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Abstract
AIM: To investigate insulin-like growth factor 2 (IGF2) 
differentially methylated region (DMR)0 hypomethyl-
ation in relation to clinicopathological and molecular 
features in colorectal serrated lesions. 

METHODS: To accurately analyze the association be-
tween the histological types and molecular features of 
each type of serrated lesion, we consecutively collected 
1386 formalin-fixed paraffin-embedded tissue speci-
mens that comprised all histological types [hyperplastic 
polyps (HPs, n  = 121), sessile serrated adenomas (SSAs, 
n  = 132), traditional serrated adenomas (TSAs, n  = 
111), non-serrated adenomas (n  = 195), and colorectal 
cancers (CRCs, n  = 827)]. We evaluated the methyla-
tion levels of IGF2  DMR0 and long interspersed nucleo-
tide element-1 (LINE-1) in HPs (n  = 115), SSAs (n  = 
120), SSAs with cytological dysplasia (n  = 10), TSAs (n  
= 91), TSAs with high-grade dysplasia (HGD) (n  = 15), 
non-serrated adenomas (n  = 80), non-serrated adeno-
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mas with HGD (n  = 105), and CRCs (n  = 794). For the 
accurate quantification of the relative methylation levels 
(scale 0%-100%) of IGF2  DMR0 and LINE-1, we used 
bisulfite pyrosequencing method. Tumor specimens 
were analyzed for microsatellite instability, KRAS  (co-
dons 12 and 13), BRAF (V600E), and PIK3CA (exons 9 
and 20) mutations; MLH1 and MGMT methylation; and 
IGF2 expression by immunohistochemistry.

RESULTS: The distribution of the IGF2  DMR0 methyla-
tion level in 351 serrated lesions and 185 non-serrated 
adenomas (with or without HGD) was as follows: mean 
61.7, median 62.5, SD 18.0, range 5.0-99.0, interquar-
tile range 49.5-74.4. The IGF2  DMR0 methylation level 
was divided into quartiles (Q1 ≥ 74.5, Q2 62.6-74.4, 
Q3 49.6-62.5, Q4 ≤ 49.5) for further analysis. With re-
gard to the histological type, the IGF2  DMR0 methyla-
tion levels of SSAs (mean ± SD, 73.1 ± 12.3) were sig-
nificantly higher than those of HPs (61.9 ± 20.5), TSAs 
(61.6 ± 19.6), and non-serrated adenomas (59.0 ± 
15.8) (P  < 0.0001). The IGF2  DMR0 methylation level 
was inversely correlated with the IGF2 expression level 
(r  = -0.21, P  = 0.0051). IGF2  DMR0 hypomethylation 
was less frequently detected in SSAs compared with 
HPs, TSAs, and non-serrated adenomas (P  < 0.0001). 
Multivariate logistic regression analysis also showed 
that IGF2  DMR0 hypomethylation was inversely associ-
ated with SSAs (P  < 0.0001). The methylation levels of 
IGF2  DMR0 and LINE-1 in TSAs with HGD (50.2 ± 18.7 
and 55.7 ± 5.4, respectively) were significantly lower 
than those in TSAs (61.6 ± 19.6 and 58.8 ± 4.7, re-
spectively) (IGF2 DMR0, P  = 0.038; LINE-1, P  = 0.024).

CONCLUSION: IGF2  DMR0 hypomethylation may be 
an infrequent epigenetic alteration in the SSA pathway. 
Hypomethylation of IGF2  DMR0 and LINE-1 may play a 
role in TSA pathway progression. 

© 2014 Baishideng Publishing Group Inc. All rights reserved.
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Core tip: The serrated pathway attracts considerable 
attention as an alternative colorectal cancer (CRC) path-
way. We previously reported the association of insulin-
like growth factor 2 (IGF2 ) differentially methylated 
region (DMR)0 hypomethylation with prognosis and its 
link to LINE-1 hypomethylation in CRC; however, there 
have been no studies describing its role in the serrated 
pathway. Therefore, we evaluated the methylation lev-
els of IGF2 DMR0 and long interspersed nucleotide ele-
ment-1 (LINE-1) in 351 serrated lesions and 185 non-
serrated adenomas. Our results suggest that the IGF2 
DMR0 may be an infrequent epigenetic alteration in the 
sessile serrated adenoma pathway. Moreover, we found 
that the hypomethylation of IGF2  DMR0 and LINE-1 
may play an important role in the progression of tradi-
tional serrated adenoma.
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INTRODUCTION
The serrated neoplasia pathway has attracted consider-
able attention as an alternative pathway of  colorectal 
cancer (CRC) development, and serrated lesions exhibit 
unique clinicopathological or molecular features[1-23]. Ac-
cording to the World Health Organization (WHO) clas-
sification[24], colorectal premalignant (or non-malignant) 
neoplastic lesions with serrated morphology currently en-
compass three major categories: hyperplastic polyp (HP), 
sessile serrated adenoma (SSA), and traditional serrated 
adenoma (TSA). 

SSA and TSA are premalignant lesions, but SSA is 
the principal serrated precursor of  CRCs[15]. In particular, 
there are many clinicopathological and molecular similari-
ties between SSA and microsatellite instability (MSI)-high 
CRC, for example, right-sided predilection, MLH1 hy-
permethylation, and frequent BRAF mutation[7,15,17-19,25-28]. 
Therefore, SSAs are hypothesized to develop in some 
cases to MSI-high CRCs with BRAF mutation in the 
proximal colon[7,15,17,25,26,28,29].

In contrast, TSAs are much less common than SSAs, 
and thus, there are fewer data on their molecular pro-
file[15,25]. TSAs typically do not show MLH1 hypermethyl-
ation or develop to MSI-high CRCs, but they do common-
ly have MGMT hypermethylation[15,25,26]. With regard to the 
PIK3CA gene, a previous study reported that no mutation 
was found in serrated lesions, and that mutations were 
uncommonly, but exclusively, observed in non-serrated 
adenomas (1.4%)[30]. Because some HPs do share mo-
lecular features with TSAs (e.g., KRAS mutation)[3,25,26,31], 
it has been suggested that the TSA pathway (HP-TSA-
carcinoma sequence) may diverge from the SSA pathway 
(HP-SSA-SSA with cytological dysplasia-carcinoma se-
quence) on the basis of  KRAS vs BRAF mutations and/
or MLH1 vs MGMT hypermethylation within subsets 
of  HPs[15]. However, a definite precursor of  TSA has 
not been established. In addition, the key carcinogenic 
mechanism involved in this TSA pathway remains largely 
unknown. 

Loss of  imprinting (LOI) of  insulin-like growth fac-
tor 2 (IGF2) has been shown to be associated with an 
increased risk of  CRC[32,33], suggesting that it may play 
a role in colorectal carcinogenesis. The imprinting and 
expression of  IGF2 are controlled by CpG-rich regions 
known as differentially methylated regions (DMRs)[34-37]. 
In particular, IGF2 DMR0 hypomethylation has been 
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suggested as a surrogate-biomarker for IGF2 LOI[38]. Pre-
viously, we reported that IGF2 DMR0 hypomethylation 
in CRC was associated with poor prognosis and might be 
linked to global DNA hypomethylation [long interspersed 
nucleotide element-1 (LINE-1) hypomethylation][38]. 
However, to date, there have been no studies describing 
the role of  IGF2 DMR0 hypomethylation in the early 
stage of  colorectal carcinogenesis.

To investigate the role of  IGF2 DMR0 hypomethyl-
ation in serrated lesions we examined IGF2 DMR0 and 
LINE-1 methylation levels as well as other molecular al-
terations using a large sample of  1330 colorectal tumors 
(351 serrated lesions, 185 non-serrated adenomas, and 
794 CRCs). 

MATERIALS AND METHODS
Histopathological evaluation of tissue specimens of 
colorectal serrated lesions 
Histological findings related to all colorectal serrated le-
sion specimens were evaluated by a pathologist (Fujita M) 
who was blinded to the clinical and molecular informa-
tion. Serrated lesions (HPs, SSAs, and TSAs) were clas-
sified on the basis of  the current WHO criteria[24]. HPs 
were further subdivided into microvesicular HPs and 
goblet cell HPs. 

SSAs are characterized by the presence of  a disorga-
nized and distorted crypt growth pattern that is usually 
easily identifiable upon low-power microscopic examina-
tion. Crypts, particularly at the basal portion of  the polyp, 
may appear architecturally distorted, dilated, and/or 
branched, particularly in the horizontal plane, which leads 
to the formation of  boot, L, or anchor-shaped crypts. 
The cytology is typically quite bland, but a minor degree 
of  nuclear atypia is allowable, particularly in the crypt 
bases[15,25,26].

To accurately analyze the association between the 
histological types and molecular features of  each type of  
serrated lesion we consecutively collected more than 100 
formalin-fixed paraffin-embedded (FFPE) tissue speci-
mens of  each histological type (HP, SSA, and TSA). In 
total, 364 tissue specimens of  serrated lesions [121 HPs, 
122 SSAs, 10 SSAs with cytological dysplasia, 96 TSAs, 
and 15 TSAs with high-grade dysplasia (HGD)] from pa-
tients who underwent endoscopic resection or other sur-
gical treatment at Sapporo Medical University Hospital, 
Keiyukai Sapporo Hospital or Teine-Keijinkai Hospital 
between 2001 and 2012 were available for assessment. All 
of  HPs were microvesicular HPs. 

The serrated lesions were classified by location: the 
proximal colon (cecum, ascending and transverse colon), 
distal colon (splenic flexure, descending, sigmoid colon) 
and rectum. Informed consent was obtained from all 
the patients before specimen collection. This study was 
approved by the institutional review boards of  the par-
ticipating institutions. The term “prognostic marker” is 
used throughout this article according to the REMARK 
Guidelines[39].

Tissue specimens of CRC and non-serrated adenomas
FFPE tissue specimens of  827 CRCs (stages Ⅰ-Ⅳ), 85 
non-serrated adenomas (i.e., tubular or tubulovillous 
adenomas), and 110 non-serrated adenomas with HGD 
from patients who underwent surgical treatment or en-
doscopic resection at the above hospitals were also col-
lected. The criterion for diagnosing cancer was invasion 
of  malignant cells beyond the muscularis mucosa.

DNA extraction and pyrosequencing for KRAS, BRAF, 
and PIK3CA and MSI analysis
Genomic DNA was extracted from the FFPE tissue spec-
imens of  the colorectal tumors using a QIAamp DNA 
FFPE Tissue Kit (Qiagen, Valencia, CA, United States). 
PCR and targeted pyrosequencing were then performed 
using the extracted genomic DNA to determine the pres-
ence of  KRAS (codons 12 and 13), BRAF (V600E) and 
PIK3CA (exons 9 and 20) mutations[40,41]. MSI analysis 
was performed as previously described using 10 micro-
satellite markers[14]. MSI-high was defined as instability in 
≥ 30% of  the markers and MSI-low/microsatellite stable 
(MSS) as instability in < 30% of  the markers[14].

Sodium bisulfite treatment and pyrosequencing to 
measure IGF2 DMR0 and LINE-1 methylation levels
Bisulfite modification of  genomic DNA was performed 
using a BisulFlash™ DNA Modification Kit (Epigentek, 
Brooklyn, NY, United States).

We measured the relative methylation level at the 
IGF2 DMR0 using a bisulfite-pyrosequencing assay as 
previously described[38]. The amount of  C relative to the 
sum of  the amounts of  C and T at each CpG site was 
calculated as percentage (scale 0%-100%). We calculated 
the average of  the first and second CpG sites in the IGF2 
DMR0 as the IGF2 DMR0 methylation level. Likewise, 
to accurately quantify the LINE-1 methylation levels we 
utilized a pyrosequencing assay, as previously described[42].

Pyrosequencing to measure MGMT and MLH1 promoter 
methylation 
Pyrosequencing for MGMT and MLH1 methylation was 
performed using the PyroMark kit (Qiagen). We used a 
previously defined cut-off  of  ≥ 8% methylated alleles 
for MGMT and MLH1 hypermethylated tumors[43].

Immunohistochemistry for IGF2 expression 
For IGF2 staining, we used anti-IGF2 antibody (Rabbit 
polyclonal to IGF2; Abcam, Cambridge, MA, United 
States) with a subsequent reaction performed using Tar-
get Retrieval Solution, Citrate pH 6 (Dako Cytomation, 
Carpinteria, CA, United States). In each case, we recorded 
cytoplasmic IGF2 expression as no expression, weak ex-
pression, moderate expression, or strong expression rela-
tive to normal colorectal epithelial cells. IGF2 expression 
was visually interpreted by Nosho K, who was unaware 
of  the other data. For the agreement study of  IGF2 ex-
pression, 128 randomly selected cases were examined by 
a second pathologist (by Naito T), who was also unaware 
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49.5-74.4 (all on a 0-100 scale) (Figure 1). The IGF2 
DMR0 methylation level was divided into quartiles (Q1 
≥ 74.5, Q2 62.6-74.4, Q3 49.6-62.5, Q4 ≤ 49.5) for fur-
ther analysis.

We evaluated the IGF2 DMR0 methylation level in 
serrated lesions (HP, SSA, and TSA) and non-serrated 
adenomas according to their histological type. The IGF2 
DMR0 methylation levels of  SSAs (n = 120, mean ± SD, 
73.1 ± 12.3) were significantly higher than those of  HPs 
(n = 115, 61.9 ± 20.5, P < 0.0001), TSAs (n = 91, 61.6 ± 
19.6, P < 0.0001), and non-serrated adenomas (n = 80, 
59.0 ± 15.8, P < 0.0001) (Figure 2). 

IGF2 DMR0 hypomethylation was associated with 
larger tumor size in serrated lesions and non-serrated 
adenomas (Table 1). With regard to the histological type, 
IGF2 DMR0 hypomethylation was less frequently detect-
ed in SSAs than in HPs, TSAs, and non-serrated adeno-
mas (P < 0.0001) (Table 1). Multivariate logistic regression 
analysis also showed the IGF2 DMR0 hypomethylation 
was inversely associated with SSAs (P < 0.0001). 

Association of IGF2 expression and IGF2 DMR0 
methylation level in serrated lesions and non-serrated 
adenomas
We examined IGF2 overexpression in 168 colorectal 
serrated lesions and non-serrated adenomas. The IGF2 
DMR0 methylation level was inversely correlated with the 
IGF2 expression level (r = -0.21, P = 0.0051).
 
IGF2 DMR0 methylation level in colorectal cancer
A total of  827 paraffin-embedded CRCs (stages Ⅰ-Ⅳ) 
were subjected to an IGF2 DMR0 methylation assay with 
794 (96%) valid results. The distribution of  the IGF2 
DMR0 methylation level in these 794 CRCs was as fol-
lows: mean 54.7, median 55.0, SD 13.7, range 7.5-98.0, 
interquartile range 46.1-63.0 (all on a 0-100 scale). The 
IGF2 DMR0 methylation level was divided into quartiles 
(Q1 ≥ 63.0, Q2 55.0-62.9, Q3 46.1-54.9, Q4 ≤ 46.0) for 

of  the other data. The concordance between the two 
pathologists (P < 0.0001) was 0.84 (κ = 0.69), indicating 
substantial agreement. 

Statistical analysis
JMP (version 10) software was used for all statistical anal-
yses (SAS Institute, Cary, NC, United States). All P values 
were two-sided. Univariate analyses were performed to 
investigate the clinicopathological and molecular charac-
teristics including IGF2 DMR0 and LINE-1 hypomethyl-
ation, according to histological type, classified as serrated 
lesion, non-serrated adenoma, and CRC. P values were 
calculated by analysis of  variance for age, tumor size, and 
the methylation levels of  IGF2 DMR0 and LINE-1 and 
by χ 2 or Fisher’s exact test for all other variables. A mul-
tivariate logistic regression analysis was employed to ex-
amine associations with IGF2 DMR0 hypomethylation (as 
an outcome variable), adjusting for potential confounders. 
The model initially included sex, age, tumor size, tumor 
location, histological type, and the LINE-1 methylation 
level, and MSI, BRAF, KRAS, and PIK3CA mutations. 
In the CRC-specific survival analysis, the Kaplan-Meier 
method and log-rank test were used to assess the survival 
time distribution. The Spearman correlation coefficient 
was used to assess the correlation of  the IGF2 DMR0 
methylation level and IGF2 expression. 

RESULTS
The IGF2 DMR0 methylation level in serrated lesion and 
non-serrated adenomas
We assessed 559 FFPE tissue specimens of  serrated le-
sions and non-serrated adenomas in the IGF2 DMR0 
methylation assay and obtained 536 (96%) valid results. 
The distribution of  the IGF2 DMR0 methylation level 
in 351 serrated lesions and 185 non-serrated adenomas 

(with or without HGD) was as follows: mean 61.7, me-
dian 62.5, SD 18.0, range 5.0-99.0, interquartile range 
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Figure 1  Distribution of IGF2 differentially methylated region 0 methylation levels in 351 serrated lesions. Hyperplastic polyp, sessile serrated adenoma (SSA), 
SSA with cytological dysplasia, traditional serrated adenoma (TSA) and TSA with high-grade dysplasia (HGD) and 185 non-serrated adenomas (tubular adenoma, 
tubular adenoma with HGD, tubulovillous adenoma and tubulovillous adenoma with HGD). DMR: Differentially methylated region; IGF2: Insulin-like growth factor 2.
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further analysis. 

Colorectal cancer patient survival and IGF2 DMR0 
methylation level
The influence of  the IGF2 DMR0 methylation level on 

clinical outcome was assessed in CRC patients. During 
the follow-up of  398 patients with metastatic CRC (stages 
Ⅲ-Ⅳ) who were eligible for survival analysis, mortality 
occurred in 134, including 118 deaths confirmed to be 
attributable to CRC. The median follow-up period for 
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Figure 2  IGF2 differentially methylated region 0 methylation level according to histological type. Insulin-like growth factor 2 (IGF2) differentially methylated 
region (DMR)0 methylation levels of sessile serrated adenoma (mean ± SD; 73.1 ± 12.3) were significantly higher compared with those of hyperplastic polyp (61.9 ± 
20.5, P < 0.0001), traditional serrated adenoma (61.6 ± 19.6, P < 0.0001), and non-serrated adenoma (59.0 ± 15.8, P < 0.0001). P -values were calculated by analysis 
of variance.

Table 1  IGF2 differentially methylated region 0 hypomethylation in serrated lesions and non-serrated adenomas  n  (%)

Clinicopathological feature Total n IGF2 DMR0 methylation (quartile) P  value

Q1 (≥ 74.5) Q2 (62.6-74.4) Q3 (49.6-62.5) Q4 (≤ 49.5)

All cases 536 134 130 131 141
Sex
   Male 326 (61) 78 (58) 80 (62) 92 (70) 76 (54)  0.041
   Female 210 (39) 56 (42) 50 (38) 39 (30) 65 (46)
Age (mean ± SD) 61.5 ± 12.2 59.9 ± 12.3   60.8 ± 12.0 63.1 ± 11.6 62.3 ± 13.0  0.150
Tumor size (mm) (mean ± SD) 14.3 ± 11.4 9.9 ± 4.0 13.4 ± 7.4 14.7 ± 11.1 19.1 ± 17.6 < 0.0001
Tumor location
   Rectum   70 (13)  11 (8.5) 14 (11) 18 (14) 27 (20)  0.061
   Distal colon 161 (31) 35 (27) 43 (33) 37 (29) 46 (33)
   Proximal colon 296 (56) 84 (65) 72 (56) 75 (58) 65 (47)
Histological type
   Hyperplastic polyp (HP) 115 (21) 33 (25) 25 (19) 23 (18) 34 (24) < 0.0001
   Sessile serrated adenoma (SSA) without 
   cytological dysplasia

120 (22) 60 (45) 39 (30) 15 (11)    6 (4.3)

   SSA with cytological dysplasia    10 (1.9)    1 (0.8)    3 (2.3)    6 (4.6) 0 (0)
   Traditional serrated adenoma (TSA) without 
   high-grade dysplasia (HGD)

  91 (17) 22 (16) 21 (16) 23 (18) 25 (18)

   TSA with HGD    15 (2.8)    2 (1.5)    2 (1.5)    2 (1.5)   9 (6.4)
   Non-serrated adenoma (tubular or 
   tubulovillous adenoma) without HGD

  80 (15)  11 (8.2) 17 (13) 32 (24) 20 (14)

   Non-serrated adenoma with HGD 105 (20)    5 (3.7) 23 (18) 30 (23) 47 (33)

Percentage indicates the proportion of patients of each histological type who met the criteria for a specific clinical or molecular feature. P values were cal-
culated by analysis of variance for age and tumor size and by χ 2 or Fisher’s exact test for all other variables. The P value for significance was adjusted by 
Bonferroni correction to 0.010 (= 0.05/5).
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censored patients was 3.3 years. Kaplan-Meier analysis 
was performed using categorical variables (Q1, Q2, Q3, 
and Q4). Slightly but insignificantly higher mortality was 
observed in patients with IGF2 DMR0 hypomethylation 
compared with those without hypomethylation in terms 
of  cancer-specific survival (log-rank test: P = 0.13) (Figure 
3A). In another Kaplan-Meier analysis, Q4 cases were 
defined as the “hypomethylated group” and the Q1, Q2, 
and Q3 cases were combined into a “non-hypomethylated 
group”; the hypomethylated group (log-rank test: P = 
0.038) was found to have significantly higher mortal-
ity (Figure 3B). Similar results were observed in terms 
of  overall survival (log-rank test: P = 0.040) (data not 
shown). 

LINE-1 methylation level and CRC patient survival
The LINE-1 methylation level in CRC was also divided 
into quartiles (Q1 ≥ 58.7, Q2 54.8-58.6, Q3 50.8-54.7, 
and Q4 ≤ 50.7). A significantly higher mortality rate was 
observed among Q4 cases (log-rank test: P = 0.0037) in 

the Kaplan-Meier analysis (Figure 3C, D). 

Association of histological type and IGF2 DMR0 and 
LINE-1 methylation levels as well as other molecular 
features of serrated lesions and non-serrated adenomas
Table 2 shows the clinicopathological and molecular fea-
tures of  serrated lesions and non-serrated adenomas. No 
significant difference was observed between SSAs (69.0 
± 10.8) with cytological dysplasia and SSAs without (73.1 
± 12.3) in IGF2 DMR0 methylation levels (P = 0.32). 
In contrast, MSI-high was more frequently (P < 0.0001) 
found in SSAs with cytological dysplasia [40% (4/10)] 
than in SSAs [0.8% (1/120)]. With regard to the LINE-1 
methylation level, no significant difference was observed 
between the methylation level and histological type in 
serrated lesions and non-serrated adenomas (P = 0.59).

Mutations of  BRAF, KRAS, and PIK3CA were de-
tected in 49%, 19%, and 0.9% of  HPs, 87%, 2.5%, and 0% 
of  SSAs, 69%, 17%, and 0% of  TSAs and 2.6%, 19%, and 
1.3% of  non-serrated adenomas, respectively (Table 2).
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Figure 3  Kaplan-Meier survival curves for colorectal cancer according to the IGF2 differentially methylated region 0 and long interspersed nucleotide ele-
ment-1 methylation levels in metastatic colorectal cancers. A: Patients with Insulin-like growth factor 2 (IGF2) differentially methylated region (DMR)0 hypometh-
ylation had a slightly higher mortality rate than those with IGF2 DMR0 hypermethylation, but this difference was not significant (log-rank test: P = 0.13); B: IGF2 DMR0 
hypomethylation (Q4 cases) was significantly associated with unfavorable cancer-specific survival (log-rank test: P = 0.038); C: Significantly higher mortality was 
observed in patients with long interspersed nucleotide element-1 (LINE-1) hypomethylation compared with those with LINE-1 hypermethylation (log-rank test: P = 0.026); 
D: LINE-1 hypomethylation (Q4 cases) was significantly associated with unfavorable cancer-specific survival (log-rank test: P = 0.0037).
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IGF2 DMR0 and LINE-1 hypomethylation in TSAs and 
non-serrated adenomas with high-grade dysplasia 
Tables 3 and 4 show the clinicopathological and molecu-
lar features of  the TSAs (with or without HGD), non-
serrated adenomas (with or without HGD), and CRCs 
(stages Ⅰ-Ⅳ). The IGF2 DMR0 methylation levels in 
TSAs with HGD (50.2 ± 18.7) were significantly lower 
than those in TSAs without (61.6 ± 19.6, P = 0.038) 
(Table 3). With regard to LINE-1, the methylation levels 
in TSAs with HGD (55.7 ± 5.4) were significantly lower 
than those in TSAs without (58.8 ± 4.7) (P = 0.024). 

Similarly, the methylation levels of  IGF2 DMR0 (52.0 
± 13.6) and LINE-1 (56.9 ± 5.5) in non-serrated adeno-
mas with HGD were significantly lower than those in 
non-serrated adenomas without (59.0 ± 15.8, P = 0.0016 
and 59.5 ± 5.9, P = 0.0027, respectively) (Table 3).

DISCUSSION
In this study, we examined the IGF2 DMR0 and LINE-1 
methylation levels as well as other molecular alterations in 

351 serrated lesions, 185 non-serrated adenomas, and 794 
CRCs. IGF2 DMR0 hypomethylation was less frequently 
detected in SSAs than in HPs, TSAs, and non-serrated 
adenomas. We also found that IGF2 DMR0 and LINE-1 
hypomethylation in TSAs and non-serrated adenomas 
with HGD were more frequently detected in TSAs and 
non-serrated adenomas without HGD, suggesting that 
hypomethylation may play an important role in the pro-
gression of  these tumors. 

In the current study, we confirmed that IGF2 DMR0 
hypomethylation was associated with poor CRC progno-
sis, suggesting its oncogenic role and malignant poten-
tial. In addition, our data showed that the IGF2 DMR0 
methylation level was inversely correlated with the IGF2 
expression level. Therefore, our findings support the 
validity of  the quantitative DNA methylation assay (bi-
sulfite-pyrosequencing) for examining the IGF2 DMR0 
methylation level.

HPs are classified into three subtypes, namely mi-
crovesicular HPs, goblet cell HPs, and mucin-poor HPs. 
Microvesicular and goblet cell HPs are the most com-
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Table 2  Clinical and molecular features of serrated lesions and non-serrated adenomas (tubular or tubulovillous adenoma) according 
to histological type  n  (%)

Clinical or 
molecular feature

Total n Histological type P  value

Serrated lesion Non-serrated adenoma

HP SSA without 
cytological 
dysplasia

SSA with 
cytological 
dysplasia

TSA without high-
grade dysplasia 

(HGD)

Tubular adenoma 
without HGD

Tubulovillous 
adenoma without 

HGD

All cases 416 115 120 10 91 77 3
Sex
   Male 263 (63)   78 (68)   72 (60)   5 (50) 55 (60) 50 (65)     3 (100) 0.36
   Female 153 (37)   37 (32)   48 (40)   5 (50) 36 (40) 27 (35) 0 (0)
Age (mean ± SD)   60.3 ± 11.8   57.5 ± 12.1   57.2 ± 11.6 74.1 ± 4.7   60.9 ± 12.3   66.6 ± 11.4 66.0 ± 8.9 < 0.0001
Tumor size (mm) 10.5 ± 5.4   9.3 ± 3.7 11.6 ± 5.4 12.3 ± 6.4   9.7 ± 4.7 10.9 ± 7.2   15.7 ± 13.2    0.0069
(mean ± SD)
Tumor location
   Rectum   42 (10)   15 (13)   0 (0) 0 (0) 16 (18) 10 (14)   1 (33) < 0.0001
   Distal colon 127 (31)   44 (39)   17 (14)   1 (10) 39 (44) 25 (34)   1 (33)
   Proximal colon 239 (59)   54 (48) 103 (86)   9 (90) 34 (38) 38 (52)   1 (33)
BRAF mutation
   Wild-type 183 (44)   59 (51)   16 (13)   2 (20) 28 (31) 75 (97)     3 (100) < 0.0001
   Mutant 231 (55)   56 (49) 104 (87)   8 (80) 61 (69)    2 (2.6) 0 (0)
KRAS mutation
   Wild-type 357 (87)   92 (81) 117 (98)   10 (100) 74 (83) 62 (81)   2 (67) < 0.0001
   Mutant   55 (13)   21 (19)      3 (2.5) 0 (0) 15 (17) 15 (19)   1 (33)
PIK3CA mutation
   Wild-type 406 (99) 113 (99)   117 (100)   10 (100)   89 (100) 74 (99)     3 (100) 0.67
   Mutant      2 (0.5)      1 (0.9)   0 (0) 0 (0) 0 (0)    1 (1.3) 0 (0)
MSI status
   MSS/MSI-low 408 (98) 113 (98) 119 (99)   6 (60) 90 (99)   77 (100)     3 (100)    0.0004
   MSI-high      8 (1.9)      2 (1.7)      1 (0.8)   4 (40)    1 (1.1) 0 (0) 0 (0)
IGF2 DMR0   64.5 ± 17.2   61.9 ± 20.5   73.1 ± 12.3   69.0 ± 10.8   61.6 ± 19.6   58.9 ± 16.1 61.0 ± 7.1 < 0.0001
methylation level 
(mean ± SD)
LINE-1 58.7 ± 5.0 58.6 ± 3.4 58.1 ± 5.4 58.3 ± 8.4 58.8 ± 4.7 59.4 ± 6.0 60.9 ± 1.4 0.59
methylation level 
(mean ± SD)

Percentage indicates the proportion of patients of each histological type who met the criteria for a specific clinical or molecular feature. P values were calcu-
lated by analysis of variance for age, tumor size, methylation levels of IGF2 DMR0 and LINE-1 and by χ 2 or Fisher’s exact test for all other variables. The P 
value for significance was adjusted by Bonferroni correction to 0.0050 (= 0.05/10). HGD: High-grade dysplasia; HP: Hyperplastic polyp; MSI: Microsatellite 
instability; MSS: Microsatellite stable; SSA: Sessile serrated adenoma; TSA: Traditional serrated adenoma; IGF2: Insulin-like growth factor 2.
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mon, whereas mucin-poor HPs are rare[44]. Recent studies 
have reported that microvesicular HPs may be a precur-
sor lesion of  SSAs and that borderline lesions between 
microvesicular HPs and SSAs can occur[25,26,28]. In the cur-
rent study, we found that the IGF2 DMR0 methylation 
levels of  SSAs were significantly higher compared with 
those of  HPs (microvesicular HPs), TSAs, and non-ser-
rated adenomas. Our data also showed that IGF2 DMR0 
hypomethylation was less frequently detected in SSAs 
compared with HPs, TSAs, and non-serrated adenomas. 

Our current study had some limitations due to its 
cross-sectional nature and the fact that unknown bias (i.e., 
selection bias) may confound the results. Nevertheless, 
our multivariate regression analysis was adjusted for po-
tential confounders including age, tumor size, tumor lo-
cation, LINE-1 methylation level, and BRAF and KRAS 
mutation. The results demonstrate that IGF2 DMR0 
hypomethylation is inversely associated with SSAs. More-
over, our data have shown that the IGF2 DMR0 methyla-
tion levels of  SSAs with cytological dysplasia were higher 
than those of  HPs, suggesting that HPs (microvesicular 

HPs) or SSAs with IGF2 DMR0 hypomethylation may 
tend not to progress to the typical SSA pathway [HP-
SSA-SSA with cytological dysplasia-carcinoma (MSI-high) 
sequence] but to the alternate pathway. Thus, our finding 
of  differential patterns of  IGF2 DMR0 hypomethylation 
in serrated lesions may be a clue for elucidating the dif-
ferentiation of  serrated lesions. 

In the current study, IGF2 DMR0 hypomethylation 
was found in TSAs and hypomethylation was more fre-
quently detected in TSAs with HGD when compared 
with TSAs without HGD. These results may imply that 
IGF2 DMR0 hypomethylation can occur in the early 
stage of  the TSA pathway and that TSAs with IGF2 
DMR0 hypomethylation are precursor lesions that prog-
ress to TSAs with HGD or CRCs with hypomethylation. 
In other words, TSAs without IGF2 DMR0 hypometh-
ylation may tend not to progress to TSAs with HGD. 
Otherwise, TSAs without IGF2 DMR0 hypomethylation 
may tend to rapidly develop to CRCs; therefore, they are 
infrequently detected in the stage of  TSA with HGD. 
However, because the number of  TSA with HGD sam-
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Table 3  Clinical and molecular features of sessile serrated adenomas with cytological dysplasia, traditional serrated adenomas, non-
serrated adenomas (tubular or tubulovillous adenoma), and colorectal carcinomas according to disease stage  n  (%)

Clinical or 
molecular feature

Histological type P  value

SSA with 
cytological 
dysplasia

Colorectal adenoma Colorectal carcinoma

TSA without 
HGD

TSA with 
HGD

Non-serrated 
adenoma 

without HGD

Non-serrated 
adenoma with 

HGD

Stage Ⅰ Stage Ⅱ Stage Ⅲ Stage Ⅳ

All cases 10 91 15 80 105 171 217 292 114
Sex
   Male   5 (50) 55 (60)   9 (60) 53 (66) 54 (51) 107 (63) 123 (57) 168 (58)   73 (64) 0.50
   Female   5 (50) 36 (40)   6 (40) 27 (34) 51 (49)   64 (37)   94 (43) 124 (42)   41 (36)
Age (mean ± SD) 74.1 ± 4.7   60.9 ± 12.3   62.7 ± 13.6   66.6 ± 11.2   66.3 ± 10.5   65.1 ± 11.0   67.4 ± 11.5   66.6 ± 12.5 63.4 ± 9.5    0.0016
Tumor size (mm) 12.3 ± 6.4   9.7 ± 4.7 12.8 ± 4.3 11.0 ± 7.4   29.3 ± 17.3   26.3 ± 15.8   53.1 ± 23.5   50.5 ± 22.7   50.9 ± 19.6 < 0.0001
(mean ± SD)
Tumor location
   Rectum 0 (0) 16 (18)   5 (33) 11 (14) 23 (22)   65 (38)   73 (34) 135 (46)   37 (33) < 0.0001
   Distal colon   1 (10) 39 (44)   7 (47) 26 (34) 27 (26)   44 (25)   64 (29)   59 (20)   42 (37)
   Proximal colon   9 (90) 34 (38)   3 (20) 39 (51) 54 (52)   62 (36)   80 (37)   98 (34)   34 (30)
BRAF mutation
   Wild-type   2 (20) 28 (31) 7 (47) 78 (98) 102 (98) 161 (95) 204 (94) 282 (97) 103 (95) < 0.0001
   Mutant   8 (80) 61 (69) 8 (53)    2 (2.5)    2 (1.9)      9 (5.3)    13 (6.0)      9 (3.0)      6 (5.5)
KRAS mutation
   Wild-type   10 (100) 74 (83) 11 (73) 64 (80) 48 (46) 108 (64) 145 (69) 202 (70)   84 (74) < 0.0001
   Mutant 0 (0) 15 (17)   4 (27) 16 (20) 57 (54)   62 (36)   66 (31)   88 (30)   29 (26)
PIK3CA mutation
   Wild-type   10 (100)   89 (100) 14 (93) 77 (99) 99 (94) 161 (94) 194 (89) 249 (85) 103 (90) < 0.0001
   Mutant 0 (0) 0 (0)    1 (6.7)    1 (1.3)    6 (5.7)    10 (5.9)   23 (11)   43 (15)    11 (9.7)
MSI status
   MSS/MSI-low   6 (60) 90 (99)   15 (100)   80 (100) 105 (100) 163 (95) 198 (91) 276 (95) 110 (96) < 0.0001
   MSI-high   4 (40)    1 (1.1) 0 (0) 0 (0) 0 (0)      8 (4.7)    19 (8.8)    16 (5.5)      4 (3.5)
IGF2 DMR0   69.0 ± 10.8   61.6 ± 19.6   50.2 ± 18.7   59.0 ± 15.8   52.0 ± 13.6   55.7 ± 15.8   53.4 ± 13.3   55.5 ± 12.9 53.1 ± 12.9 < 0.0001
methylation level 
(mean ± SD)
LINE-1 58.3 ± 8.4 58.8 ± 4.7 55.7 ± 5.4 59.5 ± 5.9 56.9 ± 5.5 55.8 ± 7.2 53.1 ± 6.2 55.1 ± 6.5 54.1 ± 7.6 < 0.0001
methylation level 
(mean ± SD)

Percentage indicates the proportion of patients of each histological type who met the criteria for a specific clinical or molecular feature. P values were calcu-
lated by analysis of variance for age, tumor size, methylation levels of IGF2 DMR0 and LINE-1 and by χ 2 or Fisher’s exact test for all other variables. The P 
value for significance was adjusted by Bonferroni correction to 0.0050 (= 0.05/10). HGD: High-grade dysplasia; HP: Hyperplastic polyp; MSI: Microsatellite 
instability; MSS: Microsatellite stable; SSA: Sessile serrated adenoma; TSA: Traditional serrated adenoma; IGF2: Insulin-like growth factor 2.
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rent study, BRAF and KRAS mutations were detected in 
69% and 17% of  TSAs, respectively. Thus, the wide varia-
tion in the relative proportion of  BRAF vs KRAS muta-
tions in different studies reflects differences in histological 
classification or small sample size.

In conclusion, we found that IGF2 DMR0 hypometh-
ylation can occur in the early stage of  any histological 
types of  serrated lesions; however, hypomethylation may 
be an infrequent epigenetic alteration in SSAs. These re-
sults imply that IGF2 DMR0 hypomethylation may be a 
key epigenetic event that affects the progression of  HPs. 
Our data also suggest that the hypomethylation of IGF2 
DMR0 and LINE-1 may play an important role in the 
progression of  the TSA pathway.

COMMENTS
Background
The serrated pathway attracts considerable attention as an alternative colorec-
tal cancer (CRC) pathway. Authors previously reported the association of 
insulin-like growth factor 2 (IGF2) differentially methylated region (DMR)0 hypo-
methylation with poor prognosis and its link to global DNA hypomethylation [long 
interspersed nucleotide element-1 (LINE-1) hypomethylation] in CRC; however, 
to date, there have been no studies describing its role in the serrated pathway. 
Research frontiers
Sessile serrated adenoma (SSA) and traditional serrated adenoma (TSA) are 
premalignant lesions, but SSA is the principal serrated precursor of CRC. In 
particular, there are many clinicopathological and molecular similarities between 
SSA and microsatellite instability (MSI)-high CRC, for example, right-sided 
predilection, MLH1 hypermethylation, and frequent BRAF mutation. Therefore, 
SSAs are hypothesized to develop in some cases to MSI-high CRCs with BRAF 
mutation in the proximal colon. In contrast, a definite precursor of TSA has not 
been established. In addition, the key carcinogenic mechanism involved in this 
TSA pathway remains largely unknown. To investigate the role of IGF2 DMR0 
hypomethylation in serrated lesions they examined IGF2 DMR0 methylation 
levels as well as other molecular alterations.
Innovations and breakthroughs
This is the first report of an association between histopathological findings and 
IGF2 DMR0 hypomethylation in serrated lesions. IGF2 DMR0 hypomethylation 
was less frequently detected in SSAs than in hyperplastic polyps (HPs), TSAs, 
and non-serrated adenomas. They also found that IGF2 DMR0 and LINE-1 hy-
pomethylations in TSAs and non-serrated adenomas with high-grade dysplasia 
were more frequently detected in TSAs and non-serrated adenomas, suggest-
ing that such hypomethylation may play an important role in the progression of 
those tumors. Thus, their finding of differential patterns of IGF2 DMR0 hypo-
methylation in serrated lesions may be a clue for elucidating the progression of 
serrated lesions. 
Applications
In the current study, authors found that the IGF2 DMR0 methylation levels of 
SSAs were significantly higher compared with those of HPs (microvesicular 
HPs), TSAs, and non-serrated adenomas. They also showed that IGF2 DMR0 
hypomethylation was less frequently detected in SSAs compared with HPs, 
TSAs, and non-serrated adenomas. Therefore, their data challenge the com-
mon conception of discrete molecular features of SSAs vs other serrated le-
sions (TSAs and HPs) and may have a substantial impact on clinical and trans-
lational research, which has typically been performed with the dichotomous 
classification of SSAs. 
Terminology
IGF2 DMR: IGF2 expression is controlled by CpG-rich regions known as IGF2 
DMRs in CRC. In particular, IGF2 DMR0 hypomethylation has been suggested 
as a surrogate-biomarker for IGF2 loss of imprinting. LINE-1: Global DNA hy-
pomethylation is associated with genomic instability, which leads to cancer. As 
the long interspersed nucleotide element-1 or L1 retrotransposon constitutes 
a substantial portion of the human genome, the level of LINE-1 methylation is 
regarded as a surrogate marker of global DNA methylation. Serrated pathway: 
The serrated neoplasia pathway has attracted considerable attention as an 

alternative pathway of CRC development, and serrated lesions exhibit unique 
clinicopathological or molecular features. Of the serrated lesions, SSAs are 
hypothesized to develop in some cases to MSI-high CRCs with BRAF mutation 
in the proximal colon.
Peer review
The authors investigated the hypomethylations of IGF2 DMR0 and LINE-1; MSI; 
and mutations of KRAS, BRAF, and PIK3CA in patients with serrated lesions 
and non-serrated adenomas. The results demonstrated that IGF2 DMR0 hy-
pomethylation can occur in the early stage of any histological types of serrated 
lesions; however, hypomethylation may be an infrequent epigenetic alteration in 
SSAs. The authors also revealed that the hypomethylation of IGF2 DMR0 and 
LINE-1 may play an important role in the progression of the TSA pathway. This 
article may have a substantial impact on clinical and translational research in 
the progression of serrated lesions related to malignant transformation.
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