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As we speak, we use not only the arbitrary form–meaning mappings of

the speech channel but also motivated form–meaning correspondences,

i.e. iconic gestures that accompany speech (e.g. inverted V-shaped hand wig-

gling across gesture space to demonstrate walking). This article reviews what

we know about processing of semantic information from speech and iconic

gestures in spoken languages during comprehension of such composite

utterances. Several studies have shown that comprehension of iconic ges-

tures involves brain activations known to be involved in semantic

processing of speech: i.e. modulation of the electrophysiological recording

component N400, which is sensitive to the ease of semantic integration

of a word to previous context, and recruitment of the left-lateralized

frontal–posterior temporal network (left inferior frontal gyrus (IFG),

medial temporal gyrus (MTG) and superior temporal gyrus/sulcus

(STG/S)). Furthermore, we integrate the information coming from both

channels recruiting brain areas such as left IFG, posterior superior temporal

sulcus (STS)/MTG and even motor cortex. Finally, this integration is flexible:

the temporal synchrony between the iconic gesture and the speech segment,

as well as the perceived communicative intent of the speaker, modulate the

integration process. Whether these findings are special to gestures or

are shared with actions or other visual accompaniments to speech (e.g.

lips) or other visual symbols such as pictures are discussed, as well as the

implications for a multimodal view of language.
1. Introduction
Since the 1960s and 1970s, research on signed languages has begun to demonstrate

clearly that natural languages of deaf communities, even though executed on a

very different modality, share many aspects of linguistic structure with spoken

languages (e.g. [1,2]) and even recruit brain areas similar to those involved in pro-

cessing of spoken languages [3]. Since then, our notion of the world’s languages

has been extended and now comprises two classes, signed and spoken languages,

based on the modality through which communicative messages are transmitted:

visual–manual versus auditory–vocal.

However, in the past decade, it has become clear that this simple modality

distinction does not capture the fundamental multimodal complexity of the

human language faculty, especially those of ‘spoken’ languages [4]. All spoken

languages of the world also exploit the visual–manual modality for communica-

tive expression and speakers accompany speech with gestures of the hands, face,

and body as articulators [5–8]. Kendon [9] defines gestures as visible actions of

the hand, body and face that are intentionally used to communicate and are

expressed together with the verbal utterance. Co-speech gestures can display

semiotic complexity of different types (e.g. points, demonstrations of objects

and events (as in so-called iconic gestures)), have different communicative func-

tions (e.g. emphasis, disambiguation and speech acts) and vary in their semantic

relation to speech (e.g. conveying redundant or complementary information).

Speakers point to the entities they refer to with speech, use iconic gestures as
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they move the fingers of an inverted V-hand in a wiggling

manner while saying ‘he walked across’, use bodily demon-

strations of reported actions as they tell narratives, convey

different viewpoints of events or use gesture spaces indexing

different levels of discourse cohesion parallel to marking simi-

lar discourse devices found in speech (e.g. [10,11]). Thus, there

has been mounting evidence at the production level that co-

speech gestures contribute semantic, syntactic, discursive and

pragmatic information to the verbal part of an utterance, form-

ing composite utterances with semiotic diversity [6–8,12].

What is semantically conveyed in gesture can even be specific

to the typology of the spoken language (e.g. [13]). Further-

more, speakers in producing composite utterances are

sensitive to the temporal overlap of the information conveyed

in co-speech gesture and the relevant speech segment they

utter [7,14,15].

Research on gestures and their relation to speech has

focused mostly on a subset of gestures called iconic or depic-

tive gestures that represent objects and events by bearing

partial resemblance to them [7,16]. Much of the capacity of

iconic gestures for signification derives from ‘perceptual,

motoric and analogic mappings that can be drawn between

gestures and the conceptual content they evoke’ [17,

p. 184]. As such, iconic gestures have different represen-

tational properties from speech in terms of the meaning

they convey. They represent meaning as a whole, not as a

construction made out of separate, analytical meaningful

components as in speech (or as in sign). Consider, for

example, an upward hand movement in a climbing manner

when a speaker says: ‘the cat climbed up the tree’. Here,

the gesture depicts the event as a whole, describing manner

(‘climb’) and direction (‘up’) simultaneously, whereas in

speech the message unfolds over time, broken up into smaller

meaningful segments (i.e. different words for manner and

direction). Nevertheless, the two modalities convey a unified

meaning representation achieved by semantic relatedness

and temporal congruity between the two [7]. Note that the

relations of iconic gestures and speech are at the level of

semantics, due to their formal resemblance to the objects

and events they represent. As such, they differ from other

visual accompaniments to speech such as lips, where there

is a form (but not meaning) matching between lip movements

and syllables, and head and eyebrow movements or other

hand gestures such as ‘beats’, meaningless forms of hand

movements that are used to increase the prominence of cer-

tain aspects of speech or regulate interactions. These will be

left out of this review (see [18,19]).

If speakers employ such multimodal utterances where

information conveyed in both speech and gesture are seman-

tically and temporally aligned with each other, how do

speakers/listeners comprehend them? After all, gestures

themselves are not very informative and fuzzy in the absence

of speech (i.e. unlike pictures or other informative actions).

In this selective review, I will present research regarding

whether and how listeners/viewers process the information

from co-speech gestures (specifically from iconic gestures)

and speech, including behavioral and neurobiological data.

This review shows first of all that iconic gestures are pro-

cessed semantically and that they evoke similar markers of

online neural processing and recruit overlapping brain

areas to those found in the processing of semantic infor-

mation from speech. Second, when gestures are viewed in

speech context (i.e. accompanying speech), they do not
seem to be processed independently but their processing

interacts with that of speech. This is evidenced through prim-

ing measures, online neural recordings and activations in

brain areas known to be sensitive to unification of meaning

and crossmodal interactions in the brain. Finally, the inter-

actions between the two modalities further seem to be

sensitive to the temporal synchrony of the two channels as

well as to the perceived communicative intent of the speak-

ers, and thus seem to be flexible rather than obligatory

depending on the communicative context.
2. Co-speech gesture comprehension: behavioral
and neural markers of semantic processing

It has been a long-standing finding that addressees pick up

information from gestures that accompany speech [20]. That

is, gestures are not perceived by comprehenders simply as

handwaving or as attracting attention to what is conveyed in

speech. Listeners/viewers pay attention to iconic gestures

and pick up the information that they encode. For example,

Kelly et al. [21] showed participants video stimuli where

gestures conveyed additional information to that conveyed in

speech (gesture pantomiming drinking while speech is ‘I

stayed up all night’) and asked them to write what they

heard. In addition to the speech they heard, participants’ writ-

ten text contained information that was conveyed only in

gesture but not in speech (i.e. ‘I stayed up drinking all

night’). In another study, Beattie & Shovelton [22] showed

that listeners answer questions about the size and relative pos-

ition of objects in a speaker’s message more accurately when

gestures were part of the description and conveyed additional

information than speech. McNeill et al. [23] presented listeners

with a videotaped narrative in which the semantic relationship

between speech and gesture was manipulated. It was found

that listeners/viewers incorporated information from the ges-

tures in their retellings of the narratives and attended to the

information conveyed in gesture when that information com-

plemented or even contradicted the information conveyed in

speech (see also [24,25]). Thus, listeners pick up the semantic

information conveyed in gesture.

Further research has shown that gestures also show seman-

tic priming effects. For example, Yap et al. [26] has shown that

iconic gestures—shown without speech—(highly conventiona-

lized ones such as flapping both hands on the side meaning

bird) prime sequentially presented words.

More evidence for the view that gestures are analysed for

meaning comes from studies investigating online processing

of co-speech gestures using electrophysiological recordings

(event-related potentials, ERPs). These studies focused on

the N400 effect known to be responsive to meaningful

stimuli. Kutas & Hillyard [27] were the first to observe for

words that, relative to a semantically acceptable control

word, a sentence-final word that is semantically anomalous

in the sentence context, as in ‘He spread the warm bread

with sock’, elicits an N400 effect, a negative-going deflection

of the ERP waveform between 300 and 550 ms poststimulus

with an enhanced amplitude for incongruous words com-

pared with congruent ones. Additional studies have shown

that a semantic violation is not required to elicit an N400

effect. In general, N400 effects are triggered by more or less

subtle differences in the semantic fit between the meaning

of a word and its context, where the context can be a single
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word, a sentence or a discourse (e.g. see [28] for a review). A

series of studies have shown that gestures used without

speech can also evoke similar N400 effects.

Wu & Coulson [29] found that semantically incongruous

gestures (shown without speech) were presented after car-

toon images elicited a negative-going ERP effect around

450 ms, in comparison to gestures that were congruent with

the cartoon image. Furthermore, unrelated words followed

by gestures (shown without their accompanying speech)

also elicited a more negative N400 than related words [30].

Wu and Coulson interpreted these findings as showing that

iconic gestures are subject to semantic processes ‘analogous’

to those evoked by other meaningful representations such

as pictures and words. Wu & Coulson [17] have shown that

ERPs for static pictures of gestures (instead of dynamic

ones), as well as objects proceeded by matching and mis-

matching contexts, elicit an N300 effect. (Willems et al. [31],

however, did not find such a specific effect for pictures’

integration to previous sentence context.)

Holle & Gunter [32] extended the use of the ERP paradigm

to investigate the semantic processing of gestures in a speech

context. They asked whether manual gestures presented earlier

in the sentence could disambiguate the meaning of an other-

wise ambiguous word presented later in the sentence and

investigated the brain’s neural responses to this disambigua-

tion. An EEG was recorded as participants watched videos of

a person gesturing and speaking simultaneously. The exper-

imental sentences contained an unbalanced homonym in the

initial part of the sentence (e.g. She controlled the ball. . .) and

were disambiguated at a target word in the subsequent

clause (which during the game. . . versus which during the
dance. . .). Coincident with the homonym, the speaker produced

an iconic gesture that supported either the dominant or the

subordinate meaning. ERPs were time-locked to the onset of

the target word. The N400 to target words was found to be

smaller after a congruent gesture and larger after an incongru-

ent gesture, suggesting that listeners can use the semantic

information from gesture to disambiguate upcoming speech.

In another ERP study, Özyürek et al. [33] examined

directly whether ERPs measured as a response to semantic

processing evoked by iconic gestures are comparable to

those evoked by words. This ERP study investigated the inte-

gration of co-speech gestures and spoken words to a previous

sentence context. Participants heard sentences in which a

critical word was accompanied by a gesture. Either the

word or the gesture was semantically anomalous with respect

to the previous sentence context. Both the semantically anom-

alous gestures and anomalous words to previous sentence

context elicited identical N400 effects, in terms of the latency

and the amplitude.

Using an functional magnetic resonance imaging (fMRI)

method, Straube et al. [34] have attempted to isolate the

brain’s activation in response to iconic gestures to see

whether it overlaps with areas involved in processing

verbal semantics. fMRI measures brain activity by detecting

associated changes in blood flow (i.e. blood-oxygen-level-

dependent (BOLD) response), relying on the fact that blood

flow and neural activation are coupled. In this study, they

compared the brain’s activation triggered by meaningful

spoken sentences (Sþ) with sentences from an unknown

language (S2), and they also compared activation for co-

speech gestures presented without their accompanying

speech (Gþ), and meaningless gestures also without speech
(G2). Meaningful iconic gestures activated left inferior fron-

tal gyrus (IFG), bilateral parietal cortex and bilateral

temporal areas. The overlap of activations for meaningful

speech and meaningful gestures occurred in the left IFG

and bilateral medial temporal gyrus (MTG). These findings

are consistent with another study by Xu et al. [35] showing

that left IFG and posterior medial temporal gyrus (MTG)

are involved in the comprehension of communicative ges-

tures (i.e. pantomimes such as opening a jar without

speech) as well as speech glosses of the same gestures (i.e.

open jar) presented separately.

These studies show that iconic gestures, seen without or

within a speech context, are analysed for meaning and the

brain’s neural responses to iconic gestures display similarities

to that of speech comprehension. Further research is needed

to show whether gestures are special in the way they are pro-

cessed in the brain and different from the activations observed

for actions, pictures or other meaningful representations.
3. Interactions between speech and gesture
comprehension

While the above studies have focused on the nature of the pro-

cessing of iconic gestures, other studies further investigated

how comprehenders bring together the semantic information

gleaned from the two modalities into a coherent and integrated

semantic representation. Are gestures initially processed inde-

pendently of what is conveyed in speech or are there

bidirectional interactions between semantic processing of

speech and gestures, in that independent processing of each

does not occur? In a priming study [36], participants were pre-

sented with action primes (e.g. someone chopping vegetables)

followed by bimodal speech and gesture targets. They were

asked to press a button if what they heard in speech or gesture

depicted the action prime (figure 1a). Participants related

primes to targets more quickly and accurately when they con-

tained congruent information (speech: ‘chop’; gesture: chop)

than when they contained incongruent information (speech:

‘chop’: gesture: twist). Moreover, the strength of the incongru-

ence between overlapping speech and gesture affected

processing, with fewer errors for weak incongruities (speech:

‘chop’; gesture: cut) than for strong incongruities (speech:

‘chop’: gesture ‘open’). This indicates that in comprehension,

the relative semantic relations between the two channels are

taken into account, providing evidence against independent

processing of the two channels (figure 1b). Furthermore and

crucially, this effect was bidirectional and was found to be

similar when either speech or gesture targets matched or

mismatched the action primes. That is, gesture influenced pro-

cessing of speech processing and speech influenced processing

of gesture.

Gestures’ influence on accompanying speech was also

detected in online measures of comprehending speech.

Kelly et al. [37] found that ERPs to spoken words (targets)

were modulated when these words were accompanied by

gestures (primes) that contained information about the size

and shape of objects that the target words referred to (e.g.

tall, wide, etc.). Compared to matching target words, mis-

matching words evoked an early P1/N2 effect, followed by

an N400 effect, suggesting an influence of gesture on

spoken words, first at the level of ‘sensory/phonological’

processing and later at the level of semantic processing.
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Further fMRI studies have attempted to locate the brain

areas involved in integrating information from speech and

gesture. In order to locate areas of integration between the

two modalities, they compared multimodal stimuli to unim-

odal ones, gestures coupled with degraded to those with

clear speech or manipulated the semantic relations between

the two channels (i.e. speech and gesture match, mismatch

or complement each other). Even though these studies find

left frontal and left posterior temporal cortices to be impli-

cated in integrating gestures with speech, they vary with

respect to whether they consistently find co-speech gesture-

related activation in the following regions: left IFG, bilateral

posterior superior temporal sulcus (STSp) and middle tem-

poral gyrus (MTGp) [34,38–49]. Interestingly, these are the

areas that are also involved when increased semantic proces-

sing is required during speech comprehension. Studies
examining increased semantic processing (i.e. ambiguity,

mismatch, etc.) in spoken language alone as well as studies

examining co-speech gesture in the context of speech have

found activities in similar brain regions, as illustrated in

figure 2 [39]. Furthermore, the temporal areas, especially

STS that are sensitive to speech–gesture integration, are

also known to be implicated in integration of other types of

multimodal stimuli such as lips and syllables (e.g. [18]).

However, complete consensus has not been achieved con-

cerning the nature of the participation of these brain regions

in gesture–speech integration. The contribution of left IFG to

semantic integration of speech and gesture was first reported

by Willems et al. [48]. In that study, participants heard sentences

in which a critical word was accompanied by a gesture (the

same stimuli as in [33] were used). Either the word or the gesture

could be semantically anomalous with respect to the context
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set-up by the sentence, with anomalous (incongruent) gestures

demanding more semantic processing. Incongruent conditions

involving either the word or the gesture elicited greater activity

than congruent conditions in left IFG, pars triangularis. Simi-

larly, Willems et al. [49] reported increased activation in left

IFG for incongruent co-speech gestures compared with congru-

ent co-speech gestures, using naturalistic (rather than acted out)

co-speech gestures as stimuli.

Left IFG has also been found to respond more strongly to

metaphoric gestures, that is, gestures with abstract meaning

(e.g. a ‘high’ gesture accompanying speech like ‘the level of

presentation was high’), compared with iconic gestures accom-

panying the same speech ([47]; also see [43]). These results

indicate that gestures that carry more semantic load due to

their metaphoric content activate left IFG (and not just gestures

that are incongruent with speech). In the Straube et al. [47]

study, iconic gestures as well as grooming movements, even

though used as control, activated left IFG, when compared

with no movement. Dick et al. [39] also found left IFG to be sen-

sitive to meaning modulation by iconic gestures; that is, more

activation in this area for complementary (speech: ‘I worked

all night’; gesture: type) than redundant gestures accom-

panying speech (speech: ‘I typed all night’; gesture: type).

Complementary gestures add information and require more

semantic processing than redundant gestures. Finally, Skipper

et al. [44] found that when hand movements (iconic gestures)

were related to the accompanying speech, left IFG (pars trian-

gularis and pars opercularis) exhibited a weaker influence on

other motor- and language-relevant cortical areas compared

with when the hand movements were meaningless (i.e.
grooming gestures or ‘self-adaptors’) or when there were no

accompanying hand movements.

Thus, left IFG is responsive to increased semantic proces-

sing load of integration of iconic gestures to speech: that is,

when gestures are difficult to integrate into the previous or

overlapping co-speech context (in the case of incongruent

gestures) and for metaphoric or complementary iconic ges-

tures that require more semantic processing compared with

gestures that simply convey redundant or similar information

to that in speech.

Researchers have also examined the role of posterior

temporal regions—STSp and MTGp in particular—in the

semantic integration of gesture and speech. While MTG has

been more frequently found to be involved in speech and ges-

ture integration, the role of STS has been more controversial.

Holle et al. [41] was the first to suggest that activity in STSp

reflects sensitivity to the semantic integration of gesture and

speech. In this study, STSp (but not left IFG) was more active

for ambiguous words (dominant or subordinate homonyms

such as mouse) accompanied by meaningful iconic gestures

than to speech accompanied by non-meaningful grooming

movements. This result was replicated in a second study in

which brain activations to iconic action gestures coupled with

action speech that conveyed similar information were com-

pared in two situations: where speech was degraded versus

not degraded [42]. STS was more active when gestures

accompanied degraded speech compared with clear speech.

However, not all studies have found greater activation in

STSp that reflected a specific role in semantic integration of

speech and gesture. For example, Dick et al. [39] did not find
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activation in this area when the semantic relation of the gesture

to speech was manipulated (i.e. complementary versus redun-

dant to speech; see also [48,49] for lack of activation of STSp).

Dick et al. [39] argued that STSp is not involved in semantic

integration per se but may be involved in connecting

information from the visual and auditory modalities in general.

A stronger consensus has been achieved with regard to

activation of left and/or right MTGp, which is anatomically

close to STSp, in relation to semantic integration of speech

and gesture. For example, Green et al. [40] found that, in

German speakers, left MTGp responded more strongly to

sentences accompanied by unrelated gestures (hard to make

sense of in relation to speech) than to the same sentences

accompanied by related gestures. Dick et al. [39] also found

this area to be sensitive to complementary gestures, in

comparison to redundant gestures.

Willems et al. [49] found that the left and right MTGp (as

well as left STSp) responded more to speech accompanied by

incongruent pantomimes (conventionalized actions with

objects such as ironing, twisting, etc., the meaning of which

would be clear without speech) than to the same speech

accompanied by congruent pantomimes. However, MTGp

was not activated for incongruent speech–co-speech gesture

pairs (gestures that are ambiguous without speech; i.e.,

hands moving back and forth in an undefined manner in

co-speech gesture while speech is ‘I packed up my clothes’)

compared with congruent pairs. Incongruent speech–gesture

pairs activated only left IFG and not MTGp. On the basis of

these findings, the authors suggest that bilateral MTG is

more likely to be involved in matching two input streams

for which there is a relatively stable common object represen-

tation (i.e. ‘twist’ in speech with a twisting gesture). This idea

is parallel to the notion that both the sight of a dog and the

sound of its barking form part of a representation of our

knowledge about dogs [58]. By contrast, when integration

of gesture and speech requires a new and unified represen-

tation of the input streams, the increased semantic

processing of iconic gestures results in the increased acti-

vation of left IFG (e.g. [59]). Note that at this point, these

characterizations should be seen more as tendencies rather

than exclusive functions of left IFG and MTG’s contributions

to speech and gesture integration at the semantic level (see

[39] for further discussion).

Finally, while the above imaging studies have provided

information about the use of speech and gesture integration at

the macro-anatomical level (in terms of brain regions using

event-related measurements), a recent study by Josse et al. [60]

has used a repetition suppression paradigm to address this

question at the neuronal level. This paradigm is based on the

principle that repetition of the same stimuli is associated with

a decrease in both neuronal activity and BOLD signal. In this

study, subjects were first shown words alone and then words

with congruent gestures as well as with the same words with

incongruent gestures. While words with congruent gestures

(speech: ‘grasp’; gesture: grasp) have shown repetition suppres-

sion (i.e. decrease in activation) in relation to words alone, this

suppression has not been observed when words were repeated

with incongruent gestures (speech: ‘grasp’: gesture: sprinkle).

Thus, the suppression effect shows that words and gestures acti-

vate the same neural population. The suppression effects were

found in the ‘dorsal’ route of the brain in premotor cortex and

the temporal–parietal areas (left and right STS), flagging

these areas as major sites for speech and gesture integration
and semantic processing, when both word and gesture tap

into the same conceptual representation. These findings sup-

port the view that STS (as found in [41]) (as well as motor

cortex) is also involved in matching two input streams for

which there is a relatively stable common object representation,

as found for MTG [49].
4. Interactions between speech and gesture:
obligatory or flexible?

While the above-mentioned studies have shown interactions

between speech and gesture in behavioural as well as in

neural responses, some recent studies have tapped further

into questions about to what extent this integration is obligatory

and automatic or flexible. After all, spontaneous speech is not

always accompanied by gestures; gestures might sometimes

be asynchronous with the relevant speech segment [61], and

the frequency or the informativeness of the representations in

gestures can vary depending on the communicative nature of

the situation (i.e. whether there is shared common ground

between the listener and the addressee or not, etc. (e.g. [62]).

Even though Kelly et al. [36] have argued that the interactions

between speech and gesture are obligatory, some of his own

work and that of others has shown that semantic processing

from gestures as well as their interactions might be modulated

depending on the level of synchrony between the channels

and the perceived communicative intent of the speaker.

Habets et al. [63] investigated the degree of synchrony in

speech and gesture onsets that is optimal for semantic inte-

gration of the concurrent gesture and speech. Videos of a

person gesturing were combined with speech segments that

were either semantically congruent or incongruent with the

gesture. The onset of the gesture strokes (i.e. the meaningful

part of the gesture, but not the preparation) and speech

were presented with three different degrees of synchrony: a

stimulus onset asynchrony (SOA) 0 condition (the gesture

stroke onset and the speech onset were simultaneous) and

two delayed SOAs, where speech was delayed by 160 ms

(partial overlap with speech) or 360 ms (speech onset pre-

sented after gesture stroke was executed; no overlap

between the two) in relation to the gesture stroke onset.

ERPs time-locked to the speech onset showed a significant

difference between semantically congruent versus incongru-

ent gesture–speech combinations for the N400 component

with SOAs of 0 and 160 ms, respectively, but not for the

360 ms SOA. Therefore, the closer speech and gesture are

temporally to each other (or at least when some temporal

overlap is possible), the more likely they are to be integrated

with each other (figure 3). It is important to note that in this

study, gestures used as stimuli, when viewed without speech,

were ambigious, as they are in most co-speech gestures. Thus,

mutual influence between speech and gesture is crucial (i.e.

possible only with total or partial temporal overlap between

the two) for speech and gesture integration to take place

(Kelly et al. [36]).

Similar results were also found by Obermeier et al. [64]

who used the same design as in the Holle & Gunter [32]

study mentioned above and changed the temporal synchrony

between the homonyms and gestures. He found that when

gestures (actually gesture fragments used in this study) did

not temporally overlap with the homonyms and when

subjects were not explicitly asked to pay attention to gestures,
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speech–gesture integration did not occur. Further research

showed that when, for the same stimuli, participants are pre-

sented with degraded speech or had hearing impairments,

gestures in the same asynchronous contexts were integrated

with speech. This shows again that integration can be modu-

lated by the aspects of the communicative situation [65].

Not only the asynchrony but also the perceived communi-

cative intent of the speakers seems to modulate the speech–

gesture integration or the semantic processing of gestures.

ERP studies by Kelly et al. [66] have demonstrated that our

brain integrates speech and gesture less strongly when the

two modalities are perceived as not intentionally coupled (i.e.

gesture and speech being produced by two different persons)

than when they are perceived as being produced by the
same person. In this study, adults watched short videos of ges-

ture and speech that conveyed semantically congruous and

incongruous information. In half of the videos, participants

were told that the two modalities were intentionally coupled

(i.e. produced by the same communicator), and in the other

half, they were told that the two modalities were not intention-

ally coupled (i.e. produced by different communicators). When

participants knew that the same communicator produced the

speech and gesture, there was a larger bilateral frontal and cen-

tral N400 effect to words that were semantically incongruous

versus congruous with gesture. However, when participants

knew that different communicators produced the speech and

gesture—that is, when gesture and speech were not intention-

ally meant to go together—the N400 effect was present only in
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right-hemisphere frontal regions. The results demonstrate that

pragmatic knowledge about the intentional relationship

between gesture and speech modulates neural processes

during the integration of the two modalities.

Finally, Holler et al. [67] has investigated how listeners/

viewers comprehend speech–gesture pairs in a simulated tria-

dic communication setting where the speakers’ eye gaze is

directed at them versus to another addressee (i.e. away from

them). Participants were scanned (fMRI) while taking part in

triadic communication involving two recipients and a speaker.

The speaker uttered sentences that were accompanied by

complementary iconic gestures (speech: ‘she cleaned the

house’ gesture: mopping) or with speech only. Crucially, the

speaker alternated her gaze direction towards or away from

the participant in the experiment, thus rendering him/or in

two recipient roles: addressed (direct gaze) versus unad-

dressed (averted gaze) recipient. ‘Speech and gesture’

utterances, but not ‘speech only’ utterances, produced more

activity in the right MTG, one of the brain areas found consist-

ently involved in speech–gesture integration, when

participants were addressed than when not addressed. Thus,

when the eye gaze of the speaker is averted away from the lis-

tener/viewer, indexing decrease in the perception of

communicative intent, integration of the two channels and/

or semantic processing gesture might be reduced (also see

[68] for similar effects shown by behavioural measures).
5. Summary and conclusion
Even though so-called ‘spoken’ languages are traditionally

characterized as auditory–vocal languages (as opposed to

‘signed languages’ that are visual–gestural [69]), they are essen-

tially multimodal in nature and also exploit the visual–gestural

modality for communicative expression, as well as other non-

manual visual articulators such as lips, face, eye gaze or head

movements. This review shows that at least a subset of these ges-

tures, the iconic gestures that convey semantic information by

virtue of their form–meaning resemblance to the objects and

events that they represent, are not perceived as mere incidental

accompaniments to the speech channel (e.g. to increase attention

to speech or contribute to the evaluation of the speaker [70]).

They are processed semantically during comprehension and as

an integrated part of the speaker’s communicative message. Lis-

teners/viewers do not perceive gestures automatically but take

the communicative intent of the speaker into account, relying

on other visible cues as such as eye gaze direction and also

depending on their temporal synchrony with the speech chan-

nel. Thus, iconic gestures are processed as ‘communicative’

meaning representations.

An important conclusion of this review is that the brain

areas (left IFG, bilateral MTG/STS) involved in the processing

of iconic gestures with or without speech overlap with those

brain areas that are also involved in processing semantic infor-

mation from speech and higher level ‘unification’ processes of

meaning [71]. Gestures activate similar brain areas to those

involved in processing semantic information from speech

(i.e. similar latency and amplitude of the N400). These areas

(left IFG, MTG/STS) seem to be playing different roles in hear-

ing and seeing meaning and are sensitive to different levels

and types of semantic relations between the two modalities;

for example, while left IFG is sensitive to the increase in the

semantic load required to process iconic gestures and
unification of new meaning representations, MTG is activated

when similar information is conveyed in the two input

streams. It is also important to point out that in some cases,

right-hemisphere homologues of these areas have also been

found, showing modality specificity of gestural representations

(yet, currently it is not known whether different lateralization

of these areas implies different processes; see [68], for some

indications). Given that STG/S is known to be involved in

audiovisual speech integration (e.g. lips/syllables [72]), this

region may be engaged in the integration of gesture and

speech at the audio–visual binding level, in addition to

playing a possible role in meaning integration.
6. Are gestures special?
The parallels in brain activation for gesture and speech

semantics do not necessarily mean that gestures are special,
even though some have claimed that speech and gesture

share the same communication system ([7,8,73] mostly

based on production data). After all, their processing

during comprehension shows overlaps with observing

action, pictures or other meaningful representations that

do not usually or necessarily coupled with speech (see

[31,74–76] for reviews). However, studies directly comparing

brain activations across different domains of meaningful rep-

resentations and their integration with speech are lacking.

Furthermore, the brain activations that are involved in

speech and gesture integration show a lot of overlaps with

those of other sound–meaning couplings (MTG) (e.g. sight

of a dog–barking of a dog as in [58]), audiovisual integration

such as between lips and syllables (STS) [18,72] and body

motion light displays and speech [77], and integration of

information from multiple non-linguistic sources such as

world knowledge, speaker identity, etc. (left IFG) [28]. For

instance, it is unclear whether crossmodal interactions at

the form-matching level (lips/syllables) recruit similar areas

to those in meaning-matching such as in speech and gesture,

or how three-way interactions among these modalities occur.

Finally, it is also crucial to find out whether processing of all

crossmodal interactions between different channels of com-

munication and other types of meaningful representations

such as actions and pictures is modulated by temporal asyn-

chronies or the perceived communicative intent or goal of the

speaker or the listener. Answers to these will shed further

light onto the differential roles that brain areas play and

their domain specificity in understanding spoken languages

as composite utterances that orchestrate multiple channels

of communication. These will have also important impli-

cations for understanding information uptake in hearing

impairments, cochlear implantation, second language lear-

ners and other communication disorders where gestures

seem to help as alternative ways of communication, such as

in autism, aphasia, etc.

Thus, as we gain a broader, more multimodal view on

language and communication, it is becoming increasingly

clear that visible meanings, the iconically motivated form–

meaning mappings available through the affordances of our

body for communicative expression, are an integral aspect

of our language faculty; not only for signed but also for

spoken languages [4,78,79].
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2011 The role of synchrony and ambiguity in
speech – gesture integration during comprehension.
J. Cogn. Neurosci. 23, 1845 – 1854. (doi:10.1162/
jocn.2010.21462)

64. Obermeier C, Holler H, Gunther T. 2011 What iconic
gesture fragments reveal about gesture – speech
integration when synchrony is lost: memory can
help. J. Cogn. Neurosci. 23, 1648 – 1663. (doi:10.
1162/jocn.2010.21498)

65. Obermeier C, Dolk T, Gunther T. 2012 The benefit of
gestures during communication: evidence from
hearing and hearing-impaired individuals. Cortex
48, 857 – 870. (doi:10.1016/j.cortex.2011.02.007)

66. Kelly SD, Ward S, Creigh P, Bartolotti J. 2007 An
intentional stance modulates the integration of gesture
and speech during comprehension. Brain Lang. 101,
222 – 233. (doi:10.1016/j.bandl.2006.07.008)

67. Holler J, Kokal I, Toni I, Hagoort P, Kelly S, Özyürek
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