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Abstract
During the past two decades the first sequencing of 
the human genome was performed showing its high 
degree of inter-individual differentiation, as a result of 
large international research projects (Human Genome 
Project, the 1000 Genomes Project International Hap-
Map Project, and Programs for Genomic Applications 
NHLBI-PGA). This period was also a time of intensive 
development of molecular biology techniques and enor-
mous knowledge growth in the biology of cancer. For 
clinical use in the treatment of patients with colorectal 
cancer (CRC), in addition to fluoropyrimidines, another 
two new cytostatic drugs were allowed: irinotecan 
and oxaliplatin. Intensive research into new treatment 
regimens and a new generation of drugs used in tar-
geted therapy has also been conducted. The last 20 
years was a time of numerous in vitro  and in vivo  stud-
ies on the molecular basis of drug resistance. One of 
the most important factors limiting the effectiveness 
of chemotherapy is the primary and secondary resist-
ance of cancer cells. Understanding the genetic factors 
and mechanisms that contribute to the lack of or low 

sensitivity of tumour tissue to cytostatics is a key ele-
ment in the currently developing trend of personalized 
medicine. Scientists hope to increase the percentage 
of positive treatment response in CRC patients due to 
practical applications of pharmacogenetics/pharmacog-
enomics. Over the past 20 years the clinical usability 
of different predictive markers has been tested among 
which only a few have been confirmed to have high 
application potential. This review is a synthetic presen-
tation of drug resistance in the context of CRC patient 
chemotherapy. The multifactorial nature and volume of 
the issues involved do not allow the author to present a 
comprehensive study on this subject in one review. 
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Core tip: Insufficient effectiveness of chemotherapy is 
still the most important factor limiting the successful 
treatment of patients with colorectal cancer (CRC). Drug 
resistance in anticancer therapy has been recognized 
virtually from the very beginning, as cytostatic drugs 
were first used in oncology practice. Intensive research 
on the causes of low sensitivity in colorectal cancer 
cells to such drugs as fluoropyrimidines, irinotecan and 
oxaliplatin, has resulted in evidence on the importance 
of genetic factors in phenotype conditioning of drug re-
sistance. This review is a synthetic presentation of drug 
resistance in the context of its role in chemotherapy, 
and the potential clinical use of different biomarkers in 
individualization of CRC patient treatment.
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RESEARCH ON THE EFFECTIVENESS OF 
CYTOTOXIC ANTINEOPLASTIC DRUGS 
FOR THE TREATMENT OF COLORECTAL 
CANCER
Since the beginning of  the 21st century, very rapid devel-
opment of  high-throughput research techniques described 
by the term ‘‘omics’’ (genomics, transcriptomics, pro-
teomics and metabolomics) has been observed. Pharma-
cogenomics uses advanced research techniques “omics”, 
which allow researchers to identify the genetic basis of  
inter-individual differences in the pharmacodynamics and 
pharmacokinetics of  drugs[1,2]. An important objective 
of  this research is to identify biomarkers for predicting 
treatment outcomes, as well as avoiding the toxic effects 
arising during the course of  pharmacotherapy (prognostic 
and predictive markers)[3]. The terms pharmacogenetics 
and pharmacogenomics are closely related and are often 
used interchangeably, although there are some historical 
differences between them. Today, pharmacogenomics is 
commonly used synonymously with “individualized” or 
“personalized” medicine, although the latter term is often 
understood to stratify medical treatment by the use of  
genomic biomarkers rather than to treat an individual. 
Accordingly, the Personalized Medicine Coalition defined 
personalized medicine as “the application of  genomic 
and molecular data to better target the delivery of  health 
care, facilitate the discovery and clinical testing of  new 
products, and help determine a person’s predisposition to 
a particular disease or condition”[4,5].

Environmental factors such as age, sex or health con-
dition of  the patient are the classic factors which affect 
treatment outcomes and have been studied for decades. 
The influence of  genetic factors on response variability is 
far greater than sex, age, or interactions with other drugs. 
Therefore, it seems advisable to determine the basis of  
all abnormal body reactions in relation to the treatment 
used. It should also be noted that the distribution fre-
quency of  correct responses to drug usage in a popula-
tion is far from a normal distribution, which means that 
the presence of  treatment non-responders and over-
responders (increased toxicity) is much more common 
than has been assumed so far[6]. The first studies on phar-
macogenomics and colorectal cancer (CRC) outcome 
were conducted and published approximately 20 years 
ago[7]. Since then, hundreds of  possible biodeterminants 
have been studied with many expectations. The technol-
ogy, and its spread, has improved incredibly, and the 
importance with which this subject is regarded by many 
research groups throughout the world has grown relent-
lessly. The reproducibility of  some results was, initially, 
promising, as were some confirmatory clues derived from 
deeper biological studies, but the final step of  clinical 

validation has remained an unmet objective for almost all 
putative biomarkers[8].

Treatment options in CRC have systematically ad-
vanced over the last several years with the introduction 
of  effective chemotherapeutic and targeted drugs. How-
ever, providing individual treatment with low toxicity and 
significant benefit is still an unsolved problem[9]. This part 
of  the review focuses on pharmacogenomic knowledge 
of  substances routinely administered in patients with 
CRC: fluoropyrimidines, irinotecan (CPT-11), and oxali-
platin (OX).

5-FLUOROURACIL AND 
FLUOROPYRIMIDINES
In 1957 Heidelberger et al[10] reported the antitumour ac-
tivity of  5-fluorouracil (5-FU). Charles Heidelberger syn-
thesized 5-FU as a result of  experiments which showed 
the ability of  tumour cells to acquire uracil for DNA 
synthesis[11]. Fifty years after the first synthesis of  5-FU 
it is still a standard component of  adjuvant and pallia-
tive therapy having a proven impact on survival time in 
patients with CRC[12]. Experimental studies have shown 
that 5-FU is converted to an active metabolite, FdUMP 
(fluorodeoxyuridine monophosphate), which is a potent 
inhibitor of  DNA synthesis (Figure 1). FdUMP forms a 
ternary complex together with thymidylate synthase en-
zyme (TS) and 5,10-methylenetetrahydrofolate (CH2THF) 
cofactor, responsible for the catalytic conversion of  
deoxyuridine monophosphate (dUMP) to deoxythymi-
dine monophosphate (dTMP). dTMP is a substrate for 
deoxythymidine triphosphate (dTTP) necessary for the 
process of  DNA synthesis (Figure 2). Furthermore, 
on the basis of  fundamental and clinical research it has 
been proven that the addition to an exogenous therapy a 
source of  folic acid, such as leucovorin (LV) increases the 
degree of  inhibition of  TS supporting the formation of  
active complexes of  5-FU with the enzyme[13]. 5-FU/LV 
combination therapy in patients with diagnosed CRC is 
much more effective than monotherapy with 5-FU[14]. 

The purpose of  individualized therapy is to choose 
the most effective treatment and the optimal dosage for 
each patient, while minimizing toxicity and side effects of  
the therapy. This objective is particularly important in the 
case of  the new generation of  anticancer drugs which 
include expensive targeted therapies such as the antibod-
ies cetuximab and bevacizumab. The much cheaper 5-FU 
therapy can also be individualized in a selection of  CRC 
patients with potentially best response to the administra-
tion of  5-FU which appears to be justified medically and 
financially. Despite significant progress in understanding 
the 5-FU activity mechanisms, the identification of  mo-
lecular markers potentially clinically useful in predicting 
5-FU treatment efficacy is still the subject of  research.

TS
TS is an important enzyme involved in the metabolism 
of  folic acid and catalyzes dUMP methylation to dTMP, 
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Figure 1  5-fluorouracil is converted to three major active metabolites. (1) fluorodeoxyuridine monophosphate (FdUMP); (2) fluorodeoxyuridine triphosphate 
(FdUTP); and (3) fluorouridine triphosphate (FUTP). The main mechanism of 5-fluorouracil (5-FU) activation is conversion to fluorouridine monophosphate (FUMP) 
either directly by orotate phosphoribosyl transferase (OPRT), or indirectly via fluorouridine (FUR) through the sequential action of uridine phosphorylase and uridine 
kinase. FUMP is then phosphorylated to fluorouridine diphosphate (FUDP), which can be either further phosphorylated to the active metabolite fluorouridine triphos-
phate (FUTP), or converted to fluorodeoxyuridine diphosphate (FdUDP) by ribonucleotide reductase. In turn, FdUDP can either be phosphorylated or dephosphory-
lated to generate the active metabolites FdUTP and FdUMP, respectively. An alternative activation pathway involves the thymidine phosphorylase catalyzed conver-
sion of 5-FU to 5-fluoro-2’-deoxyuridine (5-FUDR), which is then phosphorylated by thymidine kinase to the thymidylate synthase inhibitor, FdUMP. Dihydropyrimidine 
dehydrogenase (DPD)-mediated conversion of 5-FU to dihydrofluorouracil (DHFU) is the rate-limiting step of 5-FU catabolism in normal and tumour cells[401].
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response to 5-FU treatment is inversely proportional to 
the measured level of  intratumour mRNA and protein 
expression[17]. Leichman et al[18] first proved that there 
is an inverse relationship between intratumoural TYMS 
gene expression and the degree of  response to 5-FU 
treatment. CRC patients with low levels of  TYMS gene 
expression had a significantly higher rate of  response to 
therapy and longer median survival compared to patients 
with higher TYMS expression in tumour tissue (13.6 mo 
vs 8.2 mo, P = 0.02)[19]. A meta-analysis of  13 clinical 
trials of  patients with advanced CRC (total number of  
patients: 887 cases) carried out by Popat et al[20] showed 
that patients with low TS expression had longer overall 
survival (OS) than patients with higher TS expression 
in tumour tissue. Recently, a meta-analysis including 24 
clinical trials with more than 1100 CRC patients was also 
published[21]. The pooled relative risk of  overall response 

which is a critical reaction in maintaining the balance of  
available deoxynucleotides (dNTPs) in cells, substrates 
necessary for the synthesis and repair of  DNA. The in-
teraction with TS is the main aim of  such cytostatic drugs 
as 5-FU, and the level of  TYMS gene expression and TS 
protein is a prognostic marker in the treatment of  several 
types of  cancer. Thus, the 5-FU cell sensitivity profile 
may be affected by genetic variants of  the TYMS gene, 
expression level of  TYMS/TS gene/ -protein, and intra-
cellular concentration of  dNTP and CH2THF[15]. Expres-
sion of  TS as a sensitivity determinant for fluoropyrimi-
dines has been shown in vitro[16] as well as in vivo, where 
intratumour TS expression level was associated with the 
chemosensitivity of  tumour tissue exposed to 5-FU. The 
most important data collected during the past few years 
indicate that TS expression varies considerably between 
different types of  cancers and that the degree of  tumour 
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Figure 2  Methylentetrahydrofolate reductase plays an important role in the action of 5-fluorouracil, an inhibitor of thymidylate synthase. Methylentetra-
hydrofolate reductase (MTHFR) catalyses a unidirectional reaction that lowers the levels of 5,10-methylenetetrahydrofolate (CH2THF) by increasing levels of 5-me-
thyltetrahydrofolate (CH3THF) which is used for biological methylation. Other factors, such as vitamin B12 and homocysteine, are involved in biological methylation 
processes. The addition of folinic acid (leucovorin) to 5-FU improves the response rates and survival of CRC patients. Thymidylate synthase (TS) catalyses the 
reductive methylation of deoxyuridine monophosphate (dUMP) to deoxythymidine monophosphate (dTMP) with the reduced folate, CH2THF, as the methyl donor. This 
reaction provides the sole de novo source of thymidylate, which is necessary for DNA replication and repair. TS contains a nucleotide-binding site and a binding site 
for CH2THF. The 5-FU metabolite, FdUMP, binds to the nucleotide-binding site of TS, forming a stable ternary complex with the enzyme and CH2THF which blocks 
binding of the normal substrate dUMP, thereby inhibiting dTMP synthesis. Inhibition of thymidylate synthesis causes disruption of nucleotide levels that results in DNA 
damage[402].
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rate (ORR) indicated that the group with lower TS ex-
pression had greater sensitivity to fluoropyrimidine-based 
chemotherapy than patients with high TS expression lev-
el[21]. Numerous studies were also carried out to investi-
gate different TS expression levels in tissue derived from 
primary tumours and metastases[22,23]. Analysis of  the two 
subgroups it was demonstrated that predictive TS expres-
sion levels determined in tissue derived from metastases 
were more pronounced than those determined in primary 
tumours[21]. Furthermore, during the assessment of  the 
predictive values of  TS expression level, the results ob-
tained using RT-PCR techniques were statistically more 
significant than those in which the expression was deter-
mined using immunohistochemistry (IHC) techniques[21]. 

These results indicated that low TS expression in 
CRC patients with advanced tumours was associated with 
increased individual sensitivity to 5-FU therapy[7,17,19,24-39]. 
Furthermore, in vitro studies using cell lines and tumour 
tissues demonstrated that 5-FU therapy contributes to 
the induction of  TS expression[40,41]. This increase in TS 
expression upon 5-FU exposure seems to be a result of  a 
negative feedback loop in which ligand-free TS binds to 
its own mRNA and inhibits its own translation[42]. When 
stably bound by FdUMP, TS can no longer bind its own 
mRNA and suppress translation, resulting in increased 
protein expression. This constitutes a potentially impor-
tant resistance mechanism, as acute increases in TS would 
facilitate recovery of  enzyme activity[41].

Although, the reason for ontogenetic variation in TS 
expression is still not clear, one of  the main examined 
hypotheses is the possible influence of  TYMS gene poly-
morphisms on TS expression. As it is now known, some 
of  the described polymorphisms affect inter-individual 
differences in patient sensitivity to 5-FU treatment (Figure 
3 and Table 1)[43-52]. Polymorphism of  the variable number 
of  tandem repeats (VNTR) located in the TYMS gene 
sequence is one of  the studied genetic variants that may 
have clinical relevance as a predictive marker for the effec-
tiveness of  5-FU treatment. Horie et al[53] reported a 28-nu-
cleotide sequence in the 5’-region of  the TYMS gene, 
which occurs in the population with a variable number 
of  iterations: two (2R) or three (3R). According to the 
classification proposed by Kawakami and Watanabe, it is 
assumed that VNTR in this region is responsible for the 
occurrence of  two alleles, 2R and 3R, and three different 
genotypes (2R/2R, 2R/3R and 3R/3R)[54]. The results of  
various studies suggest that the 3R allele is responsible 
for four times higher mRNA level of  the TYMS gene 
observed in tissue tumours obtained from patients with 
metastatic CRC compared to patients who were carriers 
of  the 2R variant (P < 0.004)[55]. Homozygous patients 
having both alleles with a double repeat (2R/2R) showed 
a significantly higher percentage of  favourable response 
to 5-FU treatment as compared to those who had the 
3R/3R genotype (50% vs 9%, P = 0.04)[55]. In addition to 
the predictive values for 5-FU chemotherapy, retrospec-
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Table 1  Some common polymorphisms of genes TYMS, MTHFR, DPYD and UMPS and their potential impact on the functioning of 
proteins associated with the pharmacology of 5-fluorouracil

dbSNP rs cluster ID Type of 
polymorphism

Function Ref.

Thymidylate synthase (TYMS) (OMIM # 188350)
   rs45445694 VNTR [43-51,68,409-413]

TSER*2/ TSER*3 TSER polymorphism (TS 2R/3R repeat) is a tandem repeat upstream of the TYMS 
translational start site containing either double (2R) or triple (3R) repeats of 28-bp 
sequences

   http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 45445694 
   rs34743033 SNP [44-46,49,50,414]

TSER*3G>C TSER*2/*3 repeat is studied together with a G to C SNP within the second repeat 
of the TSER*3 allele
TSER*3C allele = decrease transcriptional activity of TYMS

   http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 34743033
   rs151264360 Del/Ins [44,46,49,51,72,415]

TS 1494del6bp -6-bp deletion, decreased stability of TS mRNA
+6-bp insertion, increased stability of TS mRNA

   http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 151264360
Methylenetetrahydrofolate reductase (MTHFR) (OMIM # 607093)
   rs1801133 SNP [66-69,72,313,316,362]

677C>T At codon 222 in exon 4 (Ala → Val)
Reduces enzymatic activity and increased thermolability

   http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 1801133
   rs1801131 SNP [67-69,72,313,316]

1298A>C At codon 429 in exon 7 (Glu → Ala)
Reduces MTHFR activity

   http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 1801131
   rs4846051a SNPs [71,416]

1305T>C At codon 435 (synonymous), effect unknown
   rs201095365b 1798G>A At codon 600 (Glu → Lys), effect unknown
   ahttp://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 4846051 
   bhttp://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 201095365
Dihydropyrimidine dehydrogenase (DPYD) (OMIM # 612779)
   rs3918290 SNP [88,412,417,418]

IVS14+1G>A Exon 14 is skipped as a result of the G → A translocation at intron 14, inactive 
enzyme is formed

   http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 3918290
   rs75017182 SNP [92,419]

c.1129– 5923C>G Cryptic splice donor site leads to a 44 bp fragment of intron 10 insert in mrna, 
frameshift and premature stop codon in exon 11
Associated with toxicity 

   http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 75017182 
   - SNPs [92,417]

IVS5+18G>A G → A translocation at intron 5, effect unknown
IVS6+139G>A G → A translocation at intron 6, effect unknown
IVS9–51T>G T → G translocation at intron 9, effect unknown

   rs1801265 SNP [85,420-424]
85T>C At codon 29 in exon 2 (Cys → Arg)

Decreased expression
   http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 1801265
   rs2297595 SNP [420,421,424-427]

496A>G At codon 166 in exon 6 (Met → Val)
Significantly conserved site close to the Fe-S motif, may disrupt electron transport 

   http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 2297595
   rs1801159 SNP [421,424,427-430]

1627A>G At codon 543 in exon 13 (Ile → Val)
Decreased expression

   http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 1801159 
   rs55886062 SNP [92,422,431-434]

1679T>G At codon 560 in exon 13 (Ile → Ser)
Might destabilize FMN (flavine mononucleotide) binding domain

   http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 55886062 
   rs1801160 SNP [424,428]

2194G>A At codon 732 in exon 18 (Val → Ile)
Decreased expression

   http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 1801160
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tive studies have demonstrated that this polymorphism 
also has the properties of  a toxicity marker for fluoro-
pyrimidine-based chemotherapy. Patients who are car-
riers of  the 3R/3R genotype exhibited reduced toxicity 
as compared to patients with the 2R variant. A high TS 
expression level related to the presence of  3R/3R geno-
type accounts for less effective inhibition of  TS, which 
contributes to both an increased likelihood of  survival 
of  cancer cells (drug resistance), and a reduced loss of  
healthy cells and less toxic therapy[55]. Moreover, a single 
nucleotide polymorphism (SNP) of  guanine instead of  
cytosine (G/C) in 3R determines two different alleles (3C 
or 3G)[55]. Based on the presence of  this polymorphism 
two different groups of  patients can be distinguished 
with two levels of  TS expression: a high expression 
group with (2R/3G, 3C/3G and 3G/3G genotype car-
riers) and a low expression group (2R/2R, 2R/3C and 
3C/3C genotypes). Taking into account the study results 
published by Mandola et al[56], it is believed that the pres-
ence of  the 28-bp G>C SNP within the second repeat 
of  the 3R allele TYMS promoter enhancer region (TSER) 
is associated with a weaker bond in the promoter region 
of  USF-1 transcription factor leading to a decreased 
transcriptional activity of  TYMS gene. A lower transcrip-
tion rate of  the TSER 3RC allele in vitro is also observed 
when compared with TSER 3RG, comparable with the 
TSER 2R/2R genotype[56,57]. These results may, at least 
partly, explain why some patients with 3R/3R genotype 
have low TS expression and a good response to 5-FU 
chemotherapy.

The third described polymorphism is an insertion/de-
letion of  hexanucleotide TTAAAG sequence at 1494 po-
sition on the 3’-UTR (1494del6)[58]. This polymorphism 
may contribute to stability changes of  secondary mRNA 
structure as has been demonstrated for alterations of  
the 3’-region in other genes[59]. Ulrich et al[58] analysed the 
mRNA expression level of  TYMS gene in 43 patients 
and showed that homozygous patients with 6-bp deletion 
had a steady-state TS mRNA level three times lower than 

patients who were homozygous for the 6-bp insertion 
alleles (P = 0.017). Furthermore, it was shown that ho-
mozygous patients with deletion (del/del) had significant-
ly lower mRNA levels of  the TYMS gene which was also 
associated with greater sensitivity to 5-FU-based therapy 
as compared to homozygous patients with (ins/ins) inser-
tion (P = 0.017)[57,60]. There is a need for further analyses 
to allow identification of  TYMS transcription regulatory 
mechanisms including the role played by combinations 
of  different genetic variants, such as polymorphisms, 
SNPs and VTNR in TYMS/TS expression variability in 
populations.

A major limitation of  correlational research on the 
pharmacogenetic importance of  polymorphisms and 
TYMS/TS expression is an increasing proportion of  
patients who are treated with combination therapy, for 
which 5-FU is not the only component in the chemother-
apy. Therefore, it is often difficult to determine whether 
the observed greater sensitivity in a small number of  
patients to a treatment is associated with the presence 
of  genetic determinants (e.g., 2R/2R homozygous status, 
6 bp- /6 bp- 3’-UTR, allele G of  the G>C SNP) or is a 
result of  drugs other than 5-FU used in the combination 
therapy[50]. 

Methylenetetrahydrofolate reductase 
The use of  folic acid in combination with 5-FU has been 
standard in the treatment of  advanced CRC for more 
than 30 years[61]. The intracellular metabolic balance 
of  folic acid is regulated by methylenetetrahydrofolate 
reductase (MTHFR), a critical enzyme in the folic acid 
pathway catalysing irreversible conversion of  CH2THF to 
5-methyltetrahydrofolate (CH3THF) (Figure 2). 677C>T 
is one of  numerous polymorphisms of  the MTHFR gene 
described in the literature, which may contribute to activ-
ity changes in this enzyme. 677TT genotype is responsible 
for a 30% reduction in enzymatic activity compared to 
677CC genotype associated with reduced thermolability 
observed in vitro[62], which results in a decreased eryth-

   rs67376798 SNP [92,412,417,422,425,426,
432,435-437]2846A>T At codon 949 in exon 22 (Asp → Val)

Significantly conserved site near the Fe-S motif, may disrupt cluster formation and 
electron transport and lead to lower DPD activity 

   http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 67376798
Uridine monophosphate synthetase (UMPS) [OMIM #613891]
   rs121917890a SNPs [122-126]

213A>G At codon 96 (Arg → Gly), effect unknown
   rs121917892b 326T>G At codon 109 (Val → Gly), effect unknown
   rs1801019c 638G>C At codon 213 (Gly → Ala), increase activity
   rs2291078d 1050T>A At codon 350 (synonymous), effect unknown
   rs121917891e 1285G>C At codon 429 (Gly → Arg), effect unknown
   rs3772809f 1336A>G At codon 446 (Ile → Val), effect unknown
   ahttp://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 121917890 
   bhttp://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 121917892 
   chttp://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 1801019 
   dhttp://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 2291078 
   ehttp://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 121917891 
   fhttp://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 3772809 

SNP: Single nucleotide polymorphism. 
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rocyte concentration of  CH3THF and accumulation of  
CH2THF[63]. The frequency of  specific genetic variants 
of  MTHFR for SNP 677C>T is ethnically diverse. Analy-
ses of  Caucasian and Asian populations suggest that the 
prevalence of  677TT genotype oscillates between 12% and 
15% with a frequency of  677CT homozygotes at the 50% 
level. Whereas, in a population of  African-Americans 
there was a very low frequency of  677TT genotype[64]. An 
important consequence of  the presence of  MTHFR 677T 
variant is the possibility of  accumulation of  CH2THF in 
the cells, which may have a significant effect on the phar-
macological efficacy of  5-FU. This is due to the fact that 
the effect of  5-FU is largely dependent on the concentra-
tion of  foliants. The 5-FU-5-FdUMP metabolite irrevers-
ibly forms a stable complex with TS and CH2THF. Cre-
ation of  this complex inhibits the activity of  TS, which 
leads to an intracellular drop in dTMP concentration and 
finally inhibition of  DNA synthesis. Increased concen-
tration of  CH2THF as a consequence of  the presence 
of  the MTHFR 677C>T polymorphism may therefore 
contribute to changes in the chemosensitivity of  cancer 
cells exposed to 5-FU by increasing the amount and sta-
bility of  CH2THF-TS-FdUMP ternary complex, and thus 
a stronger inhibition of  DNA synthesis. Sohn et al[65] in 
both in vitro and in vivo studies observed that the presence 
of  677T allele of  the MTHFR gene is responsible for 
greater chemosensitivity in colon cancer cells, suggesting 
that the genetic variant 677C>T may be a pharmacoge-
netic factor used to assess the effectiveness of  5-FU-based 
chemotherapy. However, clinical studies published in re-
cent years have led to contradictory and inconsistent con-
clusions[64]. In advanced CRC patients undergoing 5-FU-
based therapy, in three published studies the presence of  
the 677T variant of  the MTHFR gene was associated with 
a higher percentage of  positive responses[66-68], while the 
results of  another study did not confirm the existence of  
such a relationship (Table 1)[69]. 

Another frequent polymorphism of  the MTHFR 
gene is SNP 1298A>C, which results in substitution of  
glutamine amino acid by alanine an in enzyme protein se-
quence[70,71]. Similar to SNP 677C>T, 1298A>C polymor-
phism contributes to the reduction in enzymatic activity 
of  MTHFR, but has no connection with the thermolabile 
proteins. The observed frequency of  the mutated 1298C 
allele is approximately 33%[70,71]. Some of  the published 
studies on SNP 1298A>C suggest that the presence of  
the 1298C variant of  the MTHFR gene has no impact 
on the percentage of  positive responses to 5-FU treat-
ment[68,69,72], while two studies suggest that it is associated 
with significantly decreased patient survival time[67,73]. 
Thus, contrary conclusions concerning both polymorphic 
variants of  677C>T and 1298A>C of  the MTHFR gene 
call into question their practical application as response 
predictors in 5-FU-based therapy[74]. However, recent 
reports suggest that the simultaneous assessment of  
several markers, such as MTHFR 1298A>C and TYMS 
3’UTR ins/del polymorphisms makes it possible to ob-
tain accurate assessments to predict the toxic effects of  

5-FU treatment in CRC patients[75]. Large-scale and well-
planned clinical trials are necessary to determine if  the 
practical application of  MTHFR 677C>T and 1298>C 
gene polymorphisms would be possible to predict treat-
ment efficacy. It is also necessary to assess whether these 
SNPs may be used as prognostic markers in patients un-
dergoing CRC treatment based on 5-FU.

Dihydropyrimidine dehydrogenase 
5-FU as a prodrug, in order to achieve its intracellular 
cytotoxic activity, requires metabolic activation (with over 
80% of  the administered dose of  5-FU degrading rap-
idly)[76]. Considering 5-FU metabolic pathways in cells, it 
seems important to conduct pharmacogenetic analysis of  
the molecular factors that are associated with biotrans-
formation of  the drug. Inter-individual variability in the 
response of  patients to 5-FU treatment may in fact be 
associated with a decrease in the activity of  enzymes re-
sponsible for catabolism of  the drug, which will result in 
an increase in drug concentration and longer half-life, and 
thus an increased risk of  serious toxic effects[77]. Dihy-
dropyrimidine dehydrogenase (DPD) acts as a regulatory 
enzyme in the 5-FU catabolic pathway responsible for 
conversion of  5-FU to 5-fluorodihydrouracil (5-FUH2). 
After this conversion, 5-FUH2 is further metabolized to 
its final metabolite, 5-fluoro-b-alanine, which is excreted 
in the urine (Figure 1)[78]. 

Partial DPD activity deficiency in the general popu-
lation is about 5%, and its total loss is very rare, about 
0.2%[79]. Partial or total loss of  DPD activity may be 
associated with the presence of  genetic determinants 
influencing the function of  the DPYD gene including 
SNPs[80], deletion mutations[81,82] and methylation[83]. DPD 
deficit was first described in an autosomal recessive dis-
ease in patients with various neurological symptoms and 
an accumulation of  uracil and thymine in the urine[84]. In 
recent years, several research groups have investigated the 
genetic variations present in the DPYD gene, and DPD 
expression levels in tumour cells with respect to their use as 
predictive markers for predicting both the effectiveness and 
toxicity of  5-FU treatment[85]. So far, more than 15000 ge-
netic polymorphisms have been recorded in NCBI dbSNP 
in the coding, intronic and untranslated 3’ and 5’ regions 
of  DPYD. Conditions resulting in a mutant DPYD allele 
include base substitutions, splicing deficits and frameshift 
mutations[85-87]. Taking into account the effect of  catabolic 
processes on the pharmacokinetics of  5-FU and toxicity 
resulting from dosage, patients with low DPD activity are 
at an increased risk of  serious or even fatal side effects 
when using the standard 5-FU dose. Also, case reports 
of  severe and fatal toxicity in patients with markedly low 
DPD activity and treated with capecitabine suggest that 
DPD deficiency increases the risk of  toxicity after oral 
administration of  5-FU[88]. 

Meinsma et al[89] described the molecular basis of  ob-
served DPD activity deficiency by testing the phenotype 
and genotype of  patients with no DPD activity. Among 
the analysed cases, there was no 165 nucleotide fragment 
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of  mRNA sequence as a result of  ejection of  one of  the 
exons, moreover, no enzyme DPD protein was detected 
in these patients[89]. Wei et al[90] identified a heterozygous 
deletion of  165 nucleotides in a British cancer patient, in 
whom there was no partial DPD activity and who had 
serious toxicity following administration of  5-FU. They 
found that a G to A transition within the 5’ splice site of  
intron 14 resulted in exon skipping and an inactive DPYD 
allele (IVS14+1G>A, DPYD*2A) (Figure 4)[90]. Other 
rare (frequency < 0.1%) polymorphisms and mutations 
have also been identified (85T>C, 496A>G, 1627A>G, 
2194G>A, and 2846G>T) as factors possibly affecting 
the appearance of  toxic symptoms after standard 5-FU 
treatment (Table 1). DPD activity deficiency is observed 
in approximately 60% of  cases occurring in patients with 
severe toxicity, and DPYD*2A polymorphism is found in 
50% of  patients with the 4th stage of  neutropenia as a re-
sult of  5-FU treatment[91]. In total, more than 40 DPYD 
polymorphisms were described to have potential use in 
5-FU treatment prediction. In addition to single poly-
morphism changes it has also been demonstrated that 
the presence of  a haplotype consisting of  three new in-
tronic SNPs (IVS5+18G>A, IVS6+139G>A, and IVS9-
51T>G), and synonymous mutation (1236G>A) may be 
associated with a decrease in DPD activity[92]. Moreover, 
hypermethylation of  the promoter region of  the DPYD 
gene is described as a possible mechanism of  variable 
DPD activity[83,93]. It is believed that only a few of  the 
reasons listed above are responsible for drug resistance 
and/or toxicity of  fluoropyrimidines[94].

Low DPD expression level should lead to reduced 
catabolism of  5-FU and therefore contribute to a more 
effective accumulation of  the drug inside cells. On the 
other hand, high DPD activity in tumour tissue should be 
responsible for the development of  drug resistance by re-
ducing the cytotoxic effects of  5-FU. Also, genetic chang-
es in the functioning of  other genes encoding enzymatic 
proteins of  the 5-FU metabolic pathway, such as DPYS 
(dihydropyrimidinase)[95] or UPB1 (b-ureidopropionase)[96] 
may contribute to a decrease in therapy effectiveness. 
Furthermore, it was proved that the patients with low 
expression of  three genes, TYMS, DPYD and thymidine 
phosphorylase (TYMP) have a significantly longer sur-
vival time compared to patients with high expression of  
any of  these genes[17]. A similar correlation between low 
expression of  the DPYD gene determined using RT-PCR 
and better response to 5-FU based therapy was found 
in patients with advanced CRC treated with first-line 
capecitabine[97]. On the other hand, the results of  recent 
studies in patients with metastatic CRC treated with fluo-
ropyrimidine suggest that this correlation is weak or there 
is no evidence of  an association between the expression 
of  DPYD and effectiveness of  chemotherapy[37,98,99]. The 
acquired uncertain evidence is derived mostly from retro-
spective clinical studies and suggests that low expression 
of  the DPYD gene may be a sensitivity marker in tumour 
cells for fluoropyrimidines and thus allow us to predict 
the degree of  response to treatment. However, currently 
little good quality clinical data have confirmed the predic-
tive value of  DPYD expression determination in order to 

Figure 4  A schematic map of the human DPYD gene is shown with the location of SNP DPYD*2A (IVS14+1G>A); exon 14 is skipped as a result of the G>A 
translocation at intron 14. 
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predict the efficacy of  5-FU therapy in CRC patients[94]. 

TYMP
TYMP is the gene encoding thymidine phosphorylase 
(TP), an enzyme that catalyses phosphorylation of  thy-
midine or deoxyuridine to thymine or uracil, and thus is 
essential for the nucleotide salvage pathway, that recovers 
pyrimidine nucleosides formed during RNA or DNA 
degradation[100]. Several studies suggest that TP is a pro-
moter of  tumour growth and metastasis by inhibiting 
apoptosis and induction of  angiogenesis[100]. There is evi-
dence that the level of  TP expression is connected with 
angiogenesis, growth and progression of  certain types 
of  cancer[101]. An observed increase in TP expression in 
tumour tissues as compared to that occurring in normal 
tissues is visible inter alia in CRC[102]. In most of  the ana-
lysed cases, high TP expression is related to aggressive-
ness of  cancer and poor prognosis, although there are 
conflicting reports in this regard (Table 2)[100].

TP is involved in the metabolism of  5-FU, where ca-
talysed by TP, 5-FU is converted to 5-fluoro-2’-deoxyuri-
dine (5-FUDR) (Figure 1). This is the first stage of  5-FU 
activation in tumour cells consequently leading to inhibi-
tion of  DNA synthesis by reducing the pool of  available 
dTTP to the substrate of  this reaction. Capecitabine, an 
oral form of  5-FU prodrug, is designed to reduce the 
gastrointestinal toxicity of  5’-deoxy-5-fluorouridine (5’
DFUR) and to generate 5-FU preferentially at the tumour 
site[103]. 5’DFUR may be transformed in cancer cells in a 
reaction catalysed by TP or uridine phosphorylase[103,104]. 
Since TP expression is significantly higher in tumour cells, 
it allows targeted activation which minimizes the toxicity 
of  such therapy[105]. In phase Ⅲ clinical trials, metastatic 
CRC patients who were treated with capecitabine mono-
therapy had a significantly lower incidence of  toxic ef-
fects in comparison to patients treated with 5FU/LV[106]. 
Moreover, since the enzymatic activity of  TP is essential 
to obtain an adequate level of  concentration of  an ac-
tive form of  capecitabine, it may be a useful marker for 
predicting the effectiveness of  chemotherapy using this 
drug[98].

Soong et al[107] published a study on the relationship 
between the expression level of  TP (determined by mi-
croarrays and immunohistochemistry) and survival time 
of  945 CRC patients treated with 5-FU. The results of  
this study suggest that the low level of  TP expression 
may be associated with the improved treatment outcomes 
observed, and may be a good predictive marker for re-
sponse to 5-FU chemotherapy[107]. Also, the results pre-
sented by Salonga et al[17] confirm the link between low 
TP expression and a positive response to 5-FU. However, 
results different from the above were obtained by Me-
ropol et al[98]. Patients with metastatic CRC treated with 
combination therapy using CPT-11 plus capecitabine 
(CAPIRI) were subjected to an assessment of  TP protein 
expression in primary tumour tissues and metastases. 
Positive results for TP expression confirmed by IHC 
techniques were associated with a statistically significant 

longer time to progression (TTP) in comparison with 
those cases in which a low level of  TP expression was 
found (8.7 mo vs 6.0 mo). Conversely, neither TS nor 
DPD, both enzymes that have been previously shown to 
correlate with resistance to 5-FU, were able to predict re-
sponse to CAPIRI[98,108]. Presumably, the cells with higher 
expression of  TP may exhibit an increased sensitivity 
to 5-FU, due to the increase in FdUMP concentration, 
which is the result of  increased 5-FU activation. On the 
other hand, low TS expression may lead to serious DNA 
damage. Since cancer cells are characterized by a higher 
degree of  proliferation compared to normal cells, low 
TS expression in tumour tissue may lead to a decrease in 
the dUMP substrate necessary for DNA synthesis, which 
would inhibit its replication and proliferation. Therefore, 
the low level of  TS expression in tumour cells is associ-
ated with a less aggressive course of  the disease and a 
more favourable prognosis in patients. In conclusion, 
a low level of  TS expression may be prognostic rather 
than a predictor of  fluoropyrimidines effectiveness[108,109]. 
However, the prognostic value of  TS expression was not 
observed in one of  the largest retrospective studies[110], 
which may give rise to questions as to whether further 
retrospective analysis can provide useful data to confirm 
the clinical significance of  this marker. As highlighted in 
the meta-analysis by Popat et al[20], large methodological 
differences in individual primary studies make it diffi-
cult to come to decisive conclusions. The results of  this 
analysis showed that patients whose tumour tissue had a 
high level of  TS expression were observed to have worse 
OS compared to the group of  patients with a low level 
of  expression. However, as emphasized by the authors 
of  the meta-analysis, the heterogeneity of  the studies and 
possible publication bias do not allow a straightforward 
conclusion[20]. 

Uridine monophosphate synthetase
In mammalian cells, the last step of  pyrimidine nucleo-
tide synthesis involves the conversion of  orotate to 
uridine monophosphate (UMP) and is catalysed by 
UMP synthase (UMPS). This bifunctional enzyme has 2 
sequential activities, orotate phosphoribosyltransferase 
(OPRT) and orotidine-5-monophosphate decarboxylase 
(ODC)[111]. The protein product of  the UMPS gene is the 
OPRT enzyme, which catalyses the conversion of  5-FU 
into FUMP, a common substrate for the production of  
5-fluorouridine triphosphate and dUTP, two cytotoxic 
metabolites that target RNA and DNA, respectively. Mu-
hale et al[112] showed that in the anabolic pathway of  5-FU, 
UMPS is the only gene that rounds out a manifestation 
of  the phenotype of  resistance to 5-FU. Furthermore, the 
high OPRT enzyme activity or increased expression of  
mRNA for UMPS gene is associated with longer survival 
times, suggesting that the UMPS may be a clinically use-
ful marker for predicting the effectiveness of  treatment 
with 5-FU[113-121]. In clinical in vitro studies carried out by 
Isshi et al[122], OPRT and DPD enzymatic activity was 
determined by radioassay in tumour tissues taken from 
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Table 2  Gene/protein expression or metabolic enzyme activity in colorectal cancer cells and correlation with outcome of patients 
receiving fluoropyrimidine-based chemotherapy

Treatment setting Method Patients (n ) Better response to 
chemotherapy

Form of the 
disease

Ref.

Thymidylate synthase (TYMS) [OMIM # 188350]
   5-FU RT-PCR   29 Low expression mCRC Iyevleva et al[24]

   5-FU RT-PCR   39 Low expression CRC Ishida et al[25]

   5-FU IHC   57 Low expression mCRC Hosokawa et al[26]

   5-FU IHC   62 Low expression aCRC Ciaparrone et al[27]

   5-FU RT-PCR   92 Low expression CRC Nakajima et al[28]

   5-FU RT-PCR 309 Low expression CRC Kornmann et al[29]

   5-FU IHC 391 Not significant aCRC Westra et al[438]

   5-FU IHC 945 Not significant CRC Soong et al[107]

   FUdR IHC   36 Low expression mCRC Davies et al[31]

   5-FU/LV or 5-FU RT-PCR   29 Low expression mCRC Kornmann et al[32]

   5-FU/LV RT-PCR   33 Low expression aCRC Salonga et al[17]

   5-FU/LV RT-PCR   36 Low expression mCRC Lenz et al[7]

   5-FU/LV RT-PCR   42 Low expression CRC Leichman et al[19]

   5-FU/LV RIA 102 Low expression mCRC Etienne et al[33]

   5-FU/OX RT-PCR   45 Low expression aCRC Shirota et al[34]

   5-FU/MTX IHC 108 Low expression aCRC Paradiso et al[35]

   5-FU or 5-FU/MTX or 5-FU/LV IHC   24 Not significant aCRC Belvedere et al[439]

   5-FU or 5-FU/MTX or 5-FU/LV IHC   27 Not significant mCRC Aschele et al[23]

   5-FU or 5-FU/MTX or 5-FU/LV IHC   48 Low expression mCRC Aschele et al[36]

   5-FU/LV/CPT-11 RT-PCR   13 Low expression aCRC Yanagisawa et al[37]

   5-FU/LV/CPT-11 IHC   54 Low expression aCRC Bendardaf et al[38]

   5-FU/LV/CPT-11 IHC   57 Not significant aCRC Paradiso et al[440]

   UFT/LV RT-PCR   37 Low expression mCRC Ichikawa et al[39]

   Capecitabine RT-PCR   37 Not significant aCRC Vallböhmer et al[97]

   Capecitabine IHC   39 Not significant CRC Lindebjerg et al[441]

   Capecitabine/CPT-11 IHC 556 Not significant aCRC Koopman et al[110]

   5-FU-based therapy IHC 681 Not significant CRC Karlberg et al[442]

Dihydropyrimidine dehydrogenase (DPYD) (OMIM # 612779)
   5-FU RT-PCR   29 Not significant mCRC Iyevleva et al[24]

   5-FU RT-PCR   39 Not significant CRC Ishida et al[25]

   5-FU IHC   62 Low expression aCRC Ciaparrone et al[27]

   5-FU IHC 303 Low expression CRC Jensen et al[443]

   5-FU RT-PCR 309 Low expression CRC Kornmann et al[29]

   5-FU IHC 391 Not significant aCRC Westra et al[438]

   5-FU IHC 945 Not significant CRC Soong et al[107]

   5-FU/LV RT-PCR   33 Low expression aCRC Salonga et al[17]

   UFT/LV RT-PCR   37 Low expression mCRC Ichikawa et al[39]

   5-FU/LV/CPT-11 RT-PCR   13 Not significant aCRC Yanagisawa et al[37]

   Capecitabine RT-PCR   37 Low expression aCRC Vallböhmer et al[97]

   Capecitabine/CPT-11 RT-PCR   67 Not significant aCRC Meropol et al[98]

   Capecitabine/CPT-11 IHC 556 Low expression aCRC Koopman et al[110]

   5-FU-based therapy ELISA   64 Low expression aCRC Oi et al[444]

   5-FU-based therapy RT-PCR 102 Low expression CRC Lassman et al[445]

   5-FU-based therapy RT-PCR 144 Low expression aCRC Gustavsson et al[446]

   5-FU-based therapy IHC 150 Low expression aCRC Tokunaga et al[447]

Thymidine phosphorylase (TYMP) (OMIM # 131222)
   5-FU IHC   62 Not significant aCRC Ciaparrone et al[27]

   5-FU IHC 945 Not significant CRC Soong et al[107]

   5-FU/LV RT-PCR   33 Low expression aCRC Salonga et al[17]

   5-FU/LV/CPT-11 RT-PCR   13 Not significant aCRC Yanagisawa et al[37]

   Capecitabine RT-PCR   37 Not significant aCRC Vallböhmer et al[97]

   Capecitabine/OX IHC   41 High expression mCRC Petrioli et al[448]

   Capecitabine/CPT-11 RT-PCR   67 High expression aCRC Meropol et al[98]

   Capecitabine/CPT-11 IHC 556 Not significant aCRC Koopman et al[110]

   5-FU-based therapy RT-PCR 144 Low expression aCRC Gustavsson et al[446]

   5-FU-based therapy IHC 150 Low expression aCRC Tokunaga et al[447]

Uridine monophosphate synthetase (UMPS) (OMIM #613891)
   5-FU RT-PCR   38 Not significant mCRC Sameshima et al[449]

   5-FU RT-PCR   39 Not significant CRC Ishida et al[25]

   5-FU/LV/OX RT-PCR   58 Not significant CRC Dong et al[450]

   5-FU/LV/cisplatin RT-PCR   22 High expression mCRC Matsuyama et al[113]

   UFT RIA   40 High expression CRC Ichikawa et al[114]

   UFT RIA 124 High expression CRC Ochiai et al[115]

   UFT IHC 150 High expression CRC Tokunaga et al[116]
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patients diagnosed with CRC (n = 62) and fluorescein 
diacetate assay (FDA) or histoculture drug response assay 
(HDRA) were used to determine the chemosensitivity in 
relation to 5-FU. The chemosensitivity test proved posi-
tive in 60% of  the specimens with ORPT activity of  0.413 
(nmol/min per mg protein) or above and 50% of  those 
with DPD activity of  30 (pmol/min per mg protein) or 
below. Of  the patient specimens showing OPRT activ-
ity of  0.413 or above and DPD activity of  30 or below, 
88.9% were positive for 5-FU sensitivity, suggesting the 
possibility that the combination of  these two levels may 
be predictive of  positive 5-FU sensitivity[122]. Tokunaga 
et al[116] indicated that high OPRT (IHC) expression in 
patients with CRC stage Ⅱ-Ⅳ is associated with a lon-
ger OS, which was not confirmed in a study using RT-
PCR in a smaller study group[37]. The prognostic value of  
UMPS/OPRT expression in both tumour and stromal 
cells, but each with an opposite effect on outcome, was 
an unexpected finding in a retrospective analysis of  a 
large trial[110].

There are several described SNPs located in UMPS[123-126], 
including 286A>G (Arg96Gly), 1285G>C (Gly429Arg), 
326T>G (Val109Gly), and 638G>C (Gly213Ala). Kitajima 
et al[123] analysed the effects of  several SNPs gene UMPS 
(638G>C, 1050T>A, and 1336A>G) on the sensitivity 
to 5-FU in a group of  31 patients with CRC. They found 
no relationship between the effectiveness of  treatment 
with 5-FU and frequency of  any of  the genetic variants 
among respondents[123]. In clinical in vitro trials it was 
shown that the functional polymorphism, Gly213Ala 
(638G>C) substitution, contributes to an increase in en-
zymatic OPRT activity[127]. With reference to the above 
results, in vivo studies showed that patients with substi-
tution of  213Ala in the OPRT protein sequence, after 
exposure to 5-FU, experience much more severe symp-
toms of  toxicity[124] such as grade 3 diarrhoea (P = 0.031) 
and grade 2-3 anorexia (P = 0.035)[125]. The probable 
mechanism of  gastrointestinal toxicity is related to the 
incorporation of  5-FU into RNA (F-RNA), but not with 
inhibition of  the biosynthesis of  dTMP by conversion 
of  5-FU to FdUMP[128]. Therefore, 5-FU/LV administra-
tion at a higher OPRT enzymatic activity (especially with 
the homozygous genotype 638CC) significantly increases 
the level of  F-RNA in enterocytes, which may increase 
the likelihood of  severe diarrhoea[125]. 

There are still many unknown factors that may par-
ticipate along with SNPs gene UMPS in chemosensitivity 

or mechanisms of  resistance to 5-FU, which makes it 
necessary to analyse other regions of  the gene including 
the promoter and regulatory region. A lack of  confirmed 
reliable test data from in vivo studies on the correlation 
between the expression of  UMPS/OPRT and the effec-
tiveness of  treatment with 5-FU, makes it now impossible 
to determine the potential clinical value of  this marker.

Other potential factors
A total of  20 polymorphic variants and 20 haplotype 
systems of  the CYP2A6 gene have been described, 
which encode P-450 cytochrome isoenzyme involved in 
the metabolic activation of  tegafur (UFT). Based on the 
results obtained from genotype/haplotype-phenotype 
association tests, Wang et al[129] showed that the variant 
CYP2A6*4 is the main determinant contributing to the 
reduction of  formed 5-FU with UFT, and the presence 
of  the allele affects the level of  decrease in CYP2A6 
gene expression. A different correlation was observed in 
the case of  14 haplotype (a novel CYP2A6*1B alleles), 
which was associated with an increase in UTF micro-
somal activation to 5-FU, and the presence of  the hap-
lotype contributed to increased expression of  CYP2A6. 
The authors speculate that the phenotype of  increased 
metabolic activity of  CYP2A6 may be the result of  the 
sum of  three different variants (22C>T, 1620T>C and 
a gene conversion in the 3’-UTR) included in this hap-
lotype. Wang et al[129] conclude that variants CYP2A6*4 
and CYP2A6*1B are major genetic factors responsible 
for inter-individual variation of  UTF activation degree to 
5-FU. 

Microsatellite instability (MSI) is common in many 
types of  tumours and is observed in 10%-14% of  spo-
radic CRC. The MSI phenomenon is caused by mutations 
located in mismatch repair (MMR) genes, this group of  
genes are hMSH2, hMLH1 and hMSH6. Protein prod-
ucts of  these genes are responsible for the repair of  
DNA damage caused during the replication process. It 
is believed that the MMR deficiency operation is one of  
the possible causes of  resistance to fluoropyrimidines[130]. 
Meyers et al[131] showed that the restoration of  a func-
tional protein MLH1 in an MMR-deficient human colon 
cancer cell line contributes to increased sensitivity to 5-FU, 
which suggests that MMR deficiency in cells may be as-
sociated with resistance to 5-FU. It is likely that MMR 
deficiency in cancer cells contributes to increased toler-
ance to the presence of  DNA damage occurring as a re-

5-FU: 5-fluorouracil; LV: Leucovorin; FUdR: 5-fluorodeoxyuridine; MTX: Methotrexate; OX: Oxaliplatin; UFT: Compound tegafur tablets; CPT-11: 
Irinotecan; CTX: Cetuximab; RT-PCR: Reverse trascriptase polymerase chain reaction; IHC: Immunohistochemistry; ELISA: Enzyme-linked immunosorbent 
ssay; RIA: Radioimmunoassay; CRC: Colorectal cancer; aCRC: Advanced colorectal cancer; mCRC: Metastatic colorectal cancer.

   UFT IHC 160 High expression CRC Tokunaga et al[117]

   UFT/LV RT-PCR   37 High expression mCRC Ichikawa et al[118]

   UFT/LV RT-PCR 103 High expression CRC Yamada et al[119]

   5-FU-based therapy RT-PCR   10 Not significant CRC Ishibashi et al[451]

   5-FU-based therapy RIA   11 Not significant CRC Yamada et al[452]

   5-FU-based therapy RT-PCR   52 Not significant CRC Kinoshita et al[453]

   5-FU-based therapy RIA   54 High expression CRC Fujii et al[120]

   5-FU-based therapy RIA   90 High expression CRC Ochiai et al[121]
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sult of  replication errors, instead of  undergoing cell cycle 
arrest or death[132]. The results of  several studies suggest 
that the presence of  MMR deficit in tumour cells is as-
sociated with chemosensitivity to 5-FU based therapy[133]. 
Most of  these studies found low sensitivity to 5-FU in 
the case of  MMR deficiency, which was confirmed by a 
recent pooled reanalysis of  randomized trials[134]. On the 
other hand, among patients with Ⅱ and Ⅲ stage CRC, 
prolonged survival time in cases with high MSI was de-
tected[133,135,136]. In addition, when comparing the group 
of  MSI patients with patients who were microsatellite 
stable it was found that MSI prolongs disease-free time, 
but is not beneficial in 5-FU adjuvant chemotherapy[137]. 
Furthermore, it was found that in most of  these cases, 
where the tumours showed positive results for MSI, the 
expression was observed in wild-type p53[138] which is an 
important determinant of  5-FU sensitivity.

The tumour suppressor protein p53 plays a key role 
in the control of  cell cycle progression and cell death[139]. 
It is estimated that in about 50% of  cases with various 
types of  tumours a number of  mutations in P53 gene 
which encodes the p53 can be seen[140]. p53 is responsible 
for cell cycle arrest and directing cells to the apoptotic 
pathway in a situation where there is a risk of  sustaining 
damage to the integrity of  the genome preventing the 
transfer of  damaged DNA into daughter cells. Longley 
et al[41] demonstrated that p53 and p53-target genes are 
activated in response to RNA-directed 5-FU cytotoxicity. 
Moreover, in vitro test results indicate that the loss of  p53 
functionality contributes to reducing chemosensitivity of  
cells to 5-FU[41,141]. Studies on expression have also shown 
that overexpression of  p53 is correlated with resistance 
to 5-FU-based chemotherapy[136,142,143] although there is no 
conformity with the results obtained by other research-
ers[35]. The impact of  the presence of  specific mutations 
of  P53 gene was also described, which may contribute to 
transformation and drug resistance[144]. Indeed, Pugacheva 
et al[145] suggested that certain p53 mutants may increase 
dUTPase expression, resulting in 5-FU resistance. Thus, 
5-FU chemosensitivity may be dependent on the particu-
lar TP53 genotype. 

IRINOTECAN
7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxy-
camptothecin (CPT-11) is a synthetic analogue of  a 
naturally occurring alkaloid, camptothecin. CPT-11 was 
first approved for clinical use in Japan in 1994 for the 
treatment of  small-cell lung cancer and hematologic ma-
lignancies, and then in 1995 in France for the treatment 
of  advanced CRC. Finally, in 1996, CPT-11 was approved 
by the US Food and Drug Administration (FDA) and 
approved for use in the treatment of  CRC in 1998. Cur-
rently, CPT-11 is mainly used in CRC diagnosed patients 
with metastases, with recorded relapse or progression 
after application of  standard 5-FU-based therapy[146].

In preclinical screening tests using the HST-1 human 
squamous carcinoma cell line, SN-38, which is an active 

CPT-11 metabolite, exhibited the ability to increase the 
antitumour effect of  such cytostatics as cisplatin, mito-
mycin C, 5-FU, and etoposide[147]. In in vitro tests using 
colon and hepatocellular carcinoma cell lines it was also 
observed that SN-38 had greater cytotoxic activity com-
pared to cisplatin, mitomycin C, doxorubicin and 5-FU[148]. 
The in vivo tests showed that the positive response rate 
to CPT-11 monotherapy ranged from 17% to 27% of  
cases[149]. The effectiveness of  CPT-11 based treatment 
was observed in both the group of  patients for which 
this was the first application of  treatment as well as in 
patients for whom 5-FU therapy was found to be inef-
fective[150]. The clinical application of  the combination of  
CPT-11 with 5-FU/LV (FOLFIRI) resulted in a signifi-
cant percentage increase in positive responses, prolonged 
time to tumour progression and survival. Efficacy was 
demonstrated both in chemotherapy-naive patients and 
those who progressed after 5-FU-based chemotherapy 
when compared with 5-FU/LV alone[151].

Tumour-specific somatic mutations and abnormal 
gene expression as well as germline genetic variations 
have been reported to be associated with CPT-11 thera-
peutic efficacy and toxicity. However, the available studies 
do not provide unequivocal confirmation that somatic 
mutations have a significant impact on the outcome of  
CPT-11 treatment, which prevents their usage as predic-
tive markers. Generally, genetic variations may influence 
both the pharmacokinetics and pharmacodynamics of  
CPT-11[152-154]. Taking into account the results of  previous 
preclinical and clinical tests, CPT-11 resistance phenotype 
may be associated with three different mechanisms: (1) 
insufficient intra-tumour accumulation of  SN-38 (deter-
mined by pharmacokinetic factors); (2) a change in TOPI 
activity that decreases levels of  the SN-38-Topo Ⅰ-DNA 
complex (pharmacodynamic factors); and (3) alterations 
in the events downstream from the ternary complex, for 
example, apoptosis, cell cycle regulation, checkpoints, and 
DNA repair (pharmacodynamic factors)[155,156].

Carboxylesterase 
Hydrolysis of  the bulky dipiperidino moiety of  CPT-11 
produces the active metabolite SN-38. The enzymes 
responsible for these reactions have been identified as 
human carboxylesterases CES1, CES2 (Figure 5) and 
the recently described isoenzyme CES3. However, CES3 
catalytic activity is low and therefore not likely to play 
a significant role in the metabolism of  CPT-11. Several 
studies indicated that the CES2 isoenzyme plays a major 
role in CPT-11 and SN-38 hydrolysis[157]. 

Resequencing of  CES1 and CES2 allowed the iden-
tification of  SNPs and haplotype structure of  these 
genes[158-163]. Numerous SNPs and haplotypes have been 
described in several populations: Europeans, Africans, 
and Asian-Americans[163]. Charasson et al[158] studied 115 
cases (Caucasian population) for sequence analysis of  all 
12 exons of  the CES2 gene and 5’ and 3’ untranslated 
regions, and identified 11 SNPs. One of  these SNPs lo-
cated at position 830 of  gene (830C>G) was associated 
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with a decrease in CES2 expression, which has been re-
ported in 60 cases in the North American population[158]. 
The CPT-11 intra-tumour activation process is partially 
explained as some authors have provided experimental 
data indicating that the level of  CES2 activity may be a 
predictor of  CPT-11 toxicity[164], while others failed to 
detect CES2 activity in cultured cells[165]. 

Kubo et al[166] found 12 new SNPs located in the 

CES2 gene sequence including the nonsynonymous SNP 
100C>T (Arg34Trp) and the SNP at the splice acceptor 
site of  intron 8 (IVS8-2A>G). In vitro test results regarding 
functional characterization of  these SNPs, as well as the 
additional nonsynonymous SNP 424G>A (Val142Met), 
suggest that the presence of  34Trp and 142Met variants is re-
sponsible for the loss of  enzyme activity, and IVS8-2G al-
lele is associated with a significant reduction in metabolic 
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activity of  CES2[166]. Kim et al[161], studying a Japanese pop-
ulation, based on linkage analysis of  21 polymorphisms 
of  the CES2 gene, identified a panel comprising a number 
of  haplotypes and found that some haplotypes were rare 
in the population, including nonsynonymous SNPs may 
contribute to the reduction of  enzyme activity. Further-
more, Kim et al[161] found that patients who are carriers of  
nonsynonymous SNPs, 100C>T (Arg34Trp) or 1A>T 
(Met1Leu) have a significantly reduced ratio of  (SN-38 + 
SN-38G)/CPT-11 area under the plasma concentration 
curve (AUC). In vitro test results regarding functional anal-
ysis of  these SNPs allowed determination of  their impact 
on the efficiency of  translation and transcription of  the 
CES2 gene. It has been shown that the presence of  the 
1A>T genetic variant does not affect the transcriptional 
activity of  the gene, but it is important for the efficiency 
of  the translation course[161]. These observations are the 
starting point for further research into CES2/CES2 phar-
macogenetics, the results of  which can be used in future 
to individualize dosing of  CPT-11 and other prodrugs 
activated by carboxylesterases.

Carboxylesterase hydrolyzes CPT-11 to SN-38 pri-
marily in the liver, but also in plasma and the gastrointes-
tinal tract. It was found that the CES1 gene is highly ex-
pressed in the liver, which is the main organ responsible 
for the metabolic activation of  CPT-11. It is likely that 
the genetic variants of  CES1 can affect the concentration 
of  CPT-11 metabolites in plasma. However, the clini-
cal relevance of  genetic determinants of  CES1 on the 
pharmacokinetics/pharmacodynamics of  CPT-11 is not 
fully understood. Functional human CES1 genes include 
CES1A1 and CES1A2 which are inversely located on 
chromosome 16q. In addition to structural variations 
of  the CES1 gene family, several SNPs and small dele-
tion/insertion variants were found. The influence of  the 
-816C variant located in the CES1A2 promoter region on 
increased transcriptional activity of  the CES1A2 gene 
was described. Furthermore, Tanimoto et al[167] showed 
that the mRNA expression level of  the CES1A2 gene 
is related to the sensitivity of  tumour cells to CPT-11. 
Besides, it was found that the polymorphism -816A>C 
is coupled to several other SNPs (-62T>C, -47G>C, 
-46G>T, -41C>G, -40A>G, -37G>C, -34del/G and 
-32G>T) located in the proximal promoter region, which 
is associated with increased transcription of  CES1A2, as 
bound transcription factors such as Sp1 are found in this 
area[168]. The studies by Yoshimura et al[168] suggest that the 
genetic variant CES1A may affect the dose-dependent 
antitumour activity of  CPT-11. 

In conclusion, there are certain conditions relating to 
the impact of  polymorphisms located in the CES1/CES2 
genes on the metabolism of  CPT-11, which, if  they are 
confirmed in large clinical trials, in the future may allow 
the setting of  individual regimens of  CPT-11 in patients 
with cancer (Table 3).

UDP-glycosyltransferase 1 family 
SN-38 is glucuronidated, mainly in the liver, to SN-38 

glucuronide (SN-38G) by the uridine diphosphate gluc-
uronosyltransferase enzymes (UGTs), primarily the UDP-
glycosyltransferase 1 family (UGT1As) isoenzyme. SN-
38G metabolite is excreted into the bile and urine, where 
it can be removed from the body. However, rehydrolysis 
of  SN-38G to SN-38, which can take place in the diges-
tive tract under the influence of  bacterial b-glucuronidase, 
can cause acute diarrhoea observed during treatment with 
CPT-11[169]. 

UGTs are one of  the most important classes of  en-
zyme proteins participating in the coupling reaction phase 
Ⅱ of  xenobiotic metabolism. Currently there are 17 hu-
man UGT isoenzymes described that have been assigned 
to one of  two families identified as UGT1 and UGT2, 
which are further subdivided on the basis of  amino acid 
sequence similarity into UGT1A, UGT2A and UGT2B 
subfamilies. Members of  the UGT1 family are encoded 
by the UGT1A locus on chromosome 2q37, which con-
tains 13 first exons, each having its own promoter and 
enhancer regions, which are spliced to identical exons 2-5 
(Figure 6). UGT1A1 isoenzyme is responsible in humans 
for bilirubin conjugation with glucuronic acid, and some 
genetic variants located in the UGT1A1 gene are associ-
ated with the development of  hyperbilirubinemic syn-
dromes. These diseases, including Gilbert’s syndrome and 
Crigler-Najjar syndrome type Ⅰ and Ⅱ, are most often 
described in cases with no or low activity of  UGT1A1 
as a result of  polymorphisms in the sequence of  the 
promoter or coding region[170-172]. Two other isoenzymes, 
namely the liver UGT1A9 and extrahepatic UGT1A7 are 
considered important in the SN-38 enzymatic inactivation 
process. Several research groups have tested in vitro the 
impact of  genetic variation in UGT1A1, UGT1A7 and 
UGT1A9 on the level of  SN-38 glucuronidation[173,174]. 
Among the frequently occurring genetic variants in the 
UGT1A gene locus 100 SNPs were described, which 
are located both in the promoter region as well as the 
coding sequence of  the UGT1A gene, many of  these 
polymorphisms remain in linkage disequilibrium to the 
other alleles[175]. Determination of  the possible clinical 
consequences of  these functional changes is being stud-
ied, and has been fairly well documented for some of  the 
identified alleles. A number of  in vivo studies were aimed 
to determine the effect of  different UGT1A genotypes 
on the pharmacokinetics and toxicity of  CPT-11[176-183].

One of  the best known UGT1A1 polymorphisms is 
VNTR concerning the number of  repetitions of  the di-
nucleotide part of  TA [A(TA)nTAA, n = 5-8], which is lo-
cated in the TATA sequence of  the promoter region. The 
wild-type allele contains six repeats (TA)6 (UGT1A1*1), 
which are located between position -53 and -42 of  the 
translational start codon. While (TA)7 (UGT1A1*28), 
an often quoted variant in Gilbert’s syndrome[172], in the 
in vitro study was responsible for a 63% reduction in 
translational activity compared to wild-type alleles[184]. 
Other variations such as (TA)5 (UGT1A1*36), and (TA)8 
(UGT1A1*37), respectively, contribute to the growth and 
reduction of  transcriptional activity, as observed in in vitro 
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Table 3  Selected common polymorphisms of UGT1A1, UGT1A7, UGT1A9, CES2, CYP3A4, CYP3A5, MDR1, MRP1, MRP2, 
BCRP, OATP1B1 genes and their potential impact on functioning of proteins related to CPT-11 pharmacology

dbSNP rs cluster ID Type of polymorphism Function Ref.

UDP-glycosyltransferase 1A1 (UGT1A1) (OMIM # 191740)
   rs8175347 VNTR [177,178,180,182,191,192,197

,219,317,356,454-460]-53(TA)6>7 UGT1A1*28, reduced activity
-53(TA)6>5 UGT1A1*36, increased activity
-53(TA)6>8 UGT1A1*37, reduced activity

   http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 8175347 
   rs3755319 SNP [187]

-3279T>G UGT1A1*60, reduced activity
   http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 3755319 
   rs10929302a SNP [192,404]

-3156G>A UGT1A1*93, reduced activity
   rs887829b -3140G>A effect unknown
   ahttp://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 10929302
   bhttp://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 887829 
   rs4148323 SNP [186,191,461]

211G>A Gly71Arg, UGT1A1*6, reduced activity
   http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 4148323 
   rs35350960 SNP [172,174,189]

686C>A Pro229Gln, UGT1A1*27, reduced activity
   http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 35350960 
   rs34993780 SNP [170,174,189]

1456T>G Tyr486Asp, UGT1A1*7, reduced activity
   http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 34993780 
UDP-glycosyltransferase 1A7 (UGT1A7) (OMIM #606432)
   rs17868323a SNP [188,189,197,237]

387T>G Asn129Lys, UGT1A7*2 and *3, increased activity
   rs17863778b 391C>A Arg131Lys, UGT1A7*2 and *3, increased activity
   rs11692021c 622C>T Trp208Arg, UGT1A7*3 and *4, reduced activity
   ahttp://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 17868323 
   bhttp://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 17863778
   chttp://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 11692021
UDP-glycosyltransferase 1A9 (UGT1A9) (OMIM #606434)
   rs45625337 VNTR [190,197,462]

–118(T)9>10 UGT1A9*22, increased activity
   http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 45625337 
   rs2741049 SNP [197,463]

IVS1+399C>T Effect unknown
   http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 2741049 
Carboxylesterase 2 (CES2) (OMIM #605278)
   - SNP [159,161,166]

1A>T Met1Leu, CES*5
   rs72547531a 100C>T Arg98Trp, CES*2
   rs72547532b 424G>A Val206Met, CES*3
   rs8192924c 617G>A Arg270His, CES*6
   rs11075646d 830C>G Synonymous
   rs72547533e IVS8-2A>G Splicing defect, CES*4
   a http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 72547531
   b http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 72547532
   c http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 8192924
   d http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 11075646 
   e http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 72547533
Cytochrome P450, subfamily IIIA, polypeptide 4 (CYP3A4) (OMIM #124010)
   rs2740574a SNP [211,464,465]

-392A>G CYP3A4*1b, altered pharmacokinetics and toxicity
   rs4986907b 485G>A CYP3A4*15, Arg162Gln
   rs4986908c 520G>C CYP3A4*10, Asp174His
   rs12721627d 554C>G CYP3A4*16, Thr185Ser
   rs4987161e 566T>C CYP3A4*17, Phe189Ser, altered pharmacokinetics
   rs55785340f 664T>C CYP3A4*2, Ser222Pro, altered pharmacokinetics and toxicity
   rs28371759g 878T>C CYP3A4*18, Leu293Pro, altered pharmacokinetics and toxicity
   ahttp://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 2740574
   bhttp://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 4986907
   chttp://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 4986908
   dhttp://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 12721627
   ehttp://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 4987161
   fhttp://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 55785340
   ghttp://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 28371759
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   rs4986910 SNP [210,465]
1334T>C CYP3A4*3, Met444Thr

   http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 4986910 
Cytochrome P450, subfamily IIIA, polypeptide 5 (CYP3A5) (OMIM #605325)
   rs776746 SNP [179,464-467]

6986A>G Synonymous
   http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 776746 
Multidrug resistance 1 (MDR1, ABCB1) (OMIM #171050)
   rs1128503 SNP [210,211,217,460,467-469]

1236C>T Synonymous, CTP-11 or SN-38 AUC ↑
   http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 1128503 
   rs2032582 SNP [217,468-470]

2677G>T/A Ser893Ala or Ser893Thr
   http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 2032582 
   rs1045642 SNP [179,217,468-475]

3435C>T Synonymous, CTP-11 AUC ↑
   http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 1045642 
   rs10276036 SNP [207]

IVS9-44A>G Effect unknown
   http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 10276036 
Multidrug resistance-associated protein 1 (MRP1, ABCC1) (OMIM #158343)
   rs35605 SNP [210,476]

1684T>C Synonymous
   http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 35605 
   rs17287570 SNP [237]

c.1677+4951A>C Effect unknown
   rs3765129 SNP [207,210,476]

IVS11-48C>T Effect unknown
   http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 3765129 
   rs2074087 SNP [476,477]

IVC18-30C>G Effect unknown
   http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 2074087 
Multidrug resistance-associated protein 2 (MRP2, ABCC2) (OMIM #601107)
   rs1885301 SNP [477]

-1549A>G Effect unknown
   http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 1885301 
   rs2804402 SNP [207]

-1019A>G Effect unknown
   http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 2804402 
   rs717620 SNP [477-479]

-24C>T Effect unknown
   http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 717620
   rs2273697 SNP [467,479,480]

1249G>A Val417Ile, effect unknown
   http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 2273697 
   rs3740066 SNP [477,479,481]

3972C>T Synonymous, CTP-11 or APC or SN-38G AUC ↑
   http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 3740066 
Breast cancer resistance protein (BCRP, ABCG2) (OMIM #603756)
   rs2622604a SNP [237]

c.-19-17758A>G Synonymous
   rs3109823b c.-19-3436G>A Synonymous
   ahttp://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 2622604 
   bhttp://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 3109823
   rs2231142 SNP [239-244,482]

421C>A Gln141Lys, no significant changes in CPT-11 pharmacokinetics
   http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 2231142 
   rs2231137 SNP [242,467,482]

34G>A Val12Met, higher drug resistance in vitro (SN-38)
   http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 2231137 
   rs1481012 SNP [483]

c.841+179T>C Synonymous
   http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 1481012 
Organic anion-transporting polypeptide 1B1 (OATP1B1, SLCO1B1) (OMIM #604843)
   rs2306283 SNP [247-249,460,467,484]

388A>G Asn130Asp, effect unknown
   http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 2306283 
   rs4149056 SNP [247-249,460]

521T>C Val174Ala, effect unknown
   http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 4149056 

SNP: Single nucleotide polymorphism. 
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studies (Figure 6). Iyer et al[185] found that human hepatic 
tissue homozygous for the (TA)7/(TA)7 polymorphism 
and tissue heterozygous for the (TA)6/(TA)7 genotype 
had a significantly decreased rate of  glucuronidation of  
SN-38 and bilirubin compared with tissue containing the 
reference sequence allele [(TA)6/(TA)6]. SN-38 glucuroni-
dation decreased in the following manner: 6/6 > 6/7 > 
7/7[185]. 

In addition, Han et al[186] investigated the genetic varia-
tion of  the UGT1A gene. They showed that two SNPs 
UGT1A1*6 (211G>A, Gly71Arg) and UGT1A9*22 were 
important factors influencing the metabolism of  CPT-11 
and the toxicity of  therapy[186]. Both studied polymor-
phisms affect the coupling efficiency of  SN-38 with 
glucuronic acid which results in serious toxic effects[186]. 
The UGT1A1*60 allele is related to the presence of  SNP 
-3279T>G, and is located in the distal enhancer region 
[phenobarbital-responsive enhancer module (PBREM)], 
and is another of  the genetic variants of  UGT1A1 
which contributes to the reduction in gene transcrip-
tion activity and an increase in bilirubin concentration in 
serum[187]. UGT1A1*27 (686C>A, Pro229Gln) is a rare 
nonsynonymous polymorphism in the population, in vitro 
studies have shown its relation with a reduced level of  
glucuronidation of  SN-38, and it has been observed in 
patients with symptoms of  Gilbert’s syndrome[174]. An-
other nonsynonymous variant is UGT1A1*7 (1456T>G, 
Tyr486Asp) recorded in an Asian population and is asso-
ciated with Crigler-Najjar syndrome type Ⅱ[170] for which 
a decrease in activity of  the enzyme deactivation pathway 
of  SN-38 was observed[174]. 

The frequently occurring functional SNPs of  the UG-
T1A7 gene include: UGT1A7*2 [387T>G (Asn129Lys), 
391C>A, (Arg131Lys)], UGT1A7*3 [387T>G (Asn-
129Lys), 391C>A, (Arg131Lys), 622C>T (Trp208Arg)], 
and UGT1A7*4 [622C>T (W208R)][188]. For these SNPs 
in clinical in vitro studies conditioned by UGT1A7*3 and 

UGT1A7*4, the phenotype shows a reduced rate of  
glucuronic acid conjugation with SN-38[189]. In contrast to 
these genetic variants, a common VNTR polymorphism 
-118(T)9>10 (UGT1A9*22), which is located in the pro-
moter region of  the UGT1A9 gene is associated with in-
creased transcriptional activity, which has been confirmed 
in vitro[190].

First evidence from clinical trials on the role of  
UGT1A1*28 in the development of  toxicity resulting 
from administration of  CPT-11 was published by Ando 
et al[191]. They studied the relationship of  the genetic 
variants of  UGT1A1 with serious toxic effects (grade 4 
leucopoenia and/or grade 3 or 4 diarrhoea) in a group 
of  118 Japanese patients undergoing CPT-11 therapy in 
a variety of  regimens[191]. Also Innocenti et al[192] studying 
a group of  66 patients (including 50 Caucasians) treated 
with CPT-11 alone, demonstrated that the UGT1A1*28 
allele is an important factor in the development of  grade 
4 neutropenia. In this study, it was observed that the in-
cidence of  severe neutropenia was much more common 
in patients with genotype (TA)7/(TA)7 (50%) compared 
to heterozygous (TA)6/(TA)7 (12%) and homozygous 
(TA)6/(TA)6 (0%). Moreover, another genetic variant, 
-3156G>A, is in strong linkage with UGT1A1*28 and 
was a better predictor of  toxicity than the UGT1A1*28 
polymorphism[192]. Also Marcuello et al[182] studied the 
effect of  the UGT1A1*28 variant on the occurrence 
of  severe toxic effects in a group of  95 cases with CRC 
(Caucasians) who were treated with CPT-11 containing 
regimens (5-FU or raltitrexed). In this study, the incidence 
of  acute diarrhoea (grade 3 or 4) was significantly higher 
in patients who were carriers of  UGT1A1*28 mutations 
[homozygous (50%) and heterozygous (33%)] in com-
parison to homozygotes of  wild-type (17%). Also, symp-
toms of  neutropenia were more frequently noted in the 
homozygotes group with the UGT1A1*28 allele, how-
ever, this relationship was not statistically significant[182]. 
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The first systematic analysis of  clinical studies on the 
impact of  UGT1A1*28 on the effectiveness of  CPT-11 
therapy was published by Dias et al[193]. These results were 
generally supportive of  the clinical utility of  genotyping 
UGT1A1*28 prior to commencement of  CPT-11 ther-
apy in order to decrease the risk of  severe neutropenia 
and diarrhoea through the pre-emptive dose reduction 
of  CPT-11 for UGT1A1*28 homozygotes. The meta-
analyses indicate that there is unlikely to be an important 
association between UGT1A1 genotype and ORR with 
CPT-11, however, this does not provide direct evidence 
that a dose reduction for UGT1A1*28 homozygotes will 
not lead to an important reduction in ORR[193]. Hu et al[194] 
published a meta-analysis of  the relationship between the 
presence of  UGT1A1*28 and the incidence of  neutrope-
nia induced by CPT-11. It has been shown that the pres-
ence of  UGT1A1*28 is associated with an increased risk 
of  developing neutropenia, not only in cases of  medium 
or high CPT-11 dose applied, but also in patients treated 
with low doses of  the drug. The dose-dependent manner 
of  SN-38 glucuronidation explained why the associa-
tion between UGT1A1*28 and neutropenia was dose 
dependent[194]. Also, Hu et al[195] published a meta-analysis 
of  clinical studies on the relationship between the pres-
ence of  the variant UGT1A1*28 and the risk of  severe 
diarrhoea. Also in this case, in patients who are carriers 
of  one or two mutant alleles [genotypes (TA)7/(TA)7 or 
(TA)6/(TA)7] there was an increased risk of  severe diar-
rhoea induced by CPT-11. However, this increased risk 
was present only in the group of  patients with high and 
medium drug dose[195]. This evidence supports the assess-
ment of  UGT1A1*28 in routine clinical practice. The 
FDA-approved diagnostic blood test (Invader®) is avail-
able specifically for testing the UGT1A1*1 (wild-type) 
and the UGT1A1*28 genotype. However, the proposed 
benefit of  testing CRC patients for UGT1A1 genotype 
is that the risk for adverse drug-related side effects (e.g., 
severe neutropenia) among patients found to be homo-
zygous for the *28 genotype can be reduced by lowering 
their initial and/or subsequent doses of  CPT-11. The 
concomitant harm is that a reduction in CPT-11 dosage 
may also reduce the effectiveness of  chemotherapy in tu-
mour suppression and long-term survival[133,196].

In recent years, several studies were published on 
the effects of  UGT1A polymorphisms on CPT-11 ef-
fectiveness in CRC cancer therapy. Marcuello et al[182] ob-
served a trend in reduced OS in patients with genotype 
(TA)7/(TA)7 or (TA)6/(TA)7 in a study of  95 (Caucasians) 
cases with metastatic CRC who underwent therapy based 
on CPT-11. The probable reason for poor response to 
treatment, as concluded by the authors, was the need to 
reduce the dose of  CPT-11 in patients with symptoms of  
severe diarrhoea, and who were carriers of  the mutant al-
lele UGT1A1*28. Toffoli et al[177] studying a group of  71 
patients (Caucasian) with CRC and metastasis observed 
that in the homozygous group (TA)7/(TA)7 there was a 
higher percentage of  positive responses to the treatment 
based on CPT-11 and longer survival time as compared 

to the homozygous group (TA)6/(TA)6. The authors 
suggested that toxicities in (TA)7/(TA)7 patients could 
be well-managed during the entire course of  treatment 
without a reduction of  CPT-11 dosage[177]. The impact 
of  genetic variants of  UGT1A7 on the effectiveness of  
therapy with capecitabine/CPT-11 was examined[197]. 
The analysis of  66 cases of  CRC (including 55 Cauca-
sians) demonstrated that the homozygous groups UG-
T1A7*2/*2 and UGT1A7*3/*3 showed low enzymatic 
activity and a lower incidence of  severe diarrhoea (P = 
0.003), but a higher percentage of  positive responses to 
treatment (P = 0.013) compared with the other geno-
types[197]. Also, considering the impact of  another poly-
morphism located in the sequence UGT1A9 [-118 (T)9>10, 
UGT1A9*22], it was observed that the presence of  
genotype (T)9/(T)9 significantly reduced the toxicity (P = 
0.002) and increased the degree of  response to treatment 
(P = 0.047)[197]. These results suggest that the low activity 
phenotype of  isoenzymes UGT1A7/1A9 conditioned 
by the presence of  genetic variants is associated with a 
protective effect against toxicity such as severe diarrhoea. 
The authors explained that this observation may be due 
to reduced excretion of  SN-38G to the intestine, where 
it is under the influence of  bacterial b-glucuronidase hy-
drolysed to SN-38, responsible for toxic effects such as 
severe diarrhoea[197,198]. This finding also raised caution 
that higher intestinal levels of  SN-38G can promote diar-
rhoea, while hepatic glucuronidation offers protection 
against neutropenia[197].

Cecchin et al[176] performed genotyping of  (UG-
T1A1*28, UGT1A1*60, UGT1A1*93, UGT1A7*3 and 
UGT1A9*22) in a large group of  250 CRC patients with 
metastases treated with the FOLFIRI regimen. In ad-
dition, the study determined the relationship of  these 
genetic variants with the incidence of  severe hematologic 
and nonhematologic toxicities, the degree of  response to 
therapy, and TTP and OS[176]. The results demonstrated 
that only the variant UGT1A7*3 may be a marker of  se-
vere hematologic toxicity after the application of  the first 
cycle of  therapy (P = 0.04). In addition, UGT1A1*28 
allele and Ⅱ haplotype (all the variant alleles, but not 
UGT1A9*22) were associated with a response indicator 
of  the therapy (P = 0.01), and the UGT1A1*28 allele was 
also the only marker associated with TTP. The authors 
concluded that genetic variants near UGT1A1*28 may 
be predictors in CRC patients treated with FOLFIRI[176]. 
Liu et al[199] examined the impact of  a polymorphic vari-
ant UGT1A1*28 on toxicity and the results of  treatment 
in a group of  128 Chinese CRC patients with metastases 
undergoing therapy with FOLFIRI. It was found that, 
although the need to reduce the dose of  CPT-11 was 
significantly higher in patients with genotype (TA)6/(TA)6 
(P < 0.01), it had no significant effect on the rate of  re-
sponse to CPT-11 therapy, PFS and OS[199].

The above reports make it difficult to draw clear con-
clusions whether reduced UGT1A activity conditioned 
by the presence of  genetic variants in the gene sequence 
only intensifies the anti-cancer activity of  CPT-11, or 
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alleles in most described genetic variants of  CYP3A in 
the Caucasian population (e.g., CYP3A4*17, CYP3A4*18, 
and CYP3A5*1), or the presence of  these variants does 
not result in measurable changes in enzyme activity in vivo 
(e.g., CYP3A4*1B)[157]. In conclusion, the current research 
findings do not support the clinical use of  CYP3A4/5 
genotyping in order to differentiate individual doses of  
CPT-11.

ABC and SLC transporters 
In addition to the importance of  the metabolism of  
CPT-11, the influence of  the above-mentioned enzymes 
on the pharmacokinetics of  the drug, and its own influ-
ence can also be demonstrated on different transporters, 
especially from the ABC (ATP-binding cassette trans-
porter superfamily) group of  transporters. ABC trans-
porters play an important role in the pharmacology of  
CPT-11[157], and are one of  the major causes of  cancer 
cell resistance observed in vitro and in vivo[212]. A number 
of  polymorphic variants of  genes encoding proteins of  
ABC transporters and their potential impact on the tran-
scription/expression and changes in transport activity 
have been described[213]. CPT-11, SN-38 and SN-38G are 
transported from cells to the extracellular environment 
via ABCB1 multidrug resistance (MDR1), ABCC1 mul-
tidrug resistance protein 1 (MRP1), ABCC2 multidrug 
resistance protein 2 (MRP2), ABCG2 breast cancer re-
sistance protein (BCRP) and SLCO1B1 organic anion-
transporting polypeptide 1B1 (OATP1B1) (Figure 7)[214]. 
Transport proteins which export CPT-11 and its metabo-
lites to bile and urine were examined due to their poten-
tial impact on the effectiveness of  anticancer therapy, and 
the occurrence of  adverse reactions[215,216]. 

Studies regarding the influence of  transport protein 
P-glycoprotein encoded by the gene ABCB1/MDR1 on 
CPT-11 pharmacology, have given ambiguous results. 
More than a dozen different polymorphisms have been 
identified in the sequence of  the gene ABCB1. Research 
evaluating the impact of  SNPs on the pharmacokinetics 
of  CPT-11 typically focus on three well-known polymor-
phisms 1236C>T, 2677G>T/A and 3435C>T, which are 
in strong linkage disequilibrium[157]. Some studies have 
shown that both single genetic variants and haplotypes 
of  ABCB1 can increase the bioavailability of  CPT-11 
and SN-38[210,217], while other studies have come to the 
opposite conclusion[216,218]. Furthermore, Korean studies 
found an association between the presence of  wild-type 
ABCB1 and the occurrence of  neutropenia[218], which was 
not confirmed by the results from American research[216]. 
Similarly, a lack of  correlation between the occurrence 
of  SNPs ABCB1 and toxicity of  CTP-11 therapy was 
found in French studies[179]. On the other hand, studies by 
Glimelius et al[219] demonstrated that patients who are car-
riers of  the mutated allele ABCB1 are less responsive to 
treatment with CPT-11. Carriers of  at least one TT geno-
type of  ABCB1 1236C>T, 2677G>T/A or 3435C>T 
were less likely to respond to treatment (OR = 0.32). A 
post hoc analysis showed that fewer patients with at least 

results in a better response to treatment with the simulta-
neous increased frequency of  severe toxic complications. 
It seems that the overall balance of  the effectiveness/
toxicity of  the therapy depends primarily on the treat-
ment regimen used. Moreover, the appearance of  severe 
toxicities depends on the exposure levels of  SN-38 in 
the tissues, however, the antitumour responses can be 
influenced by additional factors related to properties of  
target tumours, such as the tumour stage, acquisition of  
resistant factors, and sensitivity to other chemotherapeu-
tic agents when combined.

CYP3A4 and CYP3A5
CYP3A4, which is highly expressed in the liver, is con-
sidered one of  the major P-450 cytochrome isoenzymes 
involved in the metabolism of  a large group of  drugs. 
CYP3A4 and CYP3A5 are responsible for CPT-11 oxi-
dation to the APC metabolite (7-Ethyl-10-(4-N-amino-
pentanoic acid)-1-piperidino)carbonyloxycamptothecin 
and inactive NPC (7-Ethyl-10-(4-amino-1-piperidino)car-
bonyloxycamptothecin), which can be hydrolysed to an 
active form of  SN-38 (Figure 5). Inter-individual variation 
in CYP3A4 activity may contribute to changes in the phar-
macokinetic parameters of  CPT-11[200-202]. 

Several polymorphisms located in genes CYP3A4 and 
CYP3A5 have been described[203-206]. There are different 
SNPs for CYP3A4 and the frequencies of  genotypes and 
alleles occurrence in different populations have been pub-
lished. Relatively frequent SNPs are CYP3A4*2 (664T>C, 
Ser222Pro), CYP3A4*10 (520G>C, Asp174His), and CY-
P3A4*17 (566T>C, Phe189Ser) in Caucasians and Mexi-
cans (2%-5%), CYP3A4*15 (485G>A, Arg162Gln) in 
African-Americans (2%-4%) and CYP3A4*16 (554C>G, 
Thr185Ser) and CYP3A4*18 (878T>C, Leu293Pro) in 
East Asians (1%-10%)[207]. Perhaps some of  these genetic 
variants of  CYP3A4 may have impact on the pharmaco-
kinetics of  CPT-11. An analysis of  gene haplotypes of  
CYP3A4 conducted in a group of  416 cases from the 
Japanese population has allowed the identification of  25 
haplotypes[208]. However, the influence of  individual hap-
lotypes on the pharmacokinetic parameters of  CPT-11 
was tested among 177 Japanese patients undergoing che-
motherapy[209]. Haplotype *16B which consists of  poly-
morphisms 554C>G (Thr185Ser) and IVS10+12G>A 
was present only in male patients, and in this group a 
significantly lower concentration ratio of  APC/CPT-11 
(in vivo tests of  CYP3A4 activity) was observed com-
pared with other patients. However, no relationship was 
observed between the genotypes and total clearance of  
CPT-11, and the frequency of  toxicity symptoms in the 
study group[209]. Despite significant individual variabil-
ity[206] and occurrence of  more polymorphisms within 
genes CYP3A4 and CYP3A5, in the currently published 
studies there is no significant correlation between geno-
type CYP3A4/5 and the pharmacokinetics of  CPT-11 or 
toxicity[210,211]. No significant correlation between geno-
types CYP3A4/5 and the pharmacokinetic parameters 
of  CPT-11 may be associated with the low frequency of  
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48C>T causes a decrease in AUC for APC. The positive 
association between ABCC1 1684T>C and SN-38 AUC 
is consistent with increased transport of  SN-38 from 
the hepatocyte into the plasma[216]. In comparison to the 
available data on the role of  ABCB1 in drug resistance 
and bioavailability of  CPT-11, the clinical significance of  
the genetic variation of  ABCC1 is not sufficiently docu-
mented, and therefore further functional studies should 
be carried out to confirm these preliminary observa-
tions[216]. There are several rare variants of  ABCC1, which 
may potentially affect the transport function, but the 
low frequency of  occurrence of  these alleles hinders un-
equivocal conclusions regarding their clinical significance 
in pharmacotherapy of  CPT-11[221-224]. Similarly, there is 
insufficient evidence regarding the effect of  the polymor-
phisms in the gene expression of  ABCC1 measured by 
mRNA levels in lymphocytes or duodenal enterocytes[225]. 

In vivo tests on animals showed that the biliary excre-
tion of  CPT-11 carboxylate and SN-38 carboxylate, and 
both the lactone and carboxylate forms of  SN-38G was 

one ABCB1 1236T-2677T-3435T haplotype responded 
to treatment compared with others (43% vs 67%, P = 
0.027)[219]. Given the conflicting results obtained in earlier 
research on the impact of  genetic variants of  ABCB1 
on the effectiveness of  CPT-11 therapy[179,210,216-218], the 
conclusions presented by Glimelius et al[219] need to be 
confirmed in in vivo studies in a larger population. 

Several in vitro studies have shown that ABCC1/
MRP1 is involved in the transport of  CPT-11 and 
SN-38. The ABCC1 transporter is responsible for the 
efflux of  SN-38 from the hepatocyte into the interstitial 
space[220]. Polymorphisms 462C>T, 1684T>C, 4002G>A, 
14008G>A, 34215C>G, IVS9+8A>G, IVS30+18A>G, 
IVS11-48C>T and IVS18-30C>G in the ABCC1 gene 
have been identified[210,216]. Two SNPs of  ABCC1, 
1684T>C and IVS18-30C>G, are responsible for differ-
entiated pharmacokinetic phenotypes of  CPT-11 as mea-
sured by the AUC values for its metabolites: APC and 
SN-38G/SN-38. Polymorphism 1684T>C contributes 
to an increase in AUC value for SN-38, and SNP IVS11-
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lower in ABCC2-deficient rats[226]. Moreover, the impact 
of  gene polymorphisms ABCC2/MRP2 on the bioavail-
ability of  CPT-11 has been described. Innocenti et al[192,227] 
examining a group of  64 cancer patients showed that 
the silent polymorphic variant 3972T>C was associated 
with the AUC value of  CPT-11 (P = 0.02), for APC (P 
< 0.0001) and for the APC/CPT-11 ratio (P < 0.0001). 
Kitagawa et al[228] also studied the effects of  gene SNPs 
of  ABCC2 on the toxicity of  CPT-11 therapy. However, 
in the 120 Japanese patients studied, there was no asso-
ciation between genetic variants 1249G>A, or -24C>T 
gene ABCC2 and the incidence of  severe complications 
after treatment with CPT-11[228].

There are many studies confirming the important role 
of  protein ABCG2/BCRP in the transport of  CPT-11 
and its metabolites. Scientific evidence supports the 
proposition that overexpression of  ABCG2/ABCG2 
leads to the development of  drug resistance in tumour 
cells against drugs that are derivatives of  camptothecin 
such as topotecan[229], CPT-11 and SN-38[230-233]. Several 
possible mechanisms were described which may con-
tribute to drug resistance conditioned by the activity of  
gene ABCG2, such as: demethylation of  CpG islets in 
the ABCG2 promoter resulting in increased gene tran-
scription[234], gene amplification[235], and truncation at 
the 3’UTR of  the ABCG2 mRNA, which is associated 
with a loss of  the miRNA-159c binding site conferring 
higher mRNA stability[236]. Furthermore, it has recently 
been demonstrated that the ABCG2 mRNA content of  
liver metastatic tumour cells from CRC patients treated 
with CPT-11 is higher than that from CPT-11-naive 
patients[207]. Cha et al[237] suggested that the presence of  
introning SNP in gene sequence ABCG2 (rs2622604) 
may contribute to changes in transport protein activity 
which can effect the increase in CPT-11 concentration in 
cells. This may lead to an increased risk of  severe myelo-
suppression (grades 3 and 4) in patients with this genetic 
variant[237]. The same research team also identified an-
other SNP (rs3109823), which like the previous one had 
a strong association with severe myelosuppression[237]. 
Following this study, Poonkuzhali et al[238] showed that a 
polymorphic variant of  rs2622604 was associated with 
decreased expression of  ABCG2 measured by the level 
of  mRNA. These results support the hypothesis that pa-
tients who are carriers of  the rs2622604 negative variant, 
have in their livers, a low level of  SN-38 excretion to the 
bile which leads to the growth of  intracellular concentra-
tions of  SN-38 in hepatocytes. This, in turn, contributes 
to accumulation of  CPT-11/SN-38 in the blood and 
an increased risk of  severe myelosuppression. On the 
other hand, although described by Cha et al[237], another 
SNP rs3109823 showed a stronger association with my-
elosuppression than the variant rs2622604, and Poonku-
zhali et al[238] did not prove it had an effect on the gene 
expression level of  ABCG2.

Functional in vitro studies on the importance of  ami-
no acid substitution in the sequence of  protein ABCG2 
(Gln141Lys, 421C>A) have shown that it contributes 

to the reduction of  transport activity substrates such as 
mitoxantrone, topotecan, SN-38[239,240], and therefore can 
contribute to an increase in cell chemosensitivity[241,242]. 
There were also several in vivo studies published on the 
effect of  this polymorphism on the pharmacokinet-
ics of  CPT-11. de Jong et al[243] studied a group of  85 
patients diagnosed with solid tumours who received 
chemotherapy based on CPT-11. They reported greater 
accumulation of  SN-38 and SN-38 glucuronide in one 
of  two homozygous carriers of  the 421 variant alleles. 
However, the AUC of  CPT-11 (P = 0.72) and its active 
metabolite SN-38 (P = 0.67) did not differ significantly 
between patients carrying the wild-type sequence and 
patients carrying at least one variant allele[243]. Also, the 
results of  research published by Jada et al[244] confirmed 
the findings that there is no relationship between the 
presence of  genetic variants 421C>A gene ABCG2, and 
the change in the pharmacokinetics of  SN-38. Available 
results from this study suggest that the probable coexis-
tence of  SNPs other than 421C>A genetic variants [e.g., 
34G>A (Val12Met) and 1322G>T (Ser441Asn)] of  the 
gene ABCG2 may have some clinical implications for the 
pharmacology of  CPT-11. Furthermore, additional in 
vitro and in vivo studies are needed to better clarify the role 
of  the 34G>A polymorphism as this SNP is prevalent in 
many populations and there are many conflicting reports 
regarding the functional effects of  this polymorphism[245]. 
Systematic prospective studies with well-chosen and less 
heterogeneous groups of  patients should be conducted 
to provide more reliable evidence on the role of  gene 
polymorphisms of  ABCG2 on the pharmacokinetics of  
CPT-11. 

Organic anion-transporting polypeptide 1B1 (OAT-
P1B1, SLCO1B1), expressed on the basolateral mem-
brane in hepatocytes, has been reported to contribute to 
the hepatic uptake of  SN-38[246]. SLCO1B1 transports 
among others, CPT-11, SN-38 and SN-38G from blood 
to liver cells. Several polymorphic variants of  the gene 
SLCO1B1, among them SLCO1B1*1b (388A>G) and 
SLCO1B1*5 (521T>C), have been described. In vitro 
research on the haplotype SLCO1B1*15, which is a 
combination of  the SNPs, showed that it is responsible 
for a 50% reduction in the intracellular concentration of  
CPT-11, which may cause intra-individual variability in 
the toxicity of  this drug[246,247]. Another pharmacokinetic 
study revealed that CPT-11 clearance was 3-fold reduced 
and systemic exposure to CPT-11 was enhanced in pa-
tients with the SLCO1B1*15 haplotype[248]. The literature 
also describes the case of  a patient with severe toxic 
complications after CPT-11 treatment and the presence 
of  the haplotype *15[249]. The effect of  these SNPs and 
haplotype *15 on induction of  CPT-11 toxicity should 
be confirmed by further in vivo studies. Other studies on 
the toxicity of  CPT-11 and its effects on different genetic 
factors were carried by Takane et al[250]. By analysing three 
genetic variants of  UGT1A1*6, UGT1A1*28 and SL-
CO1B1*15 a strong correlation was found between the 
presence of  these alleles and excessive accumulation of  
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SN-38, which resulted in severe toxic complications ob-
served with the use of  CPT-11.

In summary, it can be stated that frequent polymor-
phisms in genes encoding ABC and SLC transporters can 
have a significant impact on changes in the pharmacoki-
netics and pharmacodynamics of  CPT-11. However, the 
practical application of  previously published results will 
require additional study in vivo including CRC patients.

Topoisomerase Ⅰ , DNA repair genes and cell cycle 
regulation
There is substantially less knowledge on CPT-11 pharma-
codynamics, including DNA damage repair or cell death 
pathways, following the formation of  camptothecin-
TOPⅠ-DNA complexes[251]. SN-38 is an inhibitor of  
topoisomerase Ⅰ (TOPⅠ) an enzyme that prevents the 
unfolding of  DNA during transcription and replication. 
Scientists studying cancer cells which exhibited resistance 
to CPT-11, found that a possible cause of  low sensitivity 
to the drug may be associated with the presence of  mu-
tations or low TOP1 gene expression[252,253]. The impact 
of  the presence of  different genetic variants of  TOP1 
gene expression was described, which may be a cause of  
primary drug resistance[254]. Genetic variation in the drug 
target of  SN-38, as well as in cellular effectors responsi-
ble for DNA repair and apoptosis, are a potential source 
of  clinically observed inter-individual variability in the 
efficacy and toxicity of  treatment based on CPT-11[255]. 
Knowledge of  the causes of  drug resistance leading to 
CPT-11 treatment failure, provides the opportunity to 
better plan treatment and to predict the effects of  therapy 
for an individual patient. The activity of  numerous genes 
and proteins[155,255] and a mutual network of  connections 
between various intracellular pathways are responsible for 
the phenotype of  sensitivity to CPT-11. The molecular 
factors involved in CPT-11 pharmacodynamics may in-
clude: drug target-TOPⅠ, cell cycle division 45-like pro-
tein (CDC45L), nuclear factor-κB (p50 subunit; NFκB1), 
poly (ADP-ribose) polymerase Ⅰ (PARP1), tyrosyl DNA 
phosphodiesterase (TDP1), and X-ray cross complemen-
tation factor (XRCC1)[256-260].

XRCC1 plays a key role in base excision repair by 
forming a complex with DNA repair proteins including 
PARP1 and DNA polymerase b[261]. Hoskins et al[251] stud-
ied a group of  107 (European) patients with advanced 
CRC, treated with CPT-11. They conducted an analysis 
of  the impact of  genetic variant 1196G>A (Arg399Gln) 
of  the gene XRCC1 on the efficacy of  CPT-11 therapy. 
They found that patients who demonstrated a favoura-
ble response to treatment more commonly had the gen-
otype 1196GG variant allele than 1196T (genotypes GA 
or AA) (46% vs 26%, P = 0.10). Patients homozygous 
for an XRCC1 haplotype (GGCC-G) were more likely 
to show an objective response to therapy than other 
patients (83% vs 30%, P = 0.02). This effect was also 
confirmed in a multivariate analysis (OR = 11.9, P = 
0.04)[251]. A possible explanation for these findings is that 
the presence of  the allele in the 1196G gene sequence 

XRCC1 conditioning the presence of  arginine in the 
protein sequence XRCC1 (399ARG) leads to weaker DNA 
repair capacity, as compared with 1196A (399Gln). How-
ever, these findings, derived from in vivo studies, have 
not been confirmed in numerous in vitro studies, which 
unanimously showed that the presence of  glutamine 
in codon 399 was associated with a reduced ability to 
repair DNA as assessed by the persistence of  DNA 
adducts, elevated levels of  sister chromatid exchanges, 
increased RBC glycophorin A, TP53 mutations, and 
prolonged cell cycle delay[262]. Hoskins et al[251] also inves-
tigated the effect of  the gene variant IVS4+61 TOP1 on 
the frequency of  severe neutropenia (grade 3/4). The 
cause of  the differences observed in vivo in the toxicity 
of  CPT-11 therapy and the frequency of  different vari-
ants of  the TOP1 gene, can be related to the stability 
of  complexes SN-38-TOPⅠ-DNA in bone marrow 
cells, which may lead to greater sensitivity and increased 
bone marrow toxicity. Furthermore, Hoskins et al[251] 
found that patients who are carriers of  the homozygous 
CC gene haplotype PARP1 (with SNPs combination 
852T>C-IVS19-297C>T) often suffer toxic effects due 
to CPT-11 treatment in comparison to patients with 
different arrangement of  alleles in this haplotype. This 
observation suggests that the presence of  the haplotype 
852C-IVS19-297C is related to decreased DNA repair 
capacity by PARP1 protein, leading to increased loss of  
bone marrow cells and symptoms of  neutropenia as a 
result of  the cytotoxic effect of  CPT-11[251]. 

In vitro research using colon/colorectal carcinoma cell 
lines, showed that there is a link between the presence 
of  functional aberration in p53 and phenotype hyper-
sensitivity to camptothecins[263-266], whereby some of  the 
experimental test models showed only moderate cellular 
sensitivity[267]. Moreover, HT-29 colon carcinoma cells 
characterized by mutations in p53 had a much higher 
sensitivity to CPT-11 than control cells expressing wild-
type p53[268]. Also, experiments with cell clones derived 
from tumour tissues with evidence of  impaired activity 
of  p53 showed that the apoptosis induction path is an 
important determinant of  sensitivity to camptothecins. 
On the other hand, p53 is required for targeting apop-
totic proteins in the sensitization of  colon carcinoma to 
TNF-related apoptosis-inducing ligand (TRAIL) pathway 
therapy using CPT-11[269]. Most experimental data show 
that the initiation of  apoptosis resulting from exposure 
to camptothecins is much weaker for cells with wild-
type p53 compared with mutated p53. Tomicic et al[270] 
proposed that the phenotype conditioned by wild-type 
p53, formed in the presence of  CPT-11 complexed with 
DNA and TOPⅠ is degraded more easily, leading to the 
reduced DNA transcription/replication effect of  camp-
tothecins and contributes to the development of  drug re-
sistance. In cells lacking functional p53, TOP1-cc (TOP1-
cleaved DNA 3’-phosphotyrosyl intermediates referred 
to as cleavable complexes) is not efficiently degraded 
upon transcription stalling, thus TOP1-linked single-
strand breaks accumulate, which may interfere with DNA 
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replication. p53 defective cells are, due to lack of  p21 ex-
pression, only transiently arrested in G2, having no time 
to repair excessive camptothecin-induced replication-
dependent double-strand breaks (DSB), thus undergoing 
mitotic cell death accompanied by apoptosis[270]. 

Malfunction of  DSB repair mechanisms is essential 
for the survival of  cancer cells and is one of  the major 
reasons why these cells avoid the cytotoxic effects of  
camptothecin derivatives. Therefore, it seems reasonable 
to state that cells with a compromised DSB repair mech-
anism may have greater susceptibility to therapy based 
on camptothecins. The main paths of  the DSB repair 
mechanisms include homologous recombination (HR) 
and non-homologous end-joining (NHEJ). Mutations in 
genes RAD51, XRCC2, BRCA2, RAD54 and MUS81 
involved in HR contribute to the hypersensitivity of  cells 
exposed to camptothecins because the protein products 
of  these genes are essential for proper functioning of  
the HR pathway in S and G2 phases of  the cell cycle[270]. 
The results indicate that DSB induced in cells by deriva-
tives of  camptothecin are repaired either by NHEJ or 
HR[270-272]. As HR requires replication it might even be 
the predominant route of  defence against the killing ef-
fects of  camptothecins that require replication to elicit 
cytotoxicity[270]. In conclusion, the decisive role in the 
creation of  phenotype drug resistance to CPT-11 is the 
status of  p53, the degree of  degradation of  the TOPI 
complex from DNA, DSB repair by HR on stalled rep-
lication forks, and downstream pro- and anti-apoptotic 
pathways, while the NHEJ pathway seems to be much 
less important[270].

OX
Within the last 40 years, a few thousand platinum deriva-
tives have been synthesised and tested with regards to 
their anti-cancer activities. Among these compounds, the 
most interesting ones seem to be those discovered in the 
early 70s, such as derivatives of  the 1, 2-diaminocyclohex-
ane (DACH) carrier ligand that are non-cross-resistant 
with cisplatin. In the last two decades, many scientists 
searching for new and effective cytostatic medicines di-
rected their research efforts towards this platinum deriva-
tive group. Interest in the DACH group compounds is 
associated with their beneficial properties in comparison 
with other platinum derivatives such as cisplatin or carbo-
platin. Not only do DACH compounds demonstrate less 
nephrotoxicity (as opposed to cisplatin) and myelosup-
pression (as opposed to carboplatin), but they also have 
higher efficacy in cancer which proved to be resistant to 
treatment with cisplatin. Research results in both cell lines 
and in vivo observations prove that the efficacy of  DACH 
compounds, in comparison to cisplatin and carboplatin, 
may be related to breaking inner resistance to these cy-
tostatics. The significant cytostatic activity of  OX was 
proved during tests on several human cancer cell lines 
and is believed to be the most important platinum deriva-
tive from the DACH group[273,274]. 

Combination therapy with 5-FU/LV plus OX (FOLF-
OX) is currently a standard in treating gastric cancer and 
CRC with a 40% positive response ratio during first 
relapse therapy[275]. Despite the efficiency of  combined 
therapy, a high percentage of  patients show drug resis-
tance to a higher or lower degree, which suggest that the 
therapeutic efficiency of  FOLFOX is characterised by 
high variability. Since approval of  the clinical application 
of  OX in the treatment of  patients with advanced CRC 
in 1999 in Europe and then in 2004 in the United States, 
access to data concerning OX pharmacology has grown 
significantly. In preclinical studies, OX showed activity 
towards colon cancer cell lines characterised by primary 
and acquired resistance to cisplatin[132]. Also, in many oth-
er experimental models with a phenotype of  resistance to 
cisplatin it was shown that the sensitivity/drug resistance 
profiles of  both platinum derivatives were different[276]. 

Resistance to platinum compounds, as is the case 
with other cytotoxic compounds, is multi-factorial and 
individual platinum derivatives have different degrees of  
cross-resistance. Generally, in the majority of  studies of  
experimental cancers, carboplatin has cross-resistance 
with cisplatin, but not with OX. On the basis of  numer-
ous studies, six major cell drug resistance mechanisms 
towards platinum derivatives, have been identified[277,278]. 
Processes connected with transporting to and from cells 
could be included here, as they contribute to lower in-
tracellular drug concentration. Also, an increase in drug 
detoxication may be of  importance (e.g., increased con-
centration of  sulphydril-containing molecules or activity 
of  metabolic enzymes) or an increase in the quenching 
of  DNA monoadducts. Lastly, in the cells with resistance 
to platinum compounds, a system of  recognition and/or 
DNA damage repair may malfunction[279].

Intracellular drug accumulation
Membrane transporters and channels, collectively known 
as the transporters, are some of  the best known factors 
determining chemosensitivity and drug resistance and 
the history of  research into their significance in anti-
cancer therapy dates back to the beginning of  scientists’ 
interest in the causes of  chemotherapy failure[280]. Only 
a small group of  the known transporters have been 
recognised as relevant for intracellular accumulation of  
platinum derivatives. There is a broad review concerning 
membrane transporters and channels that can be found 
in the publications of  Choi and Kim[281], Hall et al[282] and 
Liu et al[283].

Potential platinum uptake or influx transporters 
include copper transporter (CTR) proteins[284], organic 
cation transporters (OCTs) belonging to the SLC22 fam-
ily[285] and an undefined cis-configuration specific plati-
num influx transporter[286]. In addition, some outward-
directed drug transporters facilitating the active efflux 
of  platinum compounds have been linked to decreased 
accumulation of  platinum compounds and include ad-
enosine triphosphate (ATP) binding cassette (ABC) mul-
tidrug transporters[287], and copper-transporting P-type 
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Figure 8  Intracellular drug accumulation. The free fraction of oxaliplatin is biotransformed non-enzymatically and subsequently forms complexes with chloride, glu-
tathione (GSH), methionine (Met) and cysteine (Cys). Oxaliplatin undergoes non-enzymatic conversion in physiologic solutions to active derivatives via displacement 
of the labile oxalate ligand. Several transient reactive species are formed, including monoaquo DACH (1,2-diaminocyclohexane) platinum [Pt(H2O)Cl(DACH)]+ and 
diaquo DACH platinum [Pt(H2O)2(DACH)]2+, which covalently bind with macromolecules. There is no evidence of cytochrome P450-mediated metabolism in vitro. The 
major route of platinum elimination is renal excretion. The main mechanism of action is mediated through the formation of DNA adducts which is thought to be related 
to the anti-tumour effects of oxaliplatin. An important factor is the induction of apoptosis by the primary DNA-Pt lesions, which is possibly enhanced by the contribution 
of targets other than DNA. Several influx and efflux transporters such as organic cation transporters (OCTs) 1, 2 and 3 (SLC22A1, SLC22A2 and SLC22A3), copper 
efflux transporters (CTRs), P-type ATPases, ATP7A and ATP7B have been identified, which may play an important role in determining tumour sensitivity and/or resis-
tance to oxaliplatin[408]. 
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adenosine triphosphatases (ATPases) (Figure 8). Insuf-
ficient intra-tumour concentration of  platinum com-
pounds is a critical factor determining both primary and 
secondary resistance. Lowered inflow and/or increased 
activity of  outward-directed cellular transport is a fre-
quent phenomenon in clones of  chemoresistant cancer 
cells[280] exposed to cisplatin, OX[288] and carboplatin. 
However, currently, it is not quite clear whether and to 
what degree transporters help maintain therapeutic plati-
num concentrations in cancer cells, thus playing a crucial 
(clinically relevant) role in sensitivity and cell resistance 
to platinum derivatives[283]. During the last 15 years, a 
series of  clinical studies have been designed to establish 
the connection between efficiency of  chemotherapy 
based on OX and the level of  expression of  membrane 
transporters in both cancer cells and in healthy tissue. 
These studies of  transporters including ATP7A, ATP7B, 

ABCC2, ABCG2, ABCB1, OCT2 and CTR1 are detailed 
below and summarized in Table 4.

The first clinical studies concerning the dependency 
between the results of  treatment with platinum com-
pounds in cancer chemotherapy and the expression of  
transporter concerned the P-type copper transporting 
ATPases ATP7A and ATP7B. In a study of  50 patients 
with an advanced stage of  CRC and treated with 5-FU/
LV/OX (FOLFOX) a correlation was observed between 
resistance and the level of  expression of  these transport-
ers[289]. ATP7A and ATP7B involved in the sequestration 
and extrusion of  copper from a compartment localized 
within the trans-Golgi network to the plasma membrane, 
have also been implicated in the efflux of  platinum com-
pounds[290]. While examining their CRC patients, Marti-
nez-Balibrea et al[289] showed that low expression of  the 
ATP7B gene measured by its level of  mRNA was linked 

Table 4  Selected common polymorphisms of MDR1 , GSTP1, ERCC1, ERCC2, XRCC1 genes and their potential impact on 
functioning of proteins related to OX pharmacology

dbSNP rs cluster ID Type of 
polymorphism

Function Ref.

Multidrug resistance 1 (MDR1, ABCB1) (OMIM #171050)
   rs1128503 SNP [152,296,318,485]

1236C>T Synonymous, effect unknown
   http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 1128503 
   rs2032582 SNP [152,296]

2677G>T/A Ser893Ala or Ser893Thr, the GG genotype carriers have the highest while the 
AT genotype carriers have the lowest levels of ABCB1 expression

   http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 2032582 
   rs1045642 SNP [152,296,350,485]

3435C>T Synonymous, TT genotype carriers have lower intestinal ABCB1 expression
   http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 1045642 
Glutathione S-transferase π (GSTP1) (OMIM #134660)
   rs1138272 SNP [311,477]

341C>T Ala114Val, altered enzyme kinetics, altered toxicity
   http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 1138272 
   rs1695 SNP [51,180,311-329,467,477]

313A>G Ile105Val, decreased enzymatic activity, altered toxicity
   http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 1695 
Excision repair cross-complementation group 1 (ERCC1) (OMIM #126380)
   rs11615 SNP [51,313,344,345,357,486]

354T>C Synonymous, decreased transcriptional activity of ERCC1
   http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 11615
   rs3212948 SNP [487]

321+74C>G Intronic SNP (intron 2), protective effect of the C allele to cancer risk
   http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 3212948 
Excision repair cross-complementation group 2 (ERCC2, XPD) (OMIM #126340)
   rs13181 SNP [51,313,336,337,350,351,353,

356,357,486]2251A>C Lys751Gln, the Gln allele is associated with a higher DNA adduct level or lower 
DNA repair capacity 

   http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 13181 
   rs1799793 SNP [313,336,337,353]

862G>A Asp312Asn, lower DNA repair capacity for the Asn allele than the Asp allele
   http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 1799793 
X-ray cross complementation factor (XRCC1) (OMIM #194360)
   rs25487 SNP [51,313,349,350,361-364,486]

1196A>G Arg399Gln, reduced base excision repair function for Gln allele than the Arg 
allele

   http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs = 25487

SNP: Single nucleotide polymorphism.
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with significantly longer TTP (P = 0.0009) as opposed 
to the group of  patients with a higher level of  mRNA 
(12.14 mo vs 6.43 mo) who also had a greater risk of  dis-
ease progression (HR = 3.56, P = 0.002). Furthermore, 
patients with both a low level of  mRNA and ATP7B 
protein noted, had the longest TTP and benefitted from 
FOLFOX therapy most, as opposed to patients with a 
high level of  mRNA and protein (14.64 mo vs 4.63 mo, 
respectively, P = 0.01)[289].

Various multidrug resistance-associated proteins 
(MRPs) belonging to the ABCC subfamily of  ABC efflux 
transporters have been implicated in mediating resistance 
to platinum compounds[291]. Cancer cells resistant to plati-
num compounds are able to remove OX metabolites that 
are coupled with glutathione (GSH) into the intracellular 
environment via ATP transport dependent on hydrolysis 
through biological membranes[292]. On the basis of  the 
above mechanism, it may be assumed that GHS acces-
sibility and the effectiveness of  conjunction with GHS 
are the key factors for the development of  such resist-
ance towards OX. Beretta et al[293] stated that some of  
the superfamily ABC transporters (ABCC1/MRP1 and 
ABCC4/MRP4) had significant expression in ovarian 
cancer cells with secondary OX resistance. Overexpres-
sion of  ABCC1 or ABCC4 in cancer cell lines derived 
from ovarian cancer cells was connected with resistance 
to cisplatin and OX. The above results prove that the de-
velopment of  OX resistance is induced by the activity of  
MRP proteins, and it may be conducive to use cytostatics 
other than platinum derivatives that are not substrates of  
ABCC1 or ABCC4[293] in patients with relapsing cancer 
previously treated with OX. Furthermore, in other re-
search it was observed that administering 5-FU inhibits 
the expression of  ATP7B and human organic cation 
transporter 2 (OCT2) with a simultaneous 5.8-fold in-
crease in the level of  mRNA for the ABCC2 gene (MRP2) 
coding another transporter from ABCC[294]. Theile et al[294] 
proposed as one mechanism for FOLFOX synergism, 
the 5-FU mediated suppression of  ATP7B, the over-
expression of  glutathione exporters such as MRP2 and 
the decrease in glutathione levels by the OX metabolite 
oxalate.

In studies of  another transporter from the super-
family of  ABC - ABCG2/BCRP it was found that over-
expression may be a negative marker of  OX therapy 
effectiveness[294]. Lin et al[295] tested the level of  expres-
sion of  protein ABCG2, measured by the IHC method, 
in a group of  patients with CRC both in the primary 
and metastatic cancer tissue. They observed that lower 
expression of  ABCG2 was noted more frequently in 
patients with better response to FOLFOX therapy than 
in patients with higher protein expression (63.6% vs 
9.5%, respectively). Moreover, it was found that in the 
majority of  cases the level of  ABCG2 expression was 
higher in tissue derived from metastatic tissue than from 
primary tumours[295]. Therefore, Lin et al[295] concluded 
that ABCG2 expression is related to response to therapy 
based on FOLFOX among patients with metastatic CRC 

and that ABCG2 may be a selective marker in predicting 
the effectiveness of  FOLFOX. 

Wu et al[296] evaluated the influence of  SNPs of  
ABCB1/MDR1 gene (1236C>T, 2677G>T/A and 
3435C>T) on the outcome of  treatment in CRC patients 
treated with OX-based therapy. Carriers of  the 1236C>T 
variation of  the ABCB1 gene had longer OS follow-
ing post-operative OX therapy. Additionally, carriers of  
the 1236TT-2677TT-3435TT genotype combination had 
worse PFS (P = 0.043) and recurrence-free survival (P = 
0.006)[296]. On the other hand, Yue et al[297] showed that 
SNPs of  the ABCB1 gene were not pharmacogenetic 
factors which determined prognostics for chemosensitiv-
ity to OX-based therapy in CRC patients.

The SLC22 family of  transporters includes several 
subgroups of  proteins classified on the basis of  posi-
tion and transporting mechanisms. The subgroup of  
organic cation transporters (OCTs) consists of  only 
three members: SLC22A1 (OCT1), SLC22A2 (OCT2) 
and SLC22A3 (OCT3)[285]. Currently, we have a limited 
range of  accessible data concerning the connection be-
tween genetic variations and the level of  OCT1 or OCT2 
expression in tumour tissue and the results of  treatment 
after administering therapy based on platinum derivatives. 
It is, however, postulated that these transporters may be 
of  potential clinical importance as predictive markers. 
In an experimental model using transfected cells it was 
noted that the expression of  the OCT1 gene significantly 
increased intracellular OX accumulation[298]. On the other 
hand, research results showed that OX is an excellent 
substrate for OCT2[298,299]. Zhang et al[298] showed that in 
transfected HEK293-hOCT2 cells, the amount of  ac-
cumulated OX was 23.9-fold greater than that in control 
cells. Whereas, in the presence of  cimetidine, which is an 
OCT2 inhibitor, the amount of  accumulated OX was sig-
nificantly lower. They also stated that in the transfected 
cells, the cytotoxic effect significantly increased following 
treatment with OX compared with control cells[298]. It is 
thought that OCT2 expression may modulate the sensi-
tivity of  CRC cells to OX. It is also postulated that the 
level of  OCT2 expression may condition drug resistance 
in CRC patients treated with therapy based on a scheme 
including platinum[298]. However, the results of  the above 
studies are not fully credible as while testing OCT2 ex-
pression in tissue, it was noted that a positive result was 
obtained in 11 of  20 tissue samples from patients with 
colon cancer, while a negative effect was obtained in 4 
healthy tissue samples[300]. In contrast, all colon cancer cell 
lines investigated for transporter gene expression were 
found to lack OCT2 mRNA expression[298,300]. Therefore, 
it is worth stressing that if  a significant role of  OCT2 
was proved to mediate transport of  platinum derivatives 
in pre-clinical studies[298], the results of  clinical studies do 
not confirm this observation. 

The role and significance of  copper influx and trans-
porters efflux (CTRs) in cell accumulation of  platinum 
compounds has been widely discussed in the litera-
ture[284,301,302]. CTR1 is an important transporting protein 
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that is responsible for regulating copper concentrations, 
ensuring the biological balance of  copper ion concentra-
tion. When the copper concentration is too low this leads 
to deactivation of  enzymatic systems dependent on cop-
per ions, whereas when the concentration is too high it 
causes cell toxicity[303]. Holzer et al[304] put forward a thesis 
that CTR1 plays an important role in OX accumulation 
only when exposed to a relatively low concentration (2 
μmol/L) and does not have any relevance at higher OX 
concentrations. Furthermore, it is postulated that intrac-
ellular OX concentration is less dependent on the trans-
porting activity of  CTR1 than that of  other platinum 
derivatives, e.g., cisplatin and carboplatin. Additionally, it 
was shown that similar to CTR1, CTR2 may also have 
analogical properties as a cisplatin and carboplatin con-
centration regulator and possibly OX as well[305]. Further 
in vivo research confirming the above hypotheses is neces-
sary. 

Clinical studies concerning transporters for platinum 
derivatives have concentrated on evaluation of  the con-
nection between intratumour expression of  certain trans-
porters and the results of  treatment after chemotherapy 
based on platinum derivatives. The results of  these stud-
ies are not completely certain due to many limitations. 
One of  these limitations is the lack of  functional research 
into transporting activity as accessible data focus on gene 
or protein expression using methods such as RT-PCR 
or IHC, respectively. Generally, correlations observed 
in the research were not supported by the analysis of  
pharmacokinetic variables in relation to accumulation of  
platinum derivatives in the tumour tissue, and the size of  
individual groups was small. Furthermore, it is necessary 
to conduct in vivo research into the meaning of  genetic 
variability of  membrane transporters and channels for 
gene expression and their influence on the pharmacoki-
netics and effectiveness of  OX-based therapy. 

Glutathione S-transferases 
The phenotype of  resistance to platinum derivatives may 
be dependent on the variable activity of  detoxification 
channels. In the cytoplasm, platinating agents become ac-
quated, which then enables them to react with thiol-con-
taining molecules, including GSH and metallothioneins 
(Figure 8). In the cell, GSH plays the role of  antioxidant 
which helps maintain a reductive intracellular environ-
ment by coupling oxidated particles with sulphydryl 
groups. It is assumed that high GSH concentration and/
or metallothionein may cause deactivation of  platinum 
compounds before they have a chance to interact with 
DNA in the nucleus (it is estimated that only 1% of  the 
dosage that enters the cell stands a chance of  bonding 
with nuclear DNA[306]) to quench Pt-DNA monoadducts 
before conversion to more lethal diadducts, or the ef-
flux of  Pt-glutathione conjugates[307,308]. There is ample 
evidence to show that glutathione S-transferers (GSTs) 
belonging to the superfamily of  dimeric enzymes of  the 
second metabolism phase are responsible for a differen-
tial sensitivity profile towards anticancer drugs, includ-

ing platinum derivatives[309]. GSTs are coded by genes 
belonging to at least five main groups: α (GSTA1), μ 
(GSTM1), π (GSTP1), σ (GSTS1) and θ (GSTT1). Many 
of  these genes have genetic polymorphisms that influ-
ence their transcription and/or enzymatic activity of  the 
proteins coded by them[310]. One of  the isoenzymes from 
the GSTs family - GSTP1, has high expression in CRC 
tissues and partakes in detoxication processes of  plati-
num derivatives, therefore, it may be a source of  drug 
resistance in some patients treated with therapy based on 
cytostatics that are platinum analogues. The published 
research suggests a connection between some of  the 
polymorphic variables of  GSTP1 gene and the increase 
in effectiveness of  anticancer therapy[51]. 

Two major polymorphisms in GSTP1 - 313A>G 
(Ile105Val) and 341C>T (Ala114Val) - induce amino 
acid changes in the electrophile-binding active site of  the 
enzyme[311]. SNP 313A>G, responsible for substitution 
of  isoleucine through valine in codon 105 (Ile105Val) 
causes lowered enzymatic activity of  GSTP1[312]. There 
are a few clinical studies available which refer to the influ-
ence of  this polymorphism on the frequency of  occur-
rence of  toxic effects due to FOLFOX or IROX therapy 
(CPT-11/OX) in patients with metastatic CRC[180,313,314]. 
McLeod et al[180] state that in a group of  patients treated 
with FOLFOX, who were homozygous for the 105Val 
variation, treatment discontinuation was more frequent 
due to symptoms of  neurotoxicity (P = 0.01). However, 
the necessity to discontinue therapy was not dependent 
on the frequency of  occurrence of  individual genotypes 
in groups treated with other combinations (IROX or 
capecitabine/OX). Most probably, the presence of  the 
313GG genotype is connected with significant lowering of  
the catabolic activity of  GSTP1 than it is the case of  al-
lele 313A carriers (genotypes 313AG or 313AA), which leads 
to increased OX accumulation and thus a greater risk of  
3rd degree neurotoxicity[313,314]. On the other hand, Inada 
et al[315], while examining CRC patients, demonstrated that 
genotype 313AA carriers were more likely to develop early 
OX-induced grade 1 peripheral neurotoxicity than pa-
tients with 313G alleles (313AG or 313GG), but they did not 
observe a connection between the frequency of  these ge-
netic variations and the risk of  grade ≥ 2 neurotoxicity. 
In addition, the results of  other research did not confirm 
the existence of  SNP 313A>G dependence and neuro-
toxicity of  OX therapy[316-321]. 

As replacing isoleucine with valine (Ile105Val) leads 
to a lowering of  the cell’s ability to protect itself  against 
cytotoxic factors, this polymorphism may contribute to 
an increase in chemosensitivity to OX[312]. A few clinical 
studies showed that patients with the 313GG genotype 
benefitted more from combined therapy including OX 
than patients with the 313A allele[51,322-324]. However, three 
recently published studies on the efficiency of  FOLFOX 
in patients with advanced CRC, on the basis of  genotyp-
ing GSTP1 gene for SNP 313A>G, showed no connec-
tion between the presence of  the allele and PFS[313,321,325]. 
Ye et al[326] performed a systematic analysis of  five clinical 
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which contribute to the changes in activity measured by 
the level of  mRNA[335] and ERCC2 SNPs 312G>A gene 
(Asp312Asn), and 2251T>G (Lys751Gln) are recognised 
as determinants of  suboptimal activity of  the DNA re-
pair system[336,337]. Study results suggest that ERCC1 is a 
potential predictive marker of  response to therapy based 
on platinum compounds due to the fact that low ERCC1 
expression is connected to cancer cells’ sensitivity to che-
motherapy with those drugs[34,338-340].

Shirota et al[34] were the first research group to study 
the influence of  ERCC1 gene expression on the results 
of  treatment in 50 patients with advanced stage CRC and 
the phenotype of  resistance in those treated with 5-FU/
OX. They stated that patients with high intra-tumour 
ERCC1 expression measured by mRNA level had shorter 
survival time than patients with a lower level of  expres-
sion (P = 0.008)[34]. Uchida et al[341], while examining 91 
patients treated with a combination of  capecitabine/OX 
stated that a high mRNA level for the ERCC1 gene was 
associated with shorter time to treatment failure com-
pared to patients with lower expression (P = 0.046). In 
another study, low expression of  the ERCC1 gene was 
also associated with better response to both primary (P 
= 0.047) and secondary chemotherapy, although in the 
latter case this association was on the verge of  statistical 
relevance (P = 0.054). Furthermore, high expression of  
the ERCC1 gene was related to shorter OS in primary 
therapy (P = 0.014)[342]. The above results from clinical 
studies support the hypothesis put forward at the begin-
ning regarding the influence of  ERCC1 gene expression 
on the results of  treatment with platinum derivatives, 
whereas a high level of  mRNA may be the cause of  clini-
cal resistance to OX.

The literature also describes polymorphisms located 
in the ERCC1 gene sequence, one of  them being a silent 
SNP 354C>T (Arg118Arg). Although the mechanism 
through which this SNP influences the change in ERCC1 
activity is not fully known, it is postulated that AAC co-
don exchange on a rarely occurring AAT influences the 
effectiveness of  the translation process, however, for 354T 

allele, there is a decrease in protein expression of  about 
50%[343]. In two clinical studies of  patients with advanced 
CRC, it was observed that carriers of  the 354TT genotype 
had higher response rates to OX treatment[344] and longer 
PFS[345]. However, in five other studies, the survival time 
of  patients with CRC was longer in genotype 354CC car-
riers[51,313,314,339,346]. While examining 168 patients, Chang et 
al[346] showed that in a group with genotypes which includ-
ed allele 354T (354CT or 354TT), poorer treatment results 
were noted in comparison with those of  patients with 
genotype 354CC [in terms of  response (P = 0.01), PFS (P 
= 0.01) and OS (P = 0.01)]. Additionally, while evaluat-
ing the association between genetic variants 354C>T and 
protein expression determined by IHC, it was shown that 
a higher level of  expression was related to the presence 
of  allele 354T

[346]. In addition, Chen et al[314], while examin-
ing 166 patients, pointed out that carriers of  genotypes 
with at least one 354T allele were characterised by poor re-

studies[314,325,327-329] involving 415 CRC patients treated 
with OX. In this analysis, no dependence between the 
313A>G polymorphism and the level of  response to 
OX-based therapy (P = 0.13) was confirmed[326]. In order 
to put forward any definite conclusions concerning the 
predictive significance of  SNP 313A>G, it is necessary to 
carry out clinical research on a large group of  patients. 

Among the available clinical data, studies on copy 
number variations (CNV) of  GSTT1 and its potential 
influence on the toxicity of  OX-based therapy have been 
observed. While investigating CNV of  GSTT1, Goek-
kurt et al[330] found no statistically relevant dependence 
between genetic variables of  this gene and the frequency 
of  toxic effects due to therapy in patients with gastric 
cancer, although there was a trend showing that patients 
with the null variant were less likely to develop hemato-
logic toxicity. Two other clinical studies of  patients with 
metastatic CRC treated with OX did not confirm the 
hypothesis of  the potential influence of  CNV of  GSTT1 
on therapy toxicity[316,317]. It is necessary to conduct fur-
ther research which would clearly resolve the role of  
genetic GSTs variability in the development of  toxicity in 
CRC patients undergoing treatment which includes OX.

Nucleotide excision repair pathway (ERCC1, ERCC2, 
XRCC1) 
Blocking the process of  DNA replication using platinum 
derivatives by creating adducts with nuclear nucleic acid 
leads to the induction of  apoptosis and the death of  can-
cer cells[331,332]. The observed inter-individual variability 
in the ability to recognise and repair such DNA damage 
through the nucleotide excision repair (NER) pathway is 
one of  the factors that may influence the success of  OX-
based therapy. DNA strands are separated and a DNA 
residue containing the adducts is removed (Figure 9). The 
mechanism of  recognition and repair of  the damaged 
DNA fragments itself  is dependent on several factors. 
Lowered efficiency of  the DNA repair system may, in 
consequence, lead to the increased sensitivity of  cancer 
cells to therapy which includes platinum compounds[333]. 
excision repair cross-complementation group 1 (ERCC1) 
and ERCC2 protein [otherwise known as xeroderma 
pigmentosum group D (XPD)] are the two main com-
pounds of  the NER group that play a crucial role in 
regulation of  the activity of  other elements that are part 
of  the NER pathway. Together with xeroderma pigmen-
tosum group F (XPF) protein, ERCC1 is responsible 
for recognising these places in the DNA strand where 
adducts are located, whereas ERCC2 is a subunit of  hu-
man transcriptional initiation factor TFⅡH with ATP-
dependent helicase activity[334]. Considering the above, 
it may be assumed that functional SNPs in ERCC1 and 
ERCC2 genes may directly contribute to the phenotype 
sensitivity to platinum compounds, such as OX, through 
conditioning congenital suboptimal activity of  the NER 
pathway. For genes ERCC1 and ERCC2, there are several 
frequent and probably functional SNPs described, among 
them are 354C>T and 8092C>A in the ERCC1 gene, 
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sponse (P = 0.01) and shorter OS (P = 0.01). Park et al[339] 
also found a significant correlation between polymorphic 
variants in codon 118 and treatment outcome in 106 pa-
tients with advanced refractory CRC receiving 5-FU/OX. 
For patients with genotype 354CC, median survival time 
was 15.3 mo, while in a group of  allele 354T (354CT and 
354TT genotypes) carriers it was only 11.1 mo. 

Partially different from fluoropyrimidine genes previ-
ously described, the frequency of  these polymorphisms 
varied with race and may account for reduced response 
rates in Black patients compared with Caucasian pa-
tients, as expressed by Goldberg et al[347] and confirmed 
in more recent studies, as in the subgroup of  patients 
in the CAIRO study[110]. It is postulated that the differ-
ences in the observed associations and the strength of  
the correlations may be connected with inter-population 
differences in the frequency of  occurrence of  alleles and 
genotypes. For instance, the frequency of  occurrence of  
SNP 354C>T (Arg118Arg) in an East Asian population 
was much lower than that in other ethnic groups[340]. 

The presence of  allele 354T in the ERCC1 gene is 
connected with the change in the expression of  gene/
protein[339], while allele 2251G which is a variation of  the 
ERCC2 gene was described as having influence on a 
low number of  X-ray induced chromatic aberrations[336]. 
Carriers of  genotype 2251TT had a 7-fold greater risk of  
suboptimal repair of  DNA damage compared to car-
riers of  allele 2251G (genotypes 2251GG or 2251GT)[336]. 
It is postulated that patients who have both allele 354T 
(ERCC1) and 2251G (ERCC2) that are connected with 
a highly efficient detection system and DNA damage 
repair, may have resistance to OX, thus contributing to 
a worse prognosis. However, the results of  clinical stud-
ies do not confirm the above hypothesis. The 2251T>G 
(Lys751Gln) polymorphism did not show any relation 
with survival time compared with the frequency of  geno-
type dispersion in patients with gastro-oesophageal can-
cer[348,349] and CRC[350,351] who underwent treatment based 
on various platinum derivatives. Whereas, studies of  the 
synonymous SNP Arg156Arg (C>A) ERCC2 gene car-
ried out in patients with gastric cancer treated with OX 
showed that carriers of  A allele (genotypes CA or AA) 
were characterised by a higher response rate and longer 
TTP compared to patients with genotype CC[352]. A similar 
trend was observed in the studies by Park et al[353], who ex-
amined patients with metastatic CRC, and noted that the 
presence of  A allele contributed to better treatment re-
sponse and longer median survival compared to patients 
with different variants of  the ERCC2 gene. Functional 
studies confirmed the SNPs influence of  the ERCC1 
(354C>T) and ERCC2 (2251T>G) genes on the pheno-
type of  NER pathway efficiency[335,354,355]. In a study of  73 
patients treated with 5-FU/OX it was observed that in 
patients with the genotype 2251TT (751Lys/Lys) median sur-
vival time was 17.4 mo, while for carriers of  genotypes 
with the 2251G allele it was 12.8 mo (751Lys/Gln) and 3.3 
mo (751Gln/Gln) (P = 0.02)[353]. The influence on genetic 
variants of  the genes ERCC1 and ERCC2 was also stud-

ied in a group of  166 metastatic CRC patients who were 
treated with a combination of  5-FU/LV/OX (FOLF-
OX4)[356]. In the analysis of  associations between SNPs 
and the results of  treatment it was shown that the occur-
rence of  each of  the genotypes ERCC1-354TT, ERCC2-
2251AC and ERCC2-2251CC, independently of  each other, 
was related to shorter PFS. The median PFS was 11.2 
mo for patients without any of  the three genotypes, 9.8 
mo for those with one of  the high-risk genotypes, and 8 
mo for those with both the ERCC1-354TT and either ER-
CC2-2251AC or -2251CC genotypes (P = 0.002)[356]. In the 
meta-analysis published by Yin et al[357] it was shown that 
SNPs 354C>T (ERCC1) and 2251T>G (ERCC2) may 
be clinically useful in the evaluation of  treatment results 
in patients with gastric cancer and CRC who underwent 
treatment which included OX (FOLFOX or XELOX). 
However, as the authors of  this analysis emphasise, it is 
necessary to carry out wide and well-planned prospective 
clinical studies to clearly show the utility of  these markers 
in clinical practise[357]. 

Apart from studies which focused on the analysis 
of  individual determinants of  therapy efficiency such as 
SNPs, a joined analysis of  a few potential predictive fac-
tors in forecasting the effects of  chemotherapy in CRC 
patients was also carried out. Kim et al[358] assessed the 
expression of  proteins ERCC1, TS and GSTP1 using 
IHC for potential application in predicting the effects 
of  therapy in 70 patients with advanced stage CRC who 
underwent treatment with 5-FU/OX. They observed that 
positive expression occurred in 55.7% (ERCC1), 68.6% 
(TS) and 71.4% (GSTP1) of  the analysed cases. It was 
confirmed that a low level of  TS expression was related 
to better chemotherapy outcome (P = 0.009), however, 
in the case of  ERCC1 and GSTP1 proteins there was 
no statistically relevant association between the level of  
expression and efficiency of  treatment (P = 0.768, P = 
0.589, respectively). The median OS was significantly 
longer in patients with negative ERCC1 protein expres-
sion (P = 0.0474). Additionally, patients with positive 
expression of  both ERCC1 and TS had poorer OS (P = 
0.0017). Also, multi-variant analysis confirmed that posi-
tive expression of  ERCC1 and TS significantly influenced 
OS (HR = 1.72, P = 0.023), which justifies simultaneous 
clinical application of  the two markers for predicting the 
efficiency of  5-FU/OX therapy[358].

Apart from the NER pathway, the base pair excision 
repair pathway (BER) may also influence the efficiency 
of  therapy based on platinum derivatives. XRCC1 plays a 
key role in the BER pathway and it has been demonstrat-
ed that the Arg399Gln (1196A>G) substitution in the 
XRCC1 gene is associated with increased levels of  DNA 
damage markers[359]. This relatively frequently occurring 
polymorphism probably contributes to the change in 
XRCC1 protein conformation in the domain binding 
other elements of  the BER complex, which may lead to 
a decrease in the efficiency of  the DNA repair system. 
A deficiency in DNA repair pathways has been shown 
to confer resistance to several drugs, including platinum 
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compounds[360]. It was shown that the presence of  allele 
399Arg (1196A) is associated with better survival time in 
patients with gastric[349] and lung cancer[361] undergoing 
chemotherapy with platinum derivatives. Also, Suh et al[362] 
observed that better treatment outcomes in patients with 
metastatic CRC treated with FOLFOX occurred in those 
where the presence of  allele 399Arg (1196A) was noted. 
However, the results of  other clinical studies published 
in patients with advanced CRC and gastric cancer treated 
with OX, did not confirm the above observations[51,313,350]. 
Liang et al[363] attempted to analyse the influence of  both 
polymorphisms on genes engaged in DNA repair pro-
cesses: ERCC1 (354C>T) and XRCC1 (1196A>G). They 
studied a group of  113 patients diagnosed with meta-
static CRC who underwent chemotherapy that included 
OX. The analysis of  individual SNPs showed no signifi-
cant influence of  these polymorphisms on prediction of  
disease control rates (DCR) or OS (P = 0.662 and 0.631, 
respectively). However, while evaluating the influence of  
the combination of  both SNPs, a significant correlation 
between genetic variations of  ERCC1 (354C>T) and 
XRCC1 (1196A>G), DCR (P = 0.01) and OS (P = 0.001), 
were independently observed. This was the first study to 
prove the importance of  the clinical application of  genet-
ic determinants located in ERCC1 and XRCC1 genes in 
the selection of  patients with metastatic CRC who were 
expected to benefit most from OX-based therapy[363]. 
Subsequent results obtained by Stoehlmacher et al[364], 
who studied the influence of  Arg399Gln (1196A>G) 
polymorphism on the efficiency of  treatment with 5-FU/
OX in 61 patients with metastatic CRC, confirmed the 
significance of  this SNP as a predictive marker. Seventy-
three percent of  patients with the favourable 399Arg/Arg 

(1196AA) genotype responded to treatment, and patients 
who possessed at least one 399Gln (1196A) allelic polymor-
phism in XRCC1 were 5.2-fold more likely to fail 5-FU/
OX chemotherapy[364].

Among the available data, one clinical study con-
ducted a multivariate analysis of  a few of  the predictive 
factors described above in patients with refractory CRC 
who underwent treatment with the 5-FU/OX combina-
tion. Analysis of  multiple gene polymorphisms proved 
that the efficiency of  such therapy may be dependent on 
the presence of  two or more unfavourable variants for 
genes ERCC1, ERCC2, TYMS and GSTP1 as the carri-
ers of  these SNPs were characterised by a significantly 
shorter OS[51]. In summary, for the successful prediction 
of  the effectiveness of  a particular therapy, a few predic-
tive markers need to be applied where several cytostatic 
drugs are used in a combination therapy. 

MMR and apoptosis regulation
The cytotoxic effects caused by OX are stronger than 
those caused by cisplatin due to the result of  a stronger 
reduction in DNA damage[365]. Resistance to cytostatic 
platinum derivatives is probably the result of  variable 
functionality of  the proteins responsible for recognising 
damage resulting from Pt-DNA adducts[366]. MMR is a 

highly conserved, strand-specific repair pathway which 
is a multi-stage process initiated when DNA damage is 
recognised by specific proteins[367]. In many types of  can-
cer, various defects in activity of  these proteins are noted, 
particularly three proteins: MSH2, MSH6 and MLH1[368]. 
In a situation when MMR shows a deficit in activity, 
this results in the accumulation of  numerous types of  
DNA damage in the genome, which leads to MSI[369]. 
Experimental data have shown that MMR deficits are 
associated with resistance to the cytotoxic activity of  al-
kylating agents[370]. Studies of  DNA repair mechanisms 
after exposure to cisplatin showed that Pt-DNA adducts 
are recognised by the complex of  MMR proteins[371]. The 
MMR pathway is one of  the factors influencing cisplatin 
activity, which was proved by pre-clinical studies where 
cells with deficient activity of  proteins MLH1, MSH2 and 
MSH6 had the phenotype of  moderate resistance to cis-
platin, but remained sensitive to the cytotoxic activity of  
OX[276,372]. Interestingly, Pt-DNA adducts are recognised 
by MSH1 protein only when damage occurs after cells 
are exposed to cisplatin, but not when Pt-DNA adducts 
are created due to the influence of  OX[371,372]. Therefore, 
even though the MMR pathway is a key element in the 
mechanism of  DNA repair, this system seems not to 
recognise Pt-DNA adducts created following exposure 
to OX. Generally, it is assumed that if  attempts to repair 
Pt-induced DNA damage fail, this eventually leads to 
initiation of  apoptosis[373,374]. Adducts induced by OX 
do not activate JNK (JNK-c-Jun NH2-terminal kinase, 
also known as stress activated protein kinase) and c-Abl 
(a nuclear protein)[375], which allow OX to maintain its 
cytotoxic activity in both MMR-proficient and -deficient 
cells[372,375]. Cisplatin depends on an intact MMR system 
for maximal cytotoxicity and for signalling apoptosis via 
the JNK-mediated pathway[371,375,376]. The binding of  the 
MMR complex to Pt-DNA adducts appears to increase 
the cytotoxicity of  the adducts[377], either by activating 
downstream signalling pathways that lead to apoptosis[375] 
or by causing “futile cycling” during translation synthesis 
past Pt-DNA adducts[372]. Therefore, cisplatin and OX 
have a different ability for activating signal paths to in-
duce apoptosis in response to Pt-DNA adducts, which 
may be the basis of  the observed differences in the pro-
file of  drug resistance in these platinum derivatives[378].

Protein p53 mediates the transduction of  a signal 
induced by DNA damage following exposure to cispla-
tin[379]. p53 interacts with several significant elements 
that are part of  the NER pathway, such as xeroderma 
pigmentosum, complementation group C (XPC), TFⅡ
H and replication protein A (RPA), which points to its 
role in supervising the DNA repair process[380]. While 
testing 60 different cell lines, Vekris et al[381] showed that 
the expression of  p53 was positively correlated with cell 
sensitivity to four different platinum derivatives: cispla-
tin, carboplatin, OX and tetraplatin. As p53 takes part in 
apoptosis induction and participates in the process of  
removing Pt-DNA adducts created by platinum deriva-
tives, this protein may contribute to both chemosensitiv-
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ity and drug resistance[382]. A systematic analysis of  cel-
lular sensitivity to OX in relation to p53 status in pairs of  
cisplatin-sensitive and -resistant cells showed that OX is 
less potent than cisplatin in cisplatin-sensitive cell lines, 
whereas it was capable of  overcoming cisplatin resistance 
in the majority of  sublines. Cell sensitivity to OX seems 
also dependent on the occurrence of  genetic variants in 
gene TP53. While studying the cell line A431 which is 
characterised by a mutation in codon 273 of  p53, it was 
observed that it has high resistance to OX[276]. 

Clinical application of  the above in vitro studies to 
test a various panel of  factors influencing the pheno-
type of  chemosensitivity or drug resistance will require 
a series of  in vivo studies with the participation of  well 
selected groups of  patients. Currently available data 
from pre-clinical studies show the potential significance 
of  some molecular factors connected with the DNA 
repair processes and those participating in control of  the 
cell cycle and apoptosis, which could serve as predictive 
markers in forecasting the efficiency of  OX therapy in 
CRC patients. 

FUTURE PERSPECTIVES IN 
PERSONALIZED MEDICINE FOR THE 
TREATMENT OF COLORECTAL CANCER
The last few decades have resulted in huge progress 
in understanding the complex processes regulating the 
growth and development of  tumours. However, the 
major challenge in basic and clinical research is to solve 
the problem of  primary and secondary drug resistance, 
which in many cases significantly reduces the antitumour 
efficacy of  therapy. Early research on the development 
of  new chemotherapeutic agents with significant an-
titumour potency, led to the introduction in oncology 
practice of  few effective drugs, including those currently 
used in the treatment of  CRC. Although they strongly 
induce apoptosis in intensively dividing cells, their stron-
gest drawback is that they have the same effect on both 
cancer cells and healthy tissue. Therefore, to maintain 
the effectiveness of  cancer treatment, it is necessary to 
use a maximum dose that provides a strong cytotoxic 
effect against tumour tissue, while minimizing toxicity 
to a patient. On the other hand, the intensive develop-
ment of  molecular tests in the last two decades initiated 
the development of  “targeted” drugs and new treatment 
strategies such as targeted therapy. These new techniques 
have increased the hope of  achieving substantial benefits 
in patients for whom the use of  cytostatics proved not 
to be very effective. The main advantage of  targeted 
therapy is the ability to avoid toxic effects of  the drug 
with little impact on healthy cells. However, soon after 
the first research reports on targeted therapy and its high 
potential in clinical applications, drug resistance still re-
mains a problem even with these ‘‘smart drugs’’. Similar 
to conventional cytostatics, resistance to a new class of  
drugs is an important issue in oncology[383]. It should be 

noted that drug resistance remains the most critical fac-
tor in the success of  therapy. Currently, the main prob-
lem for researchers working on the effectiveness of  can-
cer treatment is how to produce a rational treatment plan 
based on the classic cytostatic drugs and targeted drugs. 
Overcoming resistance in many cases is only possible by 
selecting an appropriate drug combination and optimal 
dosing during the treatment cycle. Due to the fact that 
many of  the drug-resistance mechanisms are determined 
by individual patient characteristics, the key to successful 
therapy may be personalized cancer medicine. However, 
in recent years most scientists conducting research in the 
field of  molecular mechanisms of  drug resistance have 
focused on individual processes associated with metabo-
lism, biodistribution, and anticancer drug mechanisms. 
Such research does not include the wider context and 
different body processes that constitute the effectiveness 
of  a therapeutic strategy[384]. 

In the current paradigm accepted by scientists, it is 
considered that individual differences in response are the 
results of  individual patient features that can be identi-
fied at a molecular level. These features are subject to 
genetic variation and the environmental pattern which 
are specific for each patient. It can be assumed that un-
derstanding the molecular mechanisms of  inter-individ-
ual differences in the effectiveness of  cancer treatment 
will allow the optimization of  cancer therapy. Therefore, 
in the past two decades there has been a significant re-
search effort to acquire information on the mechanisms 
responsible for the effectiveness of  therapies. The ap-
proach that underlies individualized medicine is based 
on the assumption that by using molecular profiling and 
a set of  biomarkers we can improve treatment efficacy 
in a patient, prolonging survival time and/or reduce the 
risk of  serious complications[385]. 

Is it possible to apply these concepts in the individu-
alization of  treatment of  CRC patients in the near fu-
ture? In the previous chapters a variety of  prognostic and 
predictive markers were described, which in recent years 
have been subject to various test procedures in order to 
determine their potential clinical value in the treatment 
of  CRC. A technological breakthrough in molecular 
studies, as observed in recent years [single-nucleotide 
polymorphism arrays, complementary DNA microarrays, 
DNA methylation and microRNA (miRNA) profiling as 
well as next-generation sequencing] also made it possible 
to create individual molecular profiling for patients which 
is more profitable in economic terms. The data obtained 
using these high-throughput methods give hope for the 
practical application of  various biomarkers to predict 
the effectiveness of  treatment in individual patients with 
CRC.

Of  the main variables affecting the therapeutic effica-
cy of  cytostatics, the level of  DNA synthesis and/or the 
intensity of  cell division are important, and in the case 
of  targeted drugs, the expression level of  molecules in 
a signalling pathway in which the drug is targeted. As in 
the case of  cytostatic drugs, the predominant mechanism 
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of  drug resistance is a wide panel of  pharmacokinetic 
factors, and for targeted therapy it is mainly processes re-
lated to pharmacodynamics (genetic alteration/mutation 
of  the target itself, persistent activation of  downstream 
signalling pathways, and bypass mechanisms). Such a 
clear distinction does not describe the complexity of  
drug resistance mechanisms. Given the holistic nature 
of  personalized medicine, it is necessary to develop and 
validate a wider panel of  biomarkers which would reflect 
the multifactor mechanisms of  resistance. In addition, 
when using predictors in clinical practice, we must take 
into account different therapeutic objectives which are 
set for specific subgroups of  patients. From the point 
of  view of  drug resistance in cancer therapy, at least two 
main objectives require to be met in personalized medi-
cine: (1) risk minimization of  inducing resistance; and (2) 
breaking existing primary or secondary resistance. Find-
ing the optimum combination of  drugs and dosage regi-
men can, in many cases, lead to better efficiency in first-
line treatment, and prevent cancer relapse. Furthermore, 
an equally important problem is the selection of  resistant 
clones during the first treatment cycle, which in the case 
of  relapse can significantly reduce the therapeutic efficacy 
of  new combinations of  drugs. Use of  dynamic-response 
markers in clinical practice that would allow monitoring 
of  the course of  treatment is a promising line of  research 
in personalized medicine. Changing the level of  expres-
sion of  marker genes or activity of  posttranslational 
protein modification during the course of  therapy has 
been assesssed in several studies. Analysis of  molecular 
changes taking place during treatment may provide infor-
mation regarding the development of  resistance resulting 
from drug exposure, which is particularly important in 
the context of  the existence of  secondary drug resistance 
mechanisms. In such cases, a change in treatment regi-
men may be important for the future of  a patient.

There are several main obstacles which currently pre-
vent the full application of  personalized medicine in clini-
cal practice, despite significant progress in the study of  
causes of  drug resistance in the treatment of  CRC. Inter-
individual differences in the response to treatment in pa-
tients with CRC may be subject to genetic and epigenetic 
features which can be classified as genomic aberrations 
[e.g., MSI[386,387], chromosomal instability (CIN)[388,389] and 
CpG island methylator phenotype (CIMP)[390-393]] as well 
as polymorphic variation (e.g., SNP or VNTR). This mul-
tifactor substrate conditioning efficacy in CRC makes it 
difficult to plan reliable research on predicting markers. In 
addition, the available clinical data indicate that CRCs are 
a molecularly heterogeneous group of  neoplasms, which 
is why it is important to plan future studies taking into 
account this heterogeneity. Only this type of  approach 
will provide a link between specific molecular features 
and effectiveness of  the treatment. Another of  the exist-
ing barriers for development of  personalized medicine 
is the need for invasive biological sampling. A large part 
of  the results of  clinical trials on CRC drug resistance is 
based on the analysis of  biological material derived from 

tumour biopsy. The possibility of  using blood serum may 
be a way of  solving this problem[394]. Another barrier that 
prevents truly individualized treatment of  CRC patients 
is the small amount of  research data that could connect 
mutation analysis and gene expression during the course 
of  translation and activity of  specific marker proteins. 
The main research stream based on transcriptome analy-
sis does not provide information on protein expression, 
and mRNA level does not allow the determination of  
protein activity. It was not until recently when proteome 
analysis (proteomics) was developed, including important 
protein-protein interactions, that a number of  new drugs 
for targeted therapy, such as inhibitors of  kinases and 
their substrates were developed. Analysis of  the activ-
ity of  individual proteins involved in intracellular signal 
transduction is a very important aspect of  research on tu-
mour biology, and as shown by Pierobon et al[395], the level 
of  protein expression and the level of  protein activation 
(e.g., phosphorylation) do not always correlate, suggesting 
that the latter could be a better predictive biomarker for 
patient stratification. In conclusion, due to the hetero-
geneity of  CRC and the complexity of  drug resistance, 
prediction of  the effectiveness of  treatment in individual 
patients should be based on prediction biomarkers de-
rived from the genome and proteome. Analysis of  multi-
ple markers is also justified as most modern standards of  
CRC treatment use a combination of  several anticancer 
drugs. Combination therapy is based on the inhibition 
of  tumour cells on several molecular levels. In order to 
rationally combine different therapies that would presum-
ably be more effective than monotherapy, it is therefore 
necessary to use an integrated approach for the analysis 
of  multiple pathways simultaneously. In this way, it will 
be possible to highlight pathway alterations that can be 
targeted by different agents. 

The most recent data in the field of  biomarker re-
search show that only the interdisciplinary research 
approach, using combined analysis of  genome and pro-
teome, makes it possible to recognise prognostic and 
predictive factors which will help select patients in terms 
of  relevant clinical features for individualized therapy[396]. 
Among a number of  potential predictive markers de-
scribed in the preceding sections of  this review, only a 
small number were found to be clinically useful. In many 
cases, the analysis of  the same marker provided contra-
dictory data sometimes leading to opposing conclusions. 
There may be several reasons for these discrepancies, 
including the following: (1) methodological differences 
(prevalence of  retrospective studies); (2) use of  differ-
ent and non-standardized research techniques; (3) use 
of  inappropriate statistical analysis for a given type of  
data; and (4) diverse and/or insufficiently large groups 
of  patients[385]. Therefore, to increase the credibility of  
preclinical and clinical prediction, it is necessary when 
planning research to take into account all variables which 
can affect the outcome of  the analysis. Adoption of  uni-
form research standards in the form of  guidelines, such 
as reporting recommendations for tumour MARKer 
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prognostic studies[397], provide an opportunity to obtain 
reliable data. Moreover, the current retrospective analysis, 
the results of  which suggest a correlation should only be 
used as a source of  hypotheses to be verified during the 
course of  later well-designed studies. 

In summary, from a clinical point of  view, there is a 
need for innovative patient stratification methods which, 
based on validated biomarkers, will help clinicians to 
make correct therapeutic decisions. The effectiveness 
of  anticancer drugs such as classical cytostatics and 
targeted drugs should be carefully reviewed in properly 
selected groups of  patients whose common molecular 
profile will determine susceptibility or resistance to treat-
ment[398]. The implementation of  new technologies has 
led to the accumulation of  huge amounts of  genomic 
and proteomic data and the identification and validation 
of  predictive biomarkers for existing and new targeted 
therapies, and will likely improve patient outcomes in the 
future[399]. Although the initial costs of  cancer manage-
ment and personalized medicine may be high[400], in the 
future they should result in significant benefits from both 
a clinical and economical perspective. 
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