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Women with high breast density (BD) have a 4- to 6-fold greater risk for breast cancer than women with low BD. We found
that BD can be easily computed from a mathematical algorithm using routine mammographic imaging data or by a curve-fitting
algorithm using fat and nonfat suppression magnetic resonance imaging (MRI) data. These BD measures in a strictly defined
group of premenopausal women providing both mammographic and breast MRI images were predicted as well by the same set of
strong predictor variables as were measures from a published laborious histogram segmentation method and a full field digital
mammographic unit in multivariate regression models. We also found that the number of completed pregnancies, C-reactive
protein, aspartate aminotransferase, and progesterone weremore strongly associated with amounts of glandular tissue than adipose
tissue, while fat bodymass, alanine aminotransferase, and insulin like growth factor-II appear to bemore associatedwith the amount
of breast adipose tissue. Our results show that methods of breast imaging and modalities for estimating the amount of glandular
tissue have no effects on the strength of these predictors of BD. Thus, the more convenient mathematical algorithm and the safer
MRI protocols may facilitate prospective measurements of BD.

1. Introduction

Breast density (BD) reflects the proportion of fibroglandular
tissue in the breast and is one of the strongest independent
predictors of breast cancer risk [1–4]. The most widely used
method for measuring BD is the histogram segmentation
method (HSM) using mammographic images, as pioneered
by Byng et al. [5]. HSM is a user-guided graphic interactive
thresholding method that is semiautomatic and computer-
assisted but is also time-consuming, labor intensive, and
subjective.

Mammography is designed to detect early breast cancer
rather than to measure BD, and the radiation dose required
for detecting cancer is greater for women with dense breasts.
The multiple possible variations in instrument settings can
confound the use of mammograms for BD estimates, and for
this reason phantoms or step-wedge standards are included
for calibration ofmammographywhenmeasuring volumetric
density [6, 7]. Individualized imaging parameters are rou-
tinely stored in the DICOM header of the mammogram
report. We developed a mathematical model (MATH) that
uses a substantial number of these individualized imaging
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parameters to automatically compute BD uponmammogram
acquisition, thereby omitting the laborious HSM procedure
[8, 9]. The full field digital mammography (FFDM) unit
also routinely estimates and records percent glandular breast
tissue. This estimate is used by the FFDM unit to optimize
radiation dose for final screening mammography.

Mammography projects a 3-dimensional (3D) tissue into
a 2-dimensional (2D) image. Thus, area measured from a
2D image can be expected to deviate from 3D volumes.
Shepherd et al. [10] developed compressible breast phantoms
with known and varying breast composition (e.g., 0–80%
glandular tissue) which were imaged together with each
mammogram. The density in the phantom was then used
to calibrate the density in the pixels of a 2D mammogram.
This algorithm considers the effect of breast compression
on breast density. Using this approach, glandular volume
measurements were found to be more strongly associated
with breast cancer risk than with glandular area measure-
ments alone [10]. We have shown that total volume (TV),
glandular volume (GV), and adipose (fat) volume (FV) of
the breast can be easily and reasonably approximated by
multiplying the fat and gland tissue areas of themammogram
by the compression thickness of the breast as recorded in the
mammogram DICOM header report [9].

The common use of mammography for breast cancer
screening is due in part to its low cost. Limitations include
a 2D projection of the compressed breast. Due to radiation
exposure,mammography is not commonly applied towomen
less than 45 years old, unless medically indicated. Lack of
mammographic imaging data in younger women makes it
difficult to assess the role of BD in women of younger age
in predicting later-in-life breast cancer risk. Thus, there is
increased interest in the use of magnetic resonance imaging
(MRI) for acquiring breast images, because it avoids radiation
exposure and provides 3D images.

Several feasible MRI protocols for measuring fibroglan-
dular tissue are available and the imaging protocols are
typically a variation of clinically used T1 relaxation-rate MRI
protocols, with or without fat suppression [9]. Four alter-
native conceptual approaches for estimating the volume of
breast glandular tissue fromMRI data have been investigated,
namely, (I) segmentation of glandular and fatty tissues by
an interactive thresholding algorithm [11, 12], (II) use of a
clustering algorithm [13, 14], (III) a logistic function approach
[15], or (IV) a curve-fitting algorithm [9].

We previously showed that breast glandularity measured
as percent glandular tissue (%-G) (commonly referred to
in the literature as percent breast density), glandular tissue
volume (GV), fat volume (FV), and total volume (TV) from
mammographic and MRI images were highly correlated
with one another by ordinary least square regression (𝑅2)
and intraclass correlation (ICC) analyses (all correlation
coefficients > 0.75) [9]. Because there is no “gold standard”
for measuring breast tissue composition, to further assess the
usefulness of these measurement methods, we compared the
similarities among patterns of biological predictors of BD
measured by two breast images (MRI and mammography)
and five breast density estimation methods.

2. Materials and Methods

2.1. Study Design. The main purpose of this study was to
investigate the effects of methods of imaging the breast and
measuring BD on biological features that may be associated
with BD. BD measures by three new methods (MATH and
two MRI methods) and by a FFDM unit were compared
to that by a widely used HSM. The two MRI methods
were a gradient-echo pulse sequence (3DGRE) and a fat
suppressing, fast inversion spin echo pulse sequence (STIR).
Data for dependent and independent study variables included
only those that could be measured objectively. The study was
compliant with HIPAA regulations and was approved by the
Institutional Review Board of theUniversity of TexasMedical
Branch and the Human Research Protection Office of the
US ArmyMedical Research andMateriel Command.Written
informed consent was obtained from all subjects.

Healthy premenopausal women of all major races/eth-
nicities, living within 80 km of Galveston, Texas, were
recruited, using webmail, posted advertisements, and postal
mail. Women were 30 to 40 years old with regular monthly
menstrual cycles. Subjects whowere breast feeding, pregnant,
expecting to become pregnant, or had used any type of con-
traceptive medication (oral, injection, or patch) within the
prior 6monthswere excluded.Multiple fasting blood samples
from two separate menstrual cycles, one screening digital
mammogram and two breast MR images, were all obtained
during the same or separate luteal phase not more than 3
menstrual cycles apart. Only images of the left breast were
analyzed in this study. Anthropometric and reproductive
variables were also obtained.

2.2. Main Study Outcomes (Dependent Variables) and Their
Measurement Methods. There were four BD outcomes of
interest, %-G, GV, FV, and TV, for multivariate regression
model analyses. These were obtained in a sample of 320
women by five methods, three from 2D mammography
(HSM, MATH, and FFDM) and two from 3D MRI (3DGRE
and STIR).The total breast is readily isolated from surround-
ing background and tissue on both mammographic and MR
images. Mammography generated one image and one total
breast area/volume for analysis by HSM, MATH, and FFDM,
and MRI generated two images and two total breast volume
estimates using 3DGRE and STIR.

2.3. Digital Mammography Methods (HSM, MATH, and
FFDM). We developed software in-house for BD analyses
using digital mammograms [8] by applying the HSM algo-
rithm of Byng et al. [5]. Briefly, the unprocessed (raw) and
the processed digital mammograms were acquired using
a GE Senographe 2000D FFDM unit (General Electric
Healthcare Institute, Waukesha, WI). Craniocaudal (CC)
and mediolateral-oblique (MLO) views of the left and right
breasts were acquired. The raw CC view of the left breast
was quantified for total breast area (𝑇AREA), fibroglandular
area (𝐺AREA), fat (adipose) area (𝐹AREA), and%-breast density
(%-G) [8]. The processed images were not suitable for
BD analyses, because the window and level settings varied
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between mammograms in order to provide sharp contrast
between dense and nondense tissues tomeet diagnostic needs
for detecting breast cancer. However, the raw images allowed
us to apply a consistent algorithm for setting the window and
level for image viewing and dense tissue segmentation and
were used for BD estimation.

Briefly, the breast tissue region of interest (ROI) was
isolated from the chest wall and muscle to obtain the total
breast area for each mammogram and for generating a
signal-intensity histogram of the breast ROI. With the aid
of graphical user-interactive software, an analyst subjectively
selected suitable signal intensity from the histogram as a
threshold that best segmented glandular area (𝐺AREA) from
fat tissue area (𝐹AREA). For the HSMmethod, total breast area
(𝑇AREA) is the sum of𝐺AREA and 𝐹AREA and %-G is calculated
as the ratio of 𝐺AREA/𝑇AREA. This analyst-dependent process
took about 30min.

GV, FV, and TVwere the products of the respective tissue
mammogram areas, the compression thickness, and a unit
correction factor. For the viewing geometry of our imager,
the unit correction factor for converting pixel area to mL
(or cc) was 9.96, as described previously [9]. The DICOM
header report included both preexposure and final exposure
compression thickness. Preexposure compression thickness
was used to estimate volumes, as follows:

%-G =
𝐺AREA

𝐺AREA + 𝐹AREA
=
𝐺AREA
𝑇AREA
,

GV = 9.96 ⋅ 𝐺AREA ⋅ compression thickness,

FV = 9.96 ⋅ 𝐹AREA ⋅ compression thickness,

TV = GV + FV = 9.96 ⋅ 𝑇AREA ⋅ compression thickness.
(1)

For theMATHmethod, %-Gwas computed using the fol-
lowing multivariate regression model equation that included
image data from postmenopausal and other premenopausal
women not involved in this study [8, 9]:

%-G

= 481.33 − 0.0057 ⋅ preexposure dose

+ 1.2305 ⋅ preexposure thickness

− 0.094 ⋅ radiation dose

+ 5.2056 ⋅ pre-exposure kvp

− 0.0599 ⋅ anatomical mean intensity

− 0.0192 ⋅Thresh − 2.0223 ⋅ final exposure thickness

− 0.049 ⋅ compression force

− 37220 ⋅ detector sensitivity

− 1.9863 ⋅ filter material + 25.314 ⋅ anode material.
(2)

All variables in (2) are used by the digital mammography
unit to produce a screening image and are strong and signif-
icant predictors of BD. The DICOM tag for each variable for
the specific mammographic unit used for this study has been
described previously [8]. (Note: the DICOM tags may differ
for different scanners.) The data for each imaging variable
was retrieved from the mammogram DICOM header. The
filter material and anode material were either molybdenum
or rhodium, which were coded as 1 or 0, respectively, for
calculating %-G. The %-G obtained from (2) was then used
to calculate GV and FV for the MATH method using the
following approaches:

GV = TV ⋅%-G,

FV = TV ⋅ (1 −%-G) .
(3)

The FFDM unit itself gives an estimate of percent breast
density for each mammogram, which is also available from
the mammogram DICOM header as “Raddose” and “pre-
compo.” Values for Raddose are almost the same as for
precompo. Raddose values were used to represent %-G from
the FFDM unit for calculating GV and FV, according to (3).

2.4.Magnetic Resonance Imaging (MRI)Methods (3DGREand
STIR). The 3DGRE and STIR breast MRIs were performed
as described previously [9]. Briefly, subjects were scanned
in a prone position using a 1.5-Tesla MR scanner (General
Electric, Waukesha, WI). The 3DGRE, a gradient-echo pulse
sequence, took 3 minutes to be completed, and the imag-
ing parameters were repetition time/echo time (TR/TE) =
5.9/1.4ms, flip angle = 10∘, acquisition matrix size = 256 ×
256, reconstruction matrix size = 512 × 512, number of
excitation (NEX) = 2, field of view (FOV) = 28–35 cm, and
slice thickness = 1.5mm (interpolated). The STIR protocol,
a fat suppressing, fast inversion spin echo pulse sequence,
took about 15 minutes to be completed, and the imaging
parameters were TR/TE = 6050/12.9ms, flip angle = 90∘, an
inversion time of 150ms, acquisition matrix = 256 × 192,
reconstruction matrix = 256 × 256, FOV = 28–35 cm, and
slice thickness = 2mmwith 0 gap.The image acquisition was
interleaved and repeated three times. After a MRI procedure,
a 3D volume-rendered breast model was generated for the
left breast ROI from either the 3DGRE or STIR protocol,
respectively [9].

2.5. Curve-Fitting and Estimation of Glandular Tissue from
Breast MR Images. Details for the analysis of breast tissue
volume in mL or cm3 have been described [9]. Briefly the
final segmented 3D volume-rendered breast model was used
to generate a histogram of MRI voxel signal intensity. The
histogram was then used for Gaussian curve-fitting analysis
using a commercially available peak-fitting program, PeakFit
4.0 (SyStat Software Inc., San Jose, CA). The curve-analysis
estimated the relative distribution of areas under the adipose
and glandular breast tissue curves of the histogram, respec-
tively, based on the assumption that breast tissue contained
only two compartments, that is, adipose and fibroglandular
tissues.
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The final segmented 3D volume-rendered breast model
was also subjected to volume analysis for the resampled/
reconstructed 3D model using GE 3D Advantage Windows
Workstation software version 4.1 (GE Healthcare Institute,
Waukesha, WI), as follows. The reconstructed voxel size is
the size of voxel in mm in both 𝑥- and 𝑦-directions. The
voxel ratio is the ratio between the size of the voxels in the
𝑧-direction and in the 𝑥-direction. The voxel size and the
voxel ratio of the reconstructed 3D model were recorded
in the model DICOM header report and were retrieved for
calculating voxel volume (mm3) which is the product of
voxel ratio and (reconstructed voxel size)3. This approach
provided volume in mL (cm3) for each breast tissue for direct
comparison with volume estimated from mammograms as
described above.

2.6. Anthropometrics, Body Composition, and Reproductive
Factors. Bodyweight (kg), height (m), bodymass index (BMI
= kg/m2), waist circumference (in cm at the umbilicus), and
hip circumference (in cm at the widest point around the
buttocks) were obtained. Additionally, total body mass, lean
body mass, and fat body mass were measured in duplicate
(before and after repositioning), with the subject in a supine
position, using dual energy X-ray absorptiometry (DEXA)
(Model Discovery A, Model QDR4500A, Hologic, Waltham,
MA). Average values of duplicate measurements were used
for statistical analyses. Demographic and reproductive infor-
mation (race, ethnicity, ages ofmenarche, first pregnancy, last
pregnancy, and the number of completed pregnancies) were
obtained using a self-administered questionnaire.

2.7. Analyses of Hormones and Blood Chemistries. Multiple
fasting venous blood samples, drawn between 8:00 and
10:00 a.m., and between 20 and 24 days after menstrual spot-
ting, were analyzed for 17𝛽-estradiol, progesterone, insulin,
insulin-like growth factor-I (IGF-I), insulin-like growth
factor-II (IGF-II), sex hormone binding globulin (SHBG),
and C-reactive protein (CRP). Enzyme-linked immunosor-
bent assay (ELISA) kits were used for measuring serum
CRP (sensitivity 1.6 ng/mL) and SHBG (sensitivity 0.61
nmol/L). Immunoradiometric assays (IRMA) were used to
measure serum IGF-I (sensitivity 10 ng/mL) and serum IGF-
II (sensitivity 12 ng/mL). Radioactive immunoassay (RIA)
kits were used to measure plasma 17𝛽-estradiol (sensitivity
7 pg/mL), plasma progesterone (sensitivity 0.1 ng/mL), and
serum insulin concentrations (sensitivity 1.3𝜇IU/mL). All
immunoassays were performed using commercially available
kits (Diagnostic System Laboratories, Inc., Webster, TX).The
intra- and interassay coefficients of variation for all analytes
were <10%. Means of serum hormone concentrations from
different study visits were used for statistical analyses.

Numerous fasting serum analytes, including glucose,
total cholesterol, high-density lipoprotein cholesterol (HDL),
triglycerides, alanine aminotransferase (ALT), aspartate
aminotransferase (AST), and alkaline phosphatase (ALP),
weremeasured by a certified hospital clinical laboratory using
VITROS 5.1 FS (Ortho-Clinical Diagnostics, Rochester, NY).

2.8. Statistical Analyses. Data are presented as means and
95% confidence intervals (95% CI) of the mean for con-
tinuous variables and as frequencies for the categorical
variables (ethnicity and parity). Main outcomes-of-interest
are presented as box plots (SigmaPlot 12, Systat Software, Inc.,
San Jose, CA).

In a sample of 137 subjects from whom blood chemistries
andhormonedatawere available at the timeof statistical anal-
yses, univariate associations between dependent variables
(%-G, GV, FV, and TV) and predictor variables were com-
puted. Exploratory multivariate analyses between the depen-
dent variables and predictor variables were performed by the
GLMSELECT procedure in SAS (with stepwise, forward LAR
and LASSO options) to select the best models with informa-
tion criterion such asAIC, BIC, andCpoptions.Goodmodels
will have small values of this criterion to select candidate
predictors. GLMSELECT models were run with %-G, GV,
FV, and TV as dependent variables together with a block of
anthropometric measures (body weight, height, BMI, waist
and hip circumference, and fat and lean bodymass) or a block
of blood chemistry variables (a lipid panel of cholesterol,
HDL, LDL, VLDL, and triglycerides, liver enzymes of ALP,
ALT, and AST, and hormones). Predictor variables, selected
consistently in GLMSELECT models for all outcome vari-
ables of interest, were included in the final models. We are
not aware of any prior studies examining the relationship
between routinely measured blood chemistries and BD. Such
relationships were explored in this study in a preliminary
fashion because the liver metabolizes ovarian steroids, whole
body adiposity affects liver function and breast cancer risk,
and predictors of GV are few (formore details, see Section 4).

All models were adjusted for age and reproductive vari-
ables known to influence BD, such as age of menarche
and number of completed pregnancies. IGF-I, IGF-II, 17𝛽-
estradiol, progesterone, SHBG, CRP, and insulin have been
studied for association with BD and breast cancer risk,
and they were included as predictor variables in the final
multivariate models. There was no multicollinearity problem
among variables in the final models as indicated by variance
inflation factors (all <5).

The final multivariate model also included methods of
measurement of BD as predictor variables and interaction
terms between measurement methods and respective pre-
dictor variables. We performed similarity test procedures of
𝛽-estimates across methods of measurement by a deviance
test or log likelihood test for comparing the full versus
the nested models. Post hoc pairwise comparisons with
false discovery rate (FDR) adjustment were used to assess
differences [16].The effects ofmeasurementmethods onmul-
tivariate regression models were validated in another sample
of 320 women from whom demographic, anthropometric,
and reproductive variables were available but not blood
chemistries or hormones. A significance level of 𝛼 = 0.05 was
used in our analyses. The statistical analyses were performed
using the SAS statistical software package version 9.2 (SAS
Institute, Cary, NC). The scatter plot matrix that included
histograms was generated using R software (http://cran.r-
project.org/, version 3.1.0).
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Table 1: General characteristics of the study subjects (𝑛 = 137).

𝑛 (%, column)
Race/ethnicity

White 74 (54%)
Hispanic 41 (30%)
Black 22 (16%)

Mean (95% CI)
Demographics and anthropometrics

Age, y 35.9 (35.4, 36.4)
Weight, kg 74.8 (72.3, 77.4)
Height, cm 161.6 (160.4, 162.7)
BMI, kg/m2 28.7 (27.8, 29.7)
Fat body mass, kg 28.2 (26.5, 29.9)
Lean body mass, kg 46.9 (45.8, 48.0)
Waist circumference, cm 87.3 (85.3, 89.4)
Hip circumference, cm 109.7 (107.7, 111.8)

Reproductive history
Age at menarche, y 12.5 (12.2, 12.8)
Age at first birth, y 23.3 (22.5, 24.2)
Years since last pregnancy 7.3 (6.4, 8.1)
Pregnancy, completed

Zero 18 (13.1%)
One 17 (12.4%)
Two 44 (32.1%)
Three and more 58 (42.3%)

Blood chemistry and hormones
Triglycerides, mg/dL 110.2 (97.4, 123)
Cholesterol, mg/dL 178.6 (173.7, 183.6)
HDL, mg/dL 53.1 (51, 55.2)
Alkaline phosphatase (ALP), U/L 70.6 (67.6, 73.7)
Alanine aminotransferase (ALT), U/L 26.9 (25.2, 28.6)
Aspartate aminotransferase (AST), U/L 21.1 (19.9, 22.3)
Sex hormone binding globulin (SHBG), nmol/L 101.9 (94.9, 108.9)
C-reactive protein (CRP), mg/L 6.8 (5.5, 8.1)
Insulin, 𝜇IU/mL 12.6 (11, 14.2)
Insulin-like growth factor I (IGF-I), ng/mL 291.6 (272.4, 310.7)
Insulin-like growth factor II (IGF-II), ng/mL 865.1 (824.7, 905.5)
17𝛽-Estradiol, pg/mL 132.2 (125.6, 138.9)
Progesterone, ng/mL 10.1 (9.2, 10.9)

3. Results

The racial/ethnic composition of the study population was
54% non-Hispanic White, 30% Hispanic, and 16% African
American. Table 1 shows additional relevant characteristics of
the subjects that were included in the study. Figures 1(a)–1(d)
show the mean and interquartile box plots of %-G, TV (in
mL), GV (in mL), and FV (in mL) measured by five different
methods, HSM, the FFDM unit, MATH, 3DGRE, and STIR,
as applicable. Figures 2(a)–2(d) show scatter plot matrices,
including histograms (diagonal boxes), for four different BD
measures, %-G, TV, GV, and FV, respectively. As shown,
Pearson’s correlation coefficients are high, ranging from 0.76
to 0.99 for pairwise correlation analyses in BD measured by

the five methods [9]. Note that the distribution of %-G and
GV from the FFDM unit tended to be wider; see box plots
in Figures 1(a) and 1(c) and 2nd diagonal box histograms of
Figures 2(a) and 2(c)).

The 2D mammography provides breast an area mea-
sure. Because fatty breast is more easily compressed than
dense breast, this differential compression may bias %-
breast density when estimated from mammograms. We
correlated the area breast measure from mammograms with
the volume measures from 3D MR images. Correlation
coefficients of measures using areas with corresponding MRI
volumes (from 3DGRE and STIR) were 0.83 for glandular
area (𝐺AREA), 0.88 for glandular mammographic volume
(GV = 𝐺AREA × compression thickness), ∼0.93 for fatty
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Figure 1: Interquartile box plots of breast density (a), total breast tissue volume (b), fibroglandular breast tissue volume (c), and adipose
breast tissue (d) in 137 premenopausal women as measured by a histogram segmentation method (HSM), a full field digital mammography
unit (FFDM) unit, a mathematical algorithm (MATH), a 3D gradient-echo (3DGRE) pulse sequenceMRI, and a short tau inversion recovery
pulse sequence (STIR) MRI. For the spread and distribution, consult histograms in Figure 2.

breast area (𝐹AREA), ∼0.95 for fatty mammographic breast
volume (FV = 𝐹AREA × compression thickness), ∼0.92 for
total mammographic breast area (𝑇AREA), and ∼0.94 for total
mammographic breast volume (TV = 𝑇AREA × compression
thickness) (results not graphed). Thus, conversion of mam-
mographic area (pixel in mm2) to mammographic volume
(cm3 or mL) resulted in slight improvement of correlation
with MRI volumes. Note that the conversion of pixel from
mammogram and voxel from breast MRI have all been
corrected for viewing geometry of imagers to give mL.

3.1. Effects of Measurement Methods on Quantitative Breast
Tissue Composition. Table 2 shows that mean %-G, TV, GV,
and FV values did not differ when compared within the
same breast imaging modality, but GV and TV did differ
when compared betweenMRI andmammographymeasures.
Interestingly, mean FV differed significantly only between
STIR and HSM or MATH. For %-G, means of 3DGRE
differed significantly from each of the three mammographic
methods, while mean %-G of STIR did not differ from mean
%-G of HSM or MATH but differed from %-G of the FFDM

unit. In other words, %-G of the FFDM unit was different
from all other %-G measurements.

There is no gold standard for calibrating BD, and the
physics behind mammography and MRI differs. Therefore,
it is important to know whether correlations with biological
factors known to predict breast %-G, GV, FV, and TV are
affected by measurement methods.

3.2. Pearson’s Correlation Analyses Between BD and Biological
Features. The univariate analysis results between dependent
and independent variables are shown in Table 3. Pearson’s
correlation coefficients ranged from >0.2 to 0.8 (𝑃 < 0.0001
to 0.01) between %-G, FV, and TV, as measured by five
different methods with all anthropometric variables except
height, and with HDL, ALP, SHBG, and CRP. A consistent
and significant linear correlation was observed only between
CRP and GV (measured by HSM, MATH, 3DGRE, and
STIR).

3.3. Effects of Measurement Methods on Regression Models
of Breast Tissue Composition. The primary objective of our
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Figure 2: (a)–(d) Scatter plot matrix including Pearson 𝑟 and regression line for pairwise correlation analyses between %-breast density (a),
fibroglandular tissue volumes (b), adipose tissue volumes (c), and total breast tissue volumes (d)measured by five differentmethods. Diagonal
boxes show histograms for each variable. Mamo HSM (1st row and 1st column), histogram segmentation method using mammograms;
Mamo FFDM (2nd row and 2nd column), mammograms from full field digital mammography; Mamo MATH (3rd row and 3rd column),
mathematical algorithm for computing breast tissue content using mammograms; MRI 3DGRE (4th row and 4th column), 3-dimensional
gradient-echo pulse sequence usingMRI images;MRI STIR (5th row and 5th column), short tau inversion recovery pulse sequence usingMRI
images. Units of measures for 𝑥-axis and 𝑦-axis are 𝑍 score (mean = 0, standard = 1) for (a)–(d). All data used for each pairwise correlation
analysis are included within the graph ruler space.The bin width within each histogram is equally distributed within the column 𝑥-axis scale
and frequency in 𝑦-axis is not labeled but represents relative distribution. For mean values, consult Figure 1.
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Table 2: Mean differences and 95% confidence interval in percent glandular tissue (%-G), gland volume (GV), fat volume (FV), and total
breast volume (TV) by Tukey’s test.
Methods compared %-G GV (mL) FV (mL) TV (mL)
MATH versus HSMa 1.1 (−2.85, 4.94)b 11.4 (−32.52, 55.26) 10.7 (−55.57, 77.06) 0 (−75.98, 75.98)
STIR versus 3DGRE 2.9 (−1.00, 6.81) 22.3 (−21.65, 66.29) 24.3 (−42.17, 90.71) 1.9 (−74.32, 78.21)
3DGRE versus HSM 4.5 (0.56, 8.37)∗ 94.1 (50.09, 138.04)∗ 51.9 (−14.54, 118.34) 146.0 (69.7, 222.23)∗

3DGRE versus MATH 5.5 (1.60, 9.42)∗ 105.4 (61.38, 149.49)∗ 41.2 (−25.40, 107.71) 146.0 (69.7, 222.23)∗

3DGRE versus FFDM 11.5 (7.57, 15.38)∗ 138.0 (94.05, 181.99)∗ 7.9 (−58.49, 74.38) 146.0 (69.7, 222.23)∗

STIR versus HSM 1.6 (−2.22, 5.34) 71.8 (27.94, 115.56)∗ 76.2 (9.97, 142.36)∗ 147.9 (71.93, 223.90)∗

STIR versus MATH 2.6 (−1.29, 6.50) 83.1 (39.23, 127.01)∗ 65.4 (−0.89, 131.74)∗ 147.9 (71.93, 223.90)∗

STIR versus FFDM 8.6 (4.68, 12.46)∗ 115.7 (71.89, 159.51)∗ 33.2 (−98.40, 33.98) 147.9 (71.93, 223.90)∗

FFDM versus HSM 7.0 (3.12, 10.90)∗ 44.0 (0.14, 87.76)∗ 44 (−22.24, 110.15) 0 (−75.98, 75.98)
FFDM versus MATH 6.0 (2.07, 9.86)∗ 32.6 (−11.31, 76.47) 33.2 (−33.20, 99.53) 0 (−75.98, 75.98)
aHSM, histogram segmentationmethod; FFDM, full field digital mammography unit; MATH,mathematical algorithm; 3DGRE, 3D gradient echo; STIR, short
tau inversion recovery.
bMean (95% confidence interval).
∗Difference between means, significance at 𝑃 ≤ 0.05 with false discovery rate.

study was to investigate the effects of the five BD measure-
ment methods (HSM, FFDM,MATH, 3DGRE, and STIR) on
profiles of biological predictors of %-G, GV, FV, and TV.

Exploratory models were run to select strong predictors
for inclusion in final multivariate models. Fat body mass,
BMI, and waist-to-hip ratio were most frequently selected
as predictor anthropometric variables by PROC GLMSE-
LECT in the exploratory models. Due to strong collinearity,
BMI, fat body mass, and waist-to-hip ratio were tested one
at a time in the multivariate models. BMI was included
in the final models, but it can be replaced by fat body
mass with minimal change in the profiles and strength of
significant independent predictors, that is, in terms of 𝛽-
estimates, 𝑃 values, and model 𝑅2. In the sample of 137
subjects from whom blood chemistries were available at the
time of statistical modeling, HDL, total cholesterol, ALP,
ALT, and AST were most frequently represented by PROC
GLMSELECT as significant predictor variables from blood
chemistries. However, total cholesterol, HDL, and insulin
were not significant independent predictors in multivariate
models that included BMI or fat body mass and therefore
were removed from the final regression models.

Predictor variables for BD, included in the finalmultivari-
ate models, were BMI, age, age of menarche, and number of
completed pregnancies (𝑛 = 320). Additionally, in a subset
of 137 subjects, hormones (ALP, ALT, AST, SHBG, CRP,
IGF-I, IGF-II, 17𝛽-estradiol, and progesterone) and blood
chemistries were included. Table 4 shows, within multivari-
ate models on the subset of 137 subjects, standardized 𝛽-
estimates and standard errors (SE) of the estimates for %-G,
GV, FV, and TV, respectively, usingHSMas a reference for the
measurement method, while Table 5 shows the results for the
sample of 320 women fromwhom levels of blood chemistries
and hormones were not yet analyzed.

3.4. Effects of Methods of Measurement on Predictors of Breast
Composition. Within each multivariate analysis, an inter-
action term for each predictor variable with measurement
methods was also included. All of the interaction terms

between measurement methods and biological predictor
variables by deviance or likelihood ratio tests were not sig-
nificant (e.g., all 𝑃 values were between 0.20 and 1.00), so the
interaction terms were removed from the final multivariate
regression models. Table 4 shows the multivariate regression
models usingHSMas reference for themeasurementmethod.

The first nested model within the multivariate model for
%-G (Table 4) showed a significant association between %-
G and BMI (𝑃 < 0.0001), number of completed pregnancies
(𝑃 = 0.02), ALT (𝑃 = 0.02), AST (𝑃 = 0.001), progesterone
(𝑃 = 0.04), and African-American race (𝑃 < 0.05). These
associations were independent of BDmeasurementmethods.
The aggregate model 𝑅2 for %-G was 0.54. The second
regression model in Table 4 shows that fibroglandular tissue
volume (GV) was significantly associated with number of
completed pregnancies (𝑃 = 0.0004), AST (𝑃 = 0.05), CRP
(𝑃 = 0.04), and progesterone (𝑃 = 0.02). Again, these
associations were not affected by BD measurement methods.
The aggregate model 𝑅2 for GV was 0.29. The third model
in Table 4 shows that the adipose breast tissue (FV) had a
significant association with BMI (𝑃 < 0.0001), ALP (𝑃 =
0.04), and IGF-II (𝑃 = 0.004) that was also not affected
by BD measurement methods. The aggregate model 𝑅2 for
FV was 0.71. The last model in Table 4 shows that the total
breast volume (TV), as measured by digital mammography
and twoMRI protocols, was significantly associatedwith BMI
(𝑃 < 0.0001), number of completed pregnancies (𝑃 = 0.01),
and IGF-II (𝑃 = 0.02). This association was also not affected
by BD measurement methods. The aggregate model 𝑅2 for
TV was 0.65. The strong and significant association between
BD and anthropometric and reproductive variables found in
the sample of 137 subjects was confirmed in the larger sample
of 320 women (Table 5) from whom blood analytes were not
available at the time of regression model analyses.

4. Discussion

We recently demonstrated that two mammography (HSM
and MATH) and two MRI-based modalities (3DGRE and
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Table 4: Multivariate analysis model estimates for percent breast density (%-G), fibroglandular tissue volume (GV), fat tissue volume (FV),
and total breast volume (TV) measured by five different methods (𝑛 = 137).

Explanatory variable Standardized 𝛽-estimates (SE)
%-G GV FV TV

BMI −0.59 (0.09)∗∗∗ −0.10 (0.11) 0.65 (0.07)∗∗∗ 0.52 (0.08)∗∗∗

Age −0.09 (0.07) −0.13 (0.08) −0.09 (0.05) −0.12 (0.06)∗

Age at menarche 0.13 (0.07) 0.13 (0.08) −0.05 (0.05) 0.01 (0.06)
Pregnancy, completed

Zero Reference
One 0.22 (0.26) −0.29 (0.32) −0.28 (0.21) −0.34 (0.23)
Two −0.52 (0.21)∗ −0.81 (0.27)∗∗ −0.08 (0.17) −0.34 (0.19)
Three and more −0.52 (0.22)∗ −0.99 (0.28)∗∗∗ −0.18 (0.18) −0.49 (0.20)∗∗

Alkaline phosphatase (ALP) −0.06 (0.08) 0.06 (0.10) 0.12 (0.06)∗ 0.12 (0.07)
Alanine aminotransferase (ALT) −0.22 (0.10)∗ −0.16 (0.12) 0.07 (0.08) 0.01 (0.09)
Aspartate aminotransferase (AST) 0.32 (0.10)∗∗∗ 0.24 (0.12)∗ −0.15 (0.08) −0.04 (0.09)
Insulin-like growth factor I (IGF-I) −0.03 (0.07) −0.10 (0.09) −0.04 (0.06) −0.07 (0.06)
Insulin-like growth factor II (IGF-II) −0.10 (0.07) 0.03 (0.09) 0.16 (0.06)∗∗ 0.15 (0.06)∗

Sex hormone binding globulin (SHBG) 0.07 (0.07) −0.09 (0.09) −0.05 (0.06) −0.07 (0.06)
C-reactive protein (CRP) 0.13 (0.09) 0.23 (0.11)∗ 0.05 (0.07) 0.13 (0.08)
17𝛽-Estradiol −0.09 (0.07) 0.01 (0.09) 0.02 (0.06) 0.02 (0.06)
Progesterone 0.13 (0.07)∗ 0.20 (0.08)∗ −0.02 (0.05) 0.05 (0.06)
Measurement methods#

Histogram segmentation method (HSM) Reference
Full field digital mammography (FFDM) −0.02 (0.27) −0.12 (0.33) −0.10 (0.21) 0 (0.23)
Mathematical algorithm (MATH) 0.10 (0.27) 0.01 (0.33) −0.01 (0.21) 0 (0.23)
3D gradient-echo MRI (3DGRE) −0.04 (0.27) −0.13 (0.34) −0.01 (0.21) −0.10 (0.24)
Short tau inversion recovery MRI (STIR) −0.10 (0.27) −0.14 (0.33) −0.003 (0.21) −0.09 (0.23)

Race and ethnicity
Non-Hispanic White Reference
Hispanic 0.30 (0.16) 0.32 (0.20) −0.11 (0.13) 0.02 (0.14)
African-American 0.40 (0.20)∗ 0.34 (0.25) −0.07 (0.16) 0.06 (0.18)

Model 𝑅2 0.54 0.29 0.71 0.65
∗∗∗
𝑃 < 0.001, ∗∗𝑃 < 0.01, and ∗𝑃 < 0.05 for predictor strength within a regression model.

#All 𝑃 values >0.05 for interaction terms between predictor variables and measurement methods (results not shown).

STIR) could reliably measure breast tissue composition (i.e.,
%-G, GV, FV, and TV), in that all intraclass correlation and
regression coefficient values were >0.75 [9]. Because there is
no gold standard for in vivo measurement of breast tissue
content, and there are quantitative differences in estimates
(Table 2) that may be due possibly to differences in radiologic
imaging techniques, 2D and 3D image acquisition, or tissue
segmentation methods, it is important to determine if the
measurement methods have any influence on correlations
with known determinants of BD. In this study, we show that
biological predictors of BD in a sample of 30- to 40-year-old
premenopausal women were strikingly similar across all five
BD measurement methods, between two different radiologic
imaging modalities, and were similar to those reported in
older women [17–20]. Our results (Tables 4 and 5) suggest
inference validity. Because the MATH method can compute
BD automatically upon mammogram acquisition, it should
be tested and validated further in future BD and breast cancer
risk prediction studies in light of increasing use of digital
mammography for breast cancer screening.

The strong predictors of %-G, FV, and TV found in our
sample of younger women (30 to 40 years old) were, in
general, in line with those reported in older women. Briefly,
whole body adiposity is predictive for breast tissue adiposity,
and it explained the major portion of the variances found in
%-G, FV, and TV [17–20]. In contrast to adiposity being a
dominant predictor of%-G, FV, andTV, few strong predictors
of fibroglandular tissue (GV) volume were reported. Neither
BMI nor other anthropometric variables were associatedwith
GV in our study of premenopausal women or in older women
from other studies [19–21].

Parity has been consistently reported to be negatively
associated with GV [22–24], which was confirmed in this
study by both mammography and MRI images. The strength
of the negative association between parity and glandular tis-
sue is not surprising and has been attributed to the glandular
tissue remodeling known to occur after each pregnancy and
lactation [25]. However, the negative association between
parity and TV or FV of the breast (Table 4) is unexpected
in multivariate models controlling for BMI (Tables 4 and 5)
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Table 5: Multivariate analysis model estimates for percent breast density (%-G), fibroglandular tissue volume (GV), fat tissue volume (FV),
and total breast volume (TV) measured by five different methods (𝑛 = 320).

Explanatory variable Standardized 𝛽-estimates (SE)
%-G GV FV TV

BMI −0.62 (0.02)∗∗∗ 0.03 (0.03) 0.79 (0.02)∗∗∗ 0.71 (0.02)∗∗∗

Age −0.03 (0.2) −0.01 (0.02) −0.02 (0.02) −0.02 (0.02)
Age at menarche 0.03 (0.2) 0.03 (0.02) 0.01 (0.02) 0.02 (0.02)
Pregnancy, completed

Zero Reference
One −0.08 (0.08) −0.002 (0.1) 0.18 (0.07)∗ 0.16 (0.07)∗

Two −0.24 (0.07)∗∗ −0.37 (0.08)∗∗∗ 0.005 (0.06) −0.14 (0.06)∗

Three and more −0.41 (0.07)∗∗∗ −0.69 (0.08)∗∗∗ −0.12 (0.06)∗ −0.35 (0.06)∗∗∗

Measurement methoda,b

HSM Reference
GE −0.003 (0.06) −0.01 (0.07) 0.002 (0.05) 0 (0.05)
MATH 0.01 (0.06) 0.01 (0.07) 0.001 (0.05) 0 (0.05)
3DGRE 0.002 (0.06) −0.003 (0.07) 0.003 (0.05) 0 (0.06)
STIR 0.03 (0.06) 0.01 (0.08) −0.02 (0.05) −0.02 (0.06)

Race and ethnicity
Non-Hispanic White race Reference
Hispanic race 0.16 (0.05)∗∗ 0.33 (0.06)∗∗∗ −0.12 (0.04)∗∗ 0.01 (0.04)
African-American race 0.47 (0.06)∗∗∗ 0.39 (0.08)∗∗∗ −0.22 (0.05)∗∗∗ −0.05 (0.06)

Model 𝑅2 0.38 0.09 0.58 0.51
aHSM, histogram segmentationmethod; FFDM, full field digital mammography unit; MATH,mathematical algorithm; 3DGRE, 3D gradient echo; STIR, short
tau inversion recovery.
bInteraction terms between predictors and measurement methods were all not significant (results not shown).
∗∗∗
𝑃 < 0.001, ∗∗𝑃 < 0.01, and ∗𝑃 < 0.05.

or total body fat (results not shown). Thus, the decrease in
fibroglandular tissue volume in breast after each pregnancy
and lactation was not accompanied by a corresponding
increase in breast fat/adipose tissue volume, as has often
been speculated in the literature [26].This interesting finding
requires further confirmation by other investigators. How-
ever, parity explained only a small percentage of the variance
in GV. We also explored predictors of GV in routinely
measured blood chemistries and hormones.

SHBG and CRP correlated strongly with %-G, TV,
GV, and FV in correlation analyses (Table 3) but were not
independent predictors of %-G, TV, or FV in multivariate
models when adjusted for fat body mass or BMI. This is
consistent with reports showing that SHBG predicts %-G
and GV

,
but not after adjustment for BMI [27, 28]. This can

be explained by our previous finding that anthropometric
variables are independent predictors of SHBG and CRP
[29, 30]. Circulating CRP, however, remained a strong and
positive independent predictor for GV across all fivemethods
of measurement after adjusting for fat body mass and BMI.
Mammary gland involution and remodeling involve com-
ponents of wound healing [31, 32]. CRP, being a marker of
inflammation, may play a role in remodeling as its presence
has been reported in nipple aspirate fluid [33]. However,
CRP has not been associated with breast cancer risk in
epidemiologic studies [34–36] even though inflammation
also plays an important role in breast cancer risk [37].

Obesity and the metabolic syndrome have been impli-
cated in breast cancer risk [38]. Liver enzymes, such as ALP,
AST, and ALT, are clinically useful markers for the metabolic
syndrome and other obesity-related conditions [39, 40].
These enzymes were predictors of breast composition in
our exploratory GLMSELECT models, but not in the final
models including BMI for FV andTV.AST remained an inde-
pendent predictor for both GV and %-G. The mechanisms
underlying the direct association of AST with GV and %-G
need further studies. The association between progesterone,
estradiol, IGF-I, and IGF-II with BD was also not affected
by BD measurement methods. This lack of association was
consistent with some but not all literature reports [27, 28, 41].

CRP, AST, progesterone, and the number of completed
pregnancies are more strongly associated with amounts of
glandular tissue than with breast adipose tissue. Fat body
mass, ALT, and IGF-II appear to be more associated with
the amount of breast adipose rather than with glandular
tissue. Associations between CRP, ALT, and AST and breast
tissue composition have not been reported previously, to our
knowledge, and further studieswill be necessary to illuminate
the mechanisms involved.

The strengths of this study were the inclusion of a
population of multiethnic, premenopausal subjects with
strictly defined characteristics who were not using exogenous
hormones. All study samples were obtained during luteal
phases within a short interval. Mean levels of hormones
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and blood chemistries from multiple blood samples were
used for statistical analyses. To our knowledge, no other
studies have validated biological features predicting BD as
measured by both mammography and MRI in the same
study subjects. Weaknesses of the study include a relatively
small number of subjects with available measures of blood
chemistries and hormones, a narrow age range for inclusion,
and the exclusion of postmenopausal women and breast
cancer patients, thereby limiting inferences. The parameter
fit coefficients for the MATH equation, while applicable for
postmenopausal women as previously described [8, 9], may
require calibration for different brands andmodels of full field
digital mammographic units.

In summary, we found similarities among determinants
of breast %-G, GV, FV, and TV measured by five different
methods. Our results suggest that the twoMRI protocols and
themathematical algorithm that we developed should be fur-
ther tested in studies of risk factors related to BD and breast
cancer. Importantly, the MATH method was able to adjust
for the inherent manipulation of imaging parameters by the
mammography unit. Whether MATH algorithm improves
risk prediction studies of breast density or breast cancer risk
deserves further study as it can automatically compute BD
upon mammogram acquisition. The two MRI protocols are
complimentary in image acquisition for adipose and gland
tissue. The sensitivity and specificity of these methods in
measuring the effects of interventions that may reduce breast
density and breast cancer risk require further study.
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