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In the last two decades, a significant number of innovative sensing systems based on optical fiber sensors have been exploited in the
engineering community due to their inherent distinctive advantages such as small size, light weight, immunity to electromagnetic
interference (EMI) and corrosion, and embedding capability. A lot of optical fiber sensor-based monitoring systems have been
developed for continuous measurement and real-time assessment of diversified engineering structures such as bridges, buildings,
tunnels, pipelines, wind turbines, railway infrastructure, and geotechnical structures. The purpose of this review article is devoted
to presenting a summary of the basic principles of various optical fiber sensors, innovation in sensing and computational
methodologies, development of novel optical fiber sensors, and the practical application status of the optical fiber sensing
technology in structural health monitoring (SHM) of civil infrastructure.

1. Introduction

Structural health monitoring (SHM) has been a fast-
developing domain in engineering disciplines especially in
civil engineering field. The innovation in the SHM tech-
nologies as well as the development of the large-scale SHM
systems has boomed within the engineering and academic
communities over the last two decades [1–7]. The avail-
able practical experiences have proved that the progressive
advancement of the sensing techniques will undoubtedly
expedite the evolution of the SHM technology. In comparison
with the traditional mechanical and electrical sensors, the
optical fiber sensors possess some unique advantages such
as small size, light weight, immunity to electromagnetic
interference (EMI) and corrosion, and embedding capability
[8–12], and therefore they have been employed inmonitoring
of engineering structures worldwide. This paper will provide
a comprehensive review on structural monitoring of civil
infrastructure by use of the optical fiber sensing technology.

In the last two decades, a considerable number of inves-
tigations have been conducted in reviewing the progress

of research and development of the optical fiber sensing
technology as well as the applications of optical fiber sensors
in the monitoring of various kinds of engineering structures
[13–17]. Bhatia et al. [18] reported the progress in the per-
formance and reliability of the optical fiber-based extrinsic
Fabry-Perot interferometric (EFPI) strain sensor. Rao [19]
gave a systematic review of progress on applications of
FBG sensors in large composite and concrete structures, the
electrical power industry, medicine, and chemical sensing.
Leung [20] reviewed the applications of optical fiber sensors
for monitoring of concrete structures. Measures et al. [21]
overviewed the research on the development of structurally
integrated optical fiber sensors for the smart structures.
Merzbacher et al. [22] reviewed the strain monitoring of
concrete structures by use of optical fiber sensors. López-
Higuera et al. [23] summarized themain types of optical fiber
techniques suitable for structural monitoring and introduced
various optical fiber sensor-based engineering application
scenarios. Ansari [24] provided a summary of basic principles
pertaining to monitoring of civil engineering structures with
optical fiber sensors.Majumder et al. [25] reviewed the recent
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Figure 1: Measurement principal of FBG sensor.
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Figure 2: Measurement principal of EFPI sensor.

research and development activities in structural monitoring
using FBG sensors.

2. Fundamentals of Optical Fiber Sensors

Generally, an optical fiber sensor system consists of a light
transmitter, a receiver, an optical fiber, a modulator element,
and a signal processing unit. As the core part of an optical
fiber sensor, the optical fiber is usually made from silica
glass or polymer material, which itself can act as a sensing
element or carry the light from the source to the modulator
element. When the strain or temperature variation of the
structure occurs, the surface-mounted or embedded optical
fiber sensor in the structure will expand or contract. In
accordance with the change of the length of the optical
fiber, the optical fiber sensor modulates the light and reflects
back an optical signal to the analytical unit for deriving
the concerned physical quantity of the structure [26]. Based
on the sensing principle, the optical fiber sensors can be
categorized into different types as illustrated in the following
sections [27].

2.1. Fiber Bragg Grating (FBG) Sensors. Up to now, the FBG
sensor has been widely used in the monitoring of civil
engineering structures [28–32]. It can be regarded as a type
of optical fiber sensor with varied refractive indices in the
core. According to Bragg’s law, a beam of white light is
written in the FBG sensor, and when the light from the
broadband source passes through the grating at a particular

wavelength, the Bragg wavelength is reflected which is related
to the grating period, as illustrated in Figure 1. The Bragg
wavelength 𝜆

𝐵
can be expressed by

𝜆
𝐵
= 2𝑛effΛ, (1)

where 𝑛eff is the effective index of refraction andΛ is the grat-
ing period. The wavelength shift changes linearly with both
strain and temperature. When the grating part is subjected to
external disturbance, the period of the gratingwill be changed
and the Bragg wavelength is varied accordingly.The variation
of the Bragg wavelength can be obtained by

Δ𝜆
𝐵
= 𝜆
𝐵
{(𝛼 + 𝜉) Δ𝑇 + (1 − 𝑝𝑒) Δ𝜀} , (2)

where Δ𝜀 is the strain variation, Δ𝑇 is the temperature
change, 𝛼 is the coefficient of the thermal expansion, 𝜉 is the
thermooptic coefficient, and 𝑝

𝑒
is the strain-optic coefficient.

2.2. Extrinsic Fabry-Perot Interferometric (EFPI) Sensors. For
an EFPI sensor, the optical fiber acts as the input or output
path; the light from the source passes through the optical
fiber to the sensing part and then to the demodulation system
[33–38]. A typical EFPI sensor consists of the input/output
fibers and the reflective fibers as well as a hollow-core tube
for creating an air cavity, namely, the Fabry-Perot cavity.
An adhesive is employed to bond the two components. As
illustrated in Figure 2, the Fabry-Perot cavity is formed
between an input single-mode fiber and a reflecting single-
mode or multimode fiber, and two fibers are aligned inside
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a hollow-core tube. At both ends of the cavity, there are
reflections on the uncoated ends of the fibers. 𝑅

1
is referred

to as the reference reflection which depends on the applied
perturbation such as strain and temperature.𝑅

2
is the sensing

reflection and depends on the length of the cavity, 𝐿. A
sinusoidal output signal will be generated when 𝑅

1
interferes

with 𝑅
2
. Because the length of the cavity can be modulated

by the applied perturbation, the EFPI sensor can be used
to measure the applied perturbation according to the output
signal. For the strain measurement, it can be expressed by

𝜀 =
Δ𝑙 (air gap)
𝐿
, (3)

where Δ𝑙 is the variation in the cavity.

2.3. Optical Time-Domain Reflectometry (OTDR) Sensors. An
optical time-domain reflectometry- (OTDR-) based sensor
is capable of distributedly sensing along the length of an
optical fiber with a specific refractive index [39, 40]. When
a light pulse at a particular wavelength propagates along
the optical fiber, the sensor can locate the position of the
interaction according to the propagation time, as illustrated
in Figure 3. The location of the variation of the measurand
may be determined by the OTDR sensor. The OTDR-based
distributed sensor is possible to be used to measure the
change in the properties of the light along the entire optical
fiber by measuring the time of flight of the returned pulses.
The Brillouin optical time domain reflectometer (BOTDR)
sensor is one of the distributed optical fiber sensors and
is based on the Brillouin scattering. Due to the advantage
of being capable of measuring continuous strain and tem-
perature over a long distance, the BOTDR sensor has been
widely applied in distributed monitoring of large-scale civil
structures.

3. Innovation in Methodologies and Sensors

3.1. Improvement of Methods. Li et al. [41] proposed a the-
oretical model for describing the strain transfer relationship
between the fiber core of the FBG sensor and the host mate-
rial. Yun et al. [42] developed a newmethod based on the sim-
ulated annealing evolutionary algorithm for demodulation

of the strain profile along an FBG distributed strain sensor.
Imai and Feng [43] proposed a stress-transferring model
incorporating drastic softening behavior for the surrounding
components to investigate the stress transfer from a host
structure to a sensing fiber. Zhang et al. [44] proposed a
model reconstruction soft computing recognition algorithm
based on genetic algorithm, support vector regression to
achieve the reliability of the FBG-based sensor network. Gill
et al. [45] presented a genetic algorithm for the inversion of
Bragg grating sensor spectral data to determine the strain
distribution along the grating. Prabhugoud and Peters [46]
developed an integrated formulation for the calculation of
the spectral response of an FBG sensor embedded in a host
material system as a function of the loading applied to the
host structure.

Liu et al. [47] proposed an adaptive filtering algorithm for
the noise reduction and the detectability of seismic signals
measured by an FBG measuring system. Ma et al. [48]
presented a fast interrogationmethod for the dynamic and/or
static strain gauge by use of a reflection spectrum from two
superimposed FBGs. Jang et al. [49] developed a real-time
impact localization algorithm for various composite struc-
tures using the impact-induced acoustic signals acquired
by multiplexed FBG sensors. Schizas et al. [50] proposed
a method for nonhomogeneous strain monitoring of com-
posite structures with embedded wavelength multiplexed
FBG sensors. Feng et al. [51] proposed a stationary wavelet
transform method for signal processing of the distributed
strain data from the BOTDR-based optical fiber sensors.
Peters et al. [52] investigated the method of measurement of
nonuniform strain field near the stress concentration by use
of the embedded FBG sensor.

3.2. Development of Sensors. Lee et al. [53] developed an
optical fiber accelerometer composed of a reflective grating
panel and two optical fibers as transceivers whichwas capable
of monitoring the low-frequency acceleration of large-scale
civil engineering structures.Wang andHuang [54] developed
an optical fiber corrosion sensor based on the principle
of light reflection consisting of an optical fiber reflection
sensor and a tube/film subassembly formed by welding a
sacrificial metallic film to a steel tube. Rodriguez-Cobo et
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al. [55] designed an FBG-based smart structure embedded
into composite laminates for simultaneous measurement of
temperature and strain and conducted experimental investi-
gations for performance validation. Pirozzi [56] developed a
multipoint force sensor based on crossed optical fibers. Kim
et al. [57] developed a gold-deposited extrinsic Fabry-Perot
interferometer for dynamic strain measurement.

Cumunel et al. [58] investigated the capacity of continu-
ously attached long-gauge optical fiber sensors for dynamic
evaluation of structures. Gangopadhyay et al. [59] addressed
different design and experimental packaging procedures of
indigenously developed FBG sensors for strainmeasurement.
Yuan et al. [60] presented an optical fiber two-dimensional
sensing system for measuring the strain inside the concrete
structure based on white-light Michelson interferometric
optical fiber sensing technique. Liu et al. [61] designed a long-
period fiber grating sensor for detecting the state of rebar
corrosion in concrete. Yashiro et al. [62] proposed an embed-
ded chirped FBG sensor for damage detection in the holed
carbon fiber reinforced polymer (CFRP) laminate. Zhou et al.
[63] designed an extrinsic Fabry-Perot interferometric strain
sensor for damage evaluation of smart composite beams.
Triollet et al. [64] proposed a superimposed FBG device to
measure, localize, and discriminate strain and temperature
effects simultaneously for structural monitoring.

Hong et al. [65] developed a distributed long-gauge FBG
macrostrain sensor for condition assessment of reinforced
concrete beams [66]. Quirion and Ballivy [67] validated
the robustness of the Fabry-Perot optical fiber sensor in
strain monitoring of the concrete structure. Davis et al. [68]
developed an integrated FBG-based sensing system for broad
area damage detection of composite structures. Villalba and
Casas [69] evaluated the usefulness and effectiveness of the
optical backscatter reflectometer sensor in damage detection
of concrete structures. Torres et al. [70] presented a new FBG
strain sensorwith an unsymmetrical packaging configuration
designed to be fixed to the surface of themonitored structure.
Schröder et al. [71] developed a low-cost optical fiber sensing
system for continuous on-site monitoring of contact forces
in current collectors. Kim [72] developed a smart moni-
toring system for stress monitoring and damage detection
of offshore structures using piezoceramic and optical fiber
sensors.

Xu et al. [73] developed a novel Fabry-Perot optical
fiber pressure sensor for application in high temperature
environments. Garćıa et al. [74] developed a novel distributed
optical fiber strain sensor suitable for long-distance condition
monitoring of engineering structures. Liu et al. [75] devel-
oped a partially multiplexed EFPI-based optical fiber strain
sensor system for in situ strain measurement of composite
structures. Sun et al. [76] experimentally investigated the
feasibility of corrosion monitoring of reinforced concrete
structures by use of BOTDR sensors. Lan et al. [77] developed
a combined Brillouin and FBG sensor for the monitoring of
structural prestress loss in reinforced concrete beams. Zhou
et al. [78] developed a smart fiber reinforced polymer (FRP)
rebar with an embedded novel optical fiber for evaluation of
prestress loss distribution in posttensioned concrete struc-
tures.

4. Applications of Optical Fiber
Sensing Technology

4.1. Bridges. As the vital hinges of the transportation lines, the
health conditions of the bridges have always been concerned
by the bridge owners and managers. Continuous real−time
monitoring of the environmental and operational loadings
as well as the structural responses and behaviors of the
bridges has been proved to be a promising and effective way
for system identification, damage detection, safety condition
assessment, and structural performance prediction. Due to
the nonsubstitutable capabilities and unique advantages, the
optical fiber sensing technology has been served as an effec-
tive tool for the monitoring of each phase of the bridge life-
cycle (construction, operation, reinforcement, and rehabili-
tation), of various structural components of bridges (decks,
towers, stay cables, suspenders, girders, piers, piles, and
abutments), and of different measurands (strains, temper-
atures, accelerations, deflections/displacements, cracks, and
corrosion). There have been a lot of investigations on bridge
healthmonitoring and structural condition assessment based
on the optical fiber sensing technology as detailed in the
following sections.

4.1.1. Integrated Bridge Monitoring System. A considerable
number of optical fiber-based integrated SHM systems
deployed on various types of bridges have been developed
worldwide [79]. In USA, Mehrani et al. [80] developed a
remote monitoring system based on optical fiber sensors for
condition assessment of bridges and the performance of the
developed system was validated through field instrumenta-
tion on a bridge in Florida, USA, during its construction
stage. Glisic and Inaudi [81] developed a method for integrity
monitoring of fracture critical bridges using simulated Bril-
louin scattering based on a crack or local deformation iden-
tification algorithm and a sensor delamination mechanism.
Talebinejad et al. [82] developed an FBG-based accelerometer
by use of the stiffness of the optical fiber and a lumped
mass and the performance of which was evaluated during
ambient vibration tests of a real bridge. In Canada, a total
of 16 bridges have been instrumented with long-term SHM
systems by intelligent sensing for innovative structures (ISIS)
with various combinations of optical fiber sensors [83].

Brönnimann et al. [84] investigated the reliability and
long-term stability of an FBG-based sensing and surveillance
system through a monitoring period of six months during
construction of a stay cable in Switzerland. In Portugal,
Rodrigues et al. [85] developed an FBG-based system with
embedded displacement and strain transducers for long-term
monitoring of structural performance of concrete bridges
which was applied to a concrete bridge. Barbosa et al. [86]
developed a novel weldable FBG sensing system for strain
and temperature monitoring of steel bridges and for loading
tests and health monitoring of a circular pedestrian steel
bridge. In UK, Kerrouche et al. [87] developed a relatively
cheap and effective sensing system using a compact FBG-
based monitoring system incorporating a scanning Fabry-
Perot filter, and the performance of the system was validated
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through laboratory experiments and field tests in a real
bridge. Kister et al. [88, 89] conducted the research on
structural monitoring of a composite road bridge by use
of FBG sensors, and the performance of the adhesives and
the protection system of the sensors were evaluated through
field pullout tests. Mokhtar et al. [90] created an innovative
FBG-based sensor system for accurate strain measurement
with full temperature compensation towards condition mon-
itoring and assessment of arch bridges. Surre et al. [91]
developed an optical fiber sensor system for long-term strain
monitoring and condition assessment of a redundant 50-
year-old concrete footbridge.

In Hong Kong, the high-speed demultiplex-
ing/interrogation system for FBG sensor arrays and
FBG sensor package units were deployed for long-term
monitoring on the Tsing Ma Bridge which is the world’s
longest suspension bridge carrying both highway and railway
traffic [92]. Yau et al. [93] proposed a simple, inexpensive,
and practical method for measurement of the vertical
displacement of bridges by use of FBG sensors. In Chinese
mainland, Zhao et al. [94] integrated the distributed Brillouin
optical time domain analysis (BOTDA) technology and the
FBG sensing technology for strain monitoring of bridges. In
Korea, Chung et al. [95] conducted the experimental study
on the applicability of long-gauge optical fiber sensors for the
monitoring of the structural defection of the prestressed con-
crete bridges. Lin et al. [96] developed an FBG-based sensing
system for online monitoring of highway bridges during
construction to record the hydration effects, curing periods,
prestressing responses, and removal of support frames.

4.1.2. Monitoring of Rehabilitated and Antique Bridges.
Research efforts also have been devoted to measuring the
structural behaviors of old bridges or deficient bridges during
rehabilitation by use of the optical fiber sensing system
[97]. Jiang et al. [98] applied two types of optical fiber
sensors embedded in FRP material to monitor the global
and local behaviors of the strengthened bridge structures.
Zhang et al. [99] introduced two types of optical fiber sensing
technologies (FBG and BOTDR) for health monitoring of
rehabilitated reinforced concrete girder bridges, and the
static and dynamic loading tests were carried out with a
simply supported reinforced concrete T-beam strengthened
by externally posttensioned aramid fiber reinforced polymer
(AFRP). Costa and Figueiras [100] presented the design of an
advanced FBG-based monitoring system which was applied
to a century steel arch bridge in Portugal.

4.1.3. Monitoring of Bridge Cables and Suspenders. He et al.
[101] carried out an investigation on cable force monitoring
by use of the local high-precision FBG sensor in combination
with the distributed BOTDA sensing technique. Li et al.
[102] developed a smart stay cable assembledwith FBG-based
strain and temperature sensors which were incorporated into
a glass fiber reinforced polymer (GFRP) bar. The efficiency
of the developed smart stay cable was proved by application
to evaluate the fatigue accumulative damage of a stay cable
bridge in China [103, 104].

4.1.4. Bridge Scour Monitoring. Zhou et al. [105] proposed
an FBG sensing system for scour monitoring of foundations
of bridge piers and abutments. This developed system intro-
duced a uniform-strength FRP beam instrumented with two
FBG sensors in two sides of the neutral axis, and the feasibility
of the system was validated through laboratory tests. Lin
et al. [106, 107] developed two types of FBG-based systems
for real-time bridge scour monitoring, which were capable
of measuring the process of scouring/deposition and the
variation of the water level.The in situ FBG scourmonitoring
system was demonstrated to be robust and reliable for real-
time scour-depth measurement and to be valid for indicating
the depositional depth. Xiong et al. [108] developed a bridge
scour monitoring system by use of FBG sensors, and the
experimental investigations verified that the recommended
scour monitoring system was capable of measuring the
water level, the scour depth, the entire process of scour
development, and the deposition height due to the refilling
process.

4.2. Buildings. The optical fiber sensing technology has
been employed in safety condition monitoring of the high-
rise structures during in-construction and in-service stages.
Bastianini et al. [109] utilized the embedded optical fiber
Brillouin sensors for strainmonitoring and crack detection of
a historical building. Antunes et al. [110] conducted dynamic
monitoring of a reinforced concrete water reservoir and a
slender metallic telecommunication tower by use of FBG-
based biaxial accelerometers. Ni et al. [111] deployed massive
FBG sensors for strain and temperature monitoring of the
Canton Tower. Li et al. [112] performed an investigation on
the feasibility of the FBG-based monitoring system instru-
mented in an 18-floor tall building during construction. The
FBG sensors were used tomonitor the strain and temperature
of the building in three steps of construction, that is, before
the concrete pouring, during the pouring and curing of
concrete, and the construction of subsequent upper floors of
the building.

4.3. Tunnels and Pipelines. Ye et al. [113] addressed two
engineering paradigms on safety monitoring of tunnel con-
struction by use of FBG sensors. Metje et al. [114] presented a
new optical fiber sensing system for structural displacement
monitoring which was successfully applied to measure the
displacement of a tunnel lining. The novel system was based
on a square fiberglass smart rod which was proved sensitive
enough to measure the rotational movement of 0.5∘ and the
lateral movement of 0.1mm of the fixings. Li et al. [115]
developed a metal groove encapsulating technique for the
bare FBG sensor to measure the surface strain of the second
lining of the tunnel. Li et al. [116] developed a differential FBG
strain sensor for monitoring the stability of the tunnel during
the backfilling and traffic-operating periods.

Glisic and Yao [117] proposed a method for real-time,
automatic, or on-demand assessment of health conditions
of buried pipelines after the earthquake based on dis-
tributed optical fiber sensors, the research of determination
of sensor topologies, selection and development of sensors,
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development of installation and implementation procedures,
and large-scale tests were conducted. Zhang et al. [118]
experimentally investigated the prediction of locations and
progression sequences of the pipe buckling with the aid of the
broadening factor of the Brillouin spectrumwidth using high
strength carbon-coated fibers and standard communication
fibers.

4.4. Wind Turbines. A review of the current status and a
discussion on research and implementation of FBGs and
long-period gratings in wind turbine blade sensors can be
found in [119]. Arsenault et al. [120] developed an FBG-based
distributed strain sensor system for real-time monitoring of
a wind turbine and conducted the validation tests under a
laboratory scale under various loading conditions. Kim et
al. [121] conducted experimental investigations on deflection
estimation of wind turbine blades using embedded FBG
sensors. Burgmeier et al. [122] developed and tested an FBG-
based sensor system for remote measurement of strain that
affects the power cable in an offshore wind turbine.

Bang et al. [123] introduced an FBG-based arrayed sensor
system for measurement of strain and bending deflection
of wind turbine towers. Ge et al. [124] developed a specific
intensity-modulated optical fiber accelerometer for vibration
monitoring of wind turbine blades. Schroeder et al. [125]
installed an FBG measurement system for load monitoring
in horizontal-axis wind turbines. Choi et al. [126] determined
the tip deflections of a composite wind turbine blade through
a static load test using mechanical strains measured by FBG
sensor probes.

4.5. Railway Infrastructure. Recently, the optical fiber sensor-
based monitoring system has attracted great interests among
the researchers in the fields of railway engineering and optical
engineering. Yan et al. [127] proposed three FBG-based
methods for strain measurement and axle counting in high-
speed railway systems, and the advantages and limitations
of these approaches were discussed in terms of feasibility
and cost-effectiveness through laboratory verification and
evaluation. Wei et al. [128, 129] described a real-time wheel
defect detection system through deploying FBG sensors on
rail tracks of the Hong Kong mass transit railway (MTR)
to gain the track strains upon wheel-rail interaction and
generate a reliable condition index reflecting the wheel
condition, and the effectiveness of the introduced system
was verified by extensive field tests. Filograno et al. [130]
implemented an FBG-based railway security monitoring
system on the Spanish high-speed line Madrid-Barcelona for
train identification, axle counting, speed and acceleration
detection, wheel imperfectionmonitoring, and dynamic load
calculation.

Pimentel et al. [131] developed a hybrid fiber-
optic/electrical train characterization system with a new
weight-in-motion (WIM) algorithm for on-motion deter-
mination of the train speed, acceleration and weight
distribution for traffic monitoring, and safety evaluation
of a railway bridge in Portugal. Kerrouche et al. [132, 133]
conducted the research on structural monitoring of a

decommissioned concrete railway bridge in Sweden loaded
to failure by use of an FBG-based distributed sensor system.

Kang and Chung [134] developed an integrated FBG-
based monitoring scheme for a maglev guideway in Korea to
measure the parameters involving strains, curvatures, vertical
defections, and frequencies which were compared with those
obtained from the conventional sensors [135]. Yoon et al.
[136] proposed a distributed Brillouin optical correlation
domain analysis- (BOCDA-) based sensing system to mea-
sure the longitudinal strain distribution of a rail in real
time, and the results of a spatial resolution of 3.8 cm and
an accuracy of ±15 𝜇𝜀 were achieved under different loading
conditions applied to a 2.8m rail. Wang et al. [137] utilized
A-thermal FBG sensors and electronic sensors to record
performance changes in the continuous welded rail, and the
monitoring results revealed that the optical fiber sensor was
durable and capable of long-termmonitoring andwas capable
of providing sensitive, clear, and stable signals.

Bocciolone et al. [138] presented the application of FBG
sensors on a pantograph for monitoring of the contact force
and the vertical acceleration of the pantograph head of the
pantograph-catenary system in an underground line. Boffi et
al. [139] developed an innovative optical fiber sensor-based
system for onlinemonitoring of the contact force between the
pantograph and the catenary at low and high frequencies.

4.6. Geotechnical Structures. Regarding the applications in
geotechnical engineering, Pei et al. [140, 141] developed an
FBG-based in-place inclinometer for lateral displacement
measurement of slopes in accordance with the classical
indeterminate beam theory which was successfully installed
in a slope in China for long-term displacement monitoring.
Kister et al. [142] deployed FBG sensors in reinforced con-
crete foundation piles for strain and temperature monitoring
and structural health condition assessment. Lu et al. [143]
conducted the field measurement of the stress within the
precast pile by use of the BOTDR-based optical fiber sensing
technique. Kim et al. [144] developed a specially designed
FBG-embedded tendon for the monitoring of the prestress
force and load transfer of the ground anchor and the feasi-
bility of the device was verified through laboratory and field
tests. Legge et al. [145] developed an FBG-based stress cell
for determination of the full state of three-dimensional stress
at any accessible or predetermined point in a soil mass or
structure.

5. Conclusions

This paper provides a summary of the research and devel-
opment in the area of structural monitoring of civil infras-
tructure by use of the optical fiber sensing technology.
Based on a comprehensive review of the optical fiber sensor-
based theories, methods, technologies, and applications, the
following concluding remarks are made: (i) due to their
unique merits, the optical fiber sensors have been widely
used in life-cycle monitoring of civil infrastructure such as
bridges, buildings, tunnels, pipelines, wind turbines, railway
infrastructure, and geotechnical structures; (ii) the optical



The Scientific World Journal 7

fiber sensing technology is capable of measuring lots of types
of measurands such as strains, temperatures, accelerations,
deflections/displacements, cracks, and corrosion; and (iii) the
exploitation of protection measures in sensor installation as
well as the development of cost-effective optical fiber demod-
ulation instruments are desirable in the further research.
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