARDS. It should be cautioned that a certain degree of

disconnect between experimental and clinical studies of ALI/ARDS is likely to exist.

Experimental studies typically use rodents (M. musculus, R. norvegicus) with defined

induction of ALI by a single insult. For example, lipopolysaccharide (LPS) is frequently

used to induce ALI in rodents. It should be mentioned that rodents are much more resistant

against the adverse effects of LPS as compared to humans, which is partly explained by a

high level of genetic variability in the extracellular domain of their respective TLR4

receptors 110. Experimental TRALI may involve a two hit model starting with LPS

injections followed by administration of mouse MHC class I antibodies 68. This

experimental approach in rodents provides a more standardized insult as compared to the

complex etiology of TRALI in humans 111. In most small animal studies measurements of

paO2 are not routinely performed and the term ALI is used, therefore, discrimination

between ALI and ARDS would be difficult. In fact, the severity of many ALI/ARDS models

in rodents is less as compared to ALI/ARDS observed in human patients. More severe

experimental models of ALI/ARDS in rodents would require the use of small animal

mechanical ventilation, which is not feasible in most laboratories.

Consequently, the relevance of experimental results obtained by studies with small animal

models for the situation in human patients with ALI/ARDS is not entirely clear 112. For

example, the use of β2-adrenoceptor agonists or glucocorticoids has shown some efficacy in

experimental ALI using rodents 113, 114, but such agents have failed to show protective

results in clinical trials in humans 28, 30, 115. These observations may suggest the existence

of considerable discrepancies in the molecular pathophysiology of experimental ALI in

small animals as compared to ALI/ARDS in humans. Unlike experimental ALI, most

clinical studies with humans have employed the evaluation of 30-60-day mortality and

ventilator-free days. These primary endpoints are often supplemented by collection of BALF

and plasma at serial time points. Clinical studies typically require high numbers of patients

given the heterogeneity of underlying causes of ALI/ARDS. In addition, study populations

may vary because of different definitions of ALI/ARDS (e.g. severity of disease according

to the traditional definition versus the novel ‘Berlin definition’) making the comparison of

study results sometimes difficult.

In future, the use of novel experimental models such as ‘humanized mice’ may have some

potential to overcome the limited relevance of current animal models for human diseases.

‘Humanized mice’ are generated by transplantation of human CD34+ hematopoietic stem

cells into immunocompromised mouse strains (e.g. NSG mice) resulting in the co-presence

of a human immune system in a mouse lung during experimental ALI/ARDS. Additional
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progress may be achieved by the utilization of novel methodologies such as next-generation-

sequencing approaches, the use of flow cytometry based high-throughput

immunocytofluorescence (e.g. ImageStreamX Mark II, Amnis) and single-cell protein

biomarker analysis (e.g. chipcytometry technology, Zellkraftwerk).

In conclusion, subsequent decades may be full of scientific advancement as far as the

understanding of the pathophysiology and drug development for the treatment of ALI/ARDS

is concerned.
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Article highlights

• Acute lung injury (ALI) is among the leading causes of morbidity and mortality

worldwide.

• While advances in critical care medicine (e.g. low-tidal volume ventilation)

have somewhat improved the outcomes of ALI/ARDS, no specific

pharmacologic therapies are currently available to ameliorate the adverse

consequences of ALI.

• Many studies support the idea of an essential role for the complement cleavage

product, C5a, during ALI. The knowledge on the precise molecular effector

functions of how C5a-modulated inflammation is translated into organ

dysfunction have been recently expanded.

• It has recently been uncovered that C5a mediates the appearance of extracellular

histones in broncho-alveolar lavage fluids (BALF) during experimental ALI.

• Extracellular histones, which are major components of neutrophil extracellular

traps (NETs), are detectable in plasma and BALF of human patients with ALI/

ARDS in humans.

• Extracellular histones / NETs compromise lung function and alveolar gas

exchange by displaying cytotoxic activity for alveolar epithelial cells /

endothelial cells, and promoting acute inflammation and the accumulation of

lung edema fluids.

• Neutralization of extracellular histones using anti-H4 antibodies reduces the

severity of experimental ALI as induced by C5a or transfusions (TRALI).

• Extracellular histones are a substrate for enzymatic degradation by activated

protein C (APC), but this inactivation process may not be sufficient to protect

from ALI/ARDS in clinical settings.

• NETs interact with platelets, the latter being major sources of TGFβ. TGFβ may

dominate the fibro-proliferative stages of ALI and may determine the

conditional transition to fibrotic conversions in lung architecture.

• Interception of NETs / extracellular histone using neutralizing antibodies or

degradation by site specific enzymes may evolve as novel protein-based

strategies to cope with ALI/ARDS. Alternatively, interference with up-stream

mechanisms (anti-C5a strategies) or down-stream effector proteins (anti-TGFβ

strategies) could prove helpful for certain patients with ALI/ARDS.

This box summarizes key points contained in the article.
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Figure 1.
Infusion of extracellular histones (75 mg/kg body weight i.v.) purified from calf thymus

mediates lethality in C57BL/6J mice. Death of mice was preceded by clinical signs of

respiratory failure. This figure shows data by Bosmann and Ward, which are consistent with

reported findings by Xu et al. 60.
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Figure 2.
Neutralization of extracellular histones using monoclonal anti-H4 antibody reduces the

severity of ALI in C57BL/6J mice. ALI was induced by intra-tracheal administration of

recombinant mouse C5a (500 ng/mouse). Groups of mice were treated with either anti-

Histone antibody (300 μg/mouse) or non-specific matched isotype IgG1κ antibody (300 μg/

mouse). Severity of ALI was determined by quantification of albumin (ELISA) in broncho-

alveolar lavage fluids after 8 h. Data taken from 17).
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Figure 3.
Current concepts on the pathophysiologic mechanisms of ALI/ARDS involving extracellular

histones / NETs, C5a and TGFβ. The frame on the left shows the architecture of the

alveolus, which is composed of type I and type II alveolar epithelial cells, resident intra-

alveolar macrophages and adjacent lung capillaries with intact endothelial lining. The frame

on the right displays the injured alveolus in ALI/ARDS: Complement activation products

(C5a) and inflammatory mediators released by activated macrophages orchestrate the influx

of PMNs, monocytes and adaptive immune cells to the alveolar compartment. C5a promotes

release of NETs and extracellular histones, thereby resulting in tissue damage and disruption

of the epithelial/endothelial barrier. Intra-alveolar hemorrhage includes the presence of

platelets, which interact with NETs and release TGFβ. The later phases of ALI/ARDS may

include TGFβ-mediated fibro-proliferative responses and accumulation of extracellular

matrix.
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TABLE 1

Selected clinical trials without benefit in patients with ALI/ARDS

References ARDS patients Pharmacologic intervention Result

25 n = 130 Recombinant GM-CSF No differences in 28-day survival or
ventilator-free days

24 n = 75 Recombinant Activated Protein C No differences in 60-day survival or
ventilator-free days

26 n = 448 Recombinant Surfactant Protein C No differences in 28-day survival or
ventilator-free days

7 n = 282 β2-Agonists (inhalation) No difference in ventilator-free days or
survival before hospital discharge

27 n = 324 β2-Agonists (intravenous) No differences in 28-day survival

116 n = 385 Nitric oxide (inhalation) No differences in survival and
ventilator-free days

117 n = 348 Prostaglandin E1 (Liposomes) No differences in 28-day survival or
ventilator-free days

28 / 30 n = 99 / n = 180 Methylprednisolone No differences in 45-day survival /
No differences in 180-day survival

6 n = 272 Omega-3-fatty acids No differences in 60-day survival

29 n = 46 N-Acetylcysteine / Procysteine No differences in survival
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TABLE 2

Studies on the role of NETs / extracellular histones during ALI

Reference Species Disease Model Major findings

Caudrillier et al. 68 M. musculus, H.
sapiens

Transfusion-
induced ALI
(TRALI), clinical
samples

-Detection of NETs in lungs and plasma of ALI
patients
-Blockade of extracellular histones is protective
in TRALI
-Activated platelets induce NETs during TRALI

Abrams et al. 69 H. sapiens, M.
musculus

Clinical samples -Circulating histones in patients with non-thoracic
trauma increase the risk for ALI
-Histones induce cytokine release
-Histones are toxic for endothelial cells

Bosmann et al. 17 M. musculus, H.
sapiens

C5a-induced
ALI, clinical
samples

-C5a mediates appearance of extracellular
histones in lungs during ALI
-Blockade of histones is protective in
complement-induced ALI
-Intra-tracheal administration of purified histones
precipitates symptoms of ALI
-Detection of extracellular histones in BALF of
patients with ALI

Saffarzadeh et al. 67 H. sapiens, M.
musculus

LPS-induced
ALI, cell cultures

-NETs are cytotoxic for human alveolar epithelial
cells and endothelial cells
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