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A proprioceptive neuromechanical theory
of crawling

P. Paoletti1,† and L. Mahadevan1,2

1School of Engineering and Applied Sciences, and 2Department of Organismic and Evolutionary Biology,
Harvard University, 29 Oxford St., Cambridge, MA 02138, USA

The locomotion of many soft-bodied animals is driven by the propagation of

rhythmic waves of contraction and extension along the body. These waves

are classically attributed to globally synchronized periodic patterns in the

nervous system embodied in a central pattern generator (CPG). However, in

many primitive organisms such as earthworms and insect larvae, the evidence

for a CPG is weak, or even non-existent. We propose a neuromechanical model

for rhythmically coordinated crawling that obviates the need for a CPG, by

locally coupling the local neuro-muscular dynamics in the body to the mech-

anics of the body as it interacts frictionally with the substrate. We analyse our

model using a combination of analytical and numerical methods to determine

the parameter regimes where coordinated crawling is possible and compare

our results with experimental data. Our theory naturally suggests mechanisms

for how these movements might arise in developing organisms and how they

are maintained in adults, and also suggests a robust design principle for

engineered motility in soft systems.
1. Introduction
Crawling is a common strategy for locomotion in soft-bodied animals, such as

worms and larvae, that cannot exploit the mechanical advantage provided by

rigid limbs. Instead, the absence of a rigid skeleton and the corresponding capa-

bility of large body deformations allow these animals to move in challenging

environments. Forward locomotion in these organisms is typically achieved by

the propagation of peristaltic waves along the animal body, with alternating

contraction and relaxation of muscles, either in a prograde or retrograde fashion.

Understanding how coordination between different segments can be achieved

in such simple organisms is an old question that has attracted the attention of

researchers for nearly a century [1–5], with coordination attributed to a central

pattern generator (CPG). In this scenario, the contribution of sensory feedback

is limited at best, and often not invoked at all. While the CPG hypothesis does

describe crawling in some species such as lampreys and has been exploited in

robotics [6], both old and new experimental facts have highlighted the importance

of proprioception, sensory feedback, brain–body coupling and substrate inter-

action in a number of organisms. For example, in various crawling animals,

locomotion persists even if the ventral nerve cord has been cut [7], and sensory

feedback seems to play a key role [1,8,9]. Indeed, there is a growing realization

of the coupling between brain, body and environment in locomotory systems

[10]. Theoretical efforts to understand soft-bodied locomotion can be classified

into two main streams: (i) purely neural models for periodic locomotory patterns,

and (ii) biomechanical models where the internal dynamics is prescribed and

locomotion is achieved by exploiting the resulting reaction forces applied by

the substrate. For models belonging to the first family, the focus is on a neural net-

work capable of generating periodic activity patterns that may be able to excite the

muscle with the correct timing for locomotion, and the interaction with the sub-

strate plays a minor role (see [11] for an example and [6] for a review). In the

second family (biomechanical models), the focus has been on coupling neural

excitation on the motion of the body interacting with the substrate (see [12,13]

as examples). Few approaches integrate these different perspectives, although
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Figure 1. (a) Schematic of a mechanical model for crawling. (b) Local feedback loop responsible for coordination. The body is represented as a chain of masses
linked by linear springs with stiffness k and damping c. The muscles are represented by the actuators f and the interaction with the substrate by asymmetric solid
friction F f. The corresponding equation of motion is given by equation (2.2). The feedback loop represented here shows that the motor neuron u gets activated when
the strain @xu reaches a given threshold 1̂ and the muscle f contracts when the neuronal activity u crosses a threshold û (see equations (2.4) and (2.5)). The
dash-dotted blocks indicate the potential presence of neural coupling (see equation (4.1)). (Online version in colour.)
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important exceptions are the recent studies of worm

locomotion in Caenorhabditis elegans [14,15].

Here, we consider the interplay between internal and

external dynamics via body–substrate mechanics and sen-

sory feedback in soft-bodied locomotion, with the goal of

understanding both the generation and the maintenance

of coordinated rhythms. Our approach takes the form of a

mathematical model for the neuromechanics of crawling that

explicitly couples sensory processes to muscular contraction

and body–substrate mechanics, and allows us to understand

the relative importance of centralized control and local sensory

feedback. We start in §2 with a description of a minimalistic

model for crawling locomotion, which is then analysed in §3.

The role of noise and diffusive neural coupling is discussed

in §4. A comparison between our predictions with experi-

mental measurements is reported in §5, where we also

discuss our study in the context of the development and evol-

ution of crawling patterns in organisms, along with some

lessons for engineered systems.
2. Mathematical model
Any model of crawling must couple the generation of internal

forces responsible for locomotion with the mechanics of the

interaction of the body with the substrate, along with feed-

back via a sensory mechanism that couples the neuronal

and mechanical systems of the body through the substrate

and proprioceptively.

(a) Body – substrate mechanics
Minimally, the motion of a deformable body interacting

with a solid substrate can be described by a linear chain

of masses linked by springs with stiffness k and linear
damping coefficient c, and actuated by muscles fi, as

shown in figure 1a. We assume that the muscular actuators

fi in the ith segment can apply contractile forces fi � 0 and

that the interaction with the substrate is via asymmetric

solid friction Ff
i , consistent with the fact that most earth-

worms and larvae have denticles that prevent backward

slipping, and they may even actively modulate the friction

[12]. Then, the dynamics of the generic ith segment is

governed by

k(ui�1 � 2ui þ uiþ1)þ c( _ui�1�2 _uiþ _uiþ1 )þ fi � fiþ1 � Ff
i ¼ 0,

(2:1)

where ui(t) ¼ xi(t) 2 xi(0) is the displacement and _ui ¼ dui=dt.
Here, we have neglected the effect of inertia, consistent

with observations [12,16]. Within this simplified setting,

the activation of the force fi pulls the ith mass forward, thus

inducing an elongation of the following segment that can in

turn be sensed by a stretch receptor to trigger the activation

of the (i þ 1)th muscle. Once properly tuned, such a local feed-

back loop causes the propagation of a retrograde travelling

wave of muscular activity that translates into forward

motion of the body (see the electronic supplementary material

for details).

Despite the conceptual simplicity of such discrete models

and their potential for describing the locomotion of maggots,

leeches and similar animals [12], the presence of solid friction

and external viscosity in equation (2.1) makes a continuum

description more suitable when the number of segments is

large and several of them may move simultaneously. Then

the dynamical equation (2.1) reads

Ac(E@xxuþ m@xxtu)þ Am@xf � Ff ¼ 0, (2:2)

where @x(.) ¼ @(.)/@x, @t ¼ @(.)/@t, Ac and Am are, respect-

ively, the body and the muscle cross-sectional area, u(x,t) is
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the displacement of a cross-section, E the body Young’s mod-

ulus, m the body viscosity, f (x, t) the internal stress induced

by the muscles and

Ff(x, t) ¼ 1þ nf

2
F sign(@tu)þ 1� nf

2
F, (2:3)

the friction force per unit length, where forward motion is

resisted by a force F and backward motion by nfF (nf . 1).
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(b) Proprioceptive neuromechanical interaction
The dynamics of the body must be complemented with a

muscular programme to induce forward propulsion, via

one of two basic circuit strategies: (i) a global CPG for

muscle activation with the correct timing and built-in

global synchronization between different CPG subunits [6],

and (ii) a local feedback mechanism that couples the segment

deformation with the muscle activation locally via stretch

receptors [7,15]. We start with a discussion of this latter fra-

mework, and eventually treat the general case where one or

both types of circuit may be at play.

We assume that the deformation of a segment is sensed

by stretch receptors that trigger excitable motor neurons,

which in turn lead to muscle contraction. This sensory feed-

back scheme is represented schematically in figure 1b; when

the elongation of a segment crosses a given threshold, a

motor neuron is activated and its activity leads to muscular

contraction of the segment, thus extending the next segment

along the body. The presence of substrate friction automati-

cally implies that the effects of muscular contraction are

localized. This then leads to propagating retrograde waves;

prograde waves can also be easily achieved by active modu-

lation of the friction (through body deformation, as in

earthworms) or by changing the form of the feedback, for

example by triggering the neuron in the preceding segment

once the contraction exceeds a given threshold or by consider-

ing extensile forces (generated by more complex combinations

of circumferential and longitudinal muscular arrangements)

instead of contractile forces.

For the neural system, we assume that excitable neurons are

quiescent when the mechanical strain is below a given threshold

and fire when triggered, similar to what is seen in swimming

organisms [17]. Minimally, this can be described in terms of a

simple integrate and fire model [18]

tu@tu ¼ � sin uþ vIS(@xu; sI , 1̂), (2:4)

where the phase u(x, t) [ (0, 2p) is the neuronal activation

level, tu is the neuronal relaxation time and we have defined

the sigmoidal function S as S(y; b, g) ¼ (1 þ e2b( y2g))21,

with b being the sensitivity and g being the threshold.

Then, the second term in equation (2.4) characterizes the

sigmoidal response of the stretch receptor with threshold

1̂, maximum amplitude vI and sensitivity sI, and leads to

a robust feedback loop because it does not require

accurate strain sensors, but only simple strain threshold

detectors. We see that when the thresholding function

jIj ¼ jvIS(@xu; sI , 1̂)j , 1, the system has a globally stable

equilibrium u* ¼ sin21(I ), but when jIj . 1 the system has

no equilibrium and u varies dynamically between 0 and 2p.

In this approach, neural excitation is purely local and long-

range coupling arises only through the body–substrate

interaction.
Further, we assume that the generation of the muscular

force f follows the minimal first-order dynamical law

tf@tf ¼ �f þ 1

2
Fmax[S(u; sJ , û )þ S(�u; sJ ,� 2pþ û)], (2:5)

where the second term is the sigmoidal muscular activation

with threshold û, maximum force Fmax and sensitivity sJ

induced by the motor neuron, and tf is the characteristic

muscle relaxation time. The second sigmoid characterizes

the periodicity of the phase on the interval u [ (0, 2p).

Finally, to trigger excitation, we assume for simplicity that

the @xf(0, t) is periodic in order to induce periodic movements

of the head. It is important to emphasize that the actual mech-

anism for producing the first segment excitation is irrelevant

for the propagation of muscular activity along the body and

any mechanism giving rise to periodic excitation provides the

same results as the ones reported in the following sections.

For example, similar crawling patterns can be obtained by

replacing the periodic head excitation with a bistable system

in the head neuron, such as I(0, t) ¼ vIS(�@xu(0); sI ,�1̂), so

that a new wave is automatically triggered as soon as the

first segment is relaxed. An example of a neural mechanism

capable of inducing such periodic excitation is described in

[15], where a simple network of excitatory and inhibitory neur-

ons in the head generates a periodic pattern of activity that

triggers the muscular wave propagation. In our framework,

we limit excitation only to the first segment, at odds with the

traditional CPG framework, which assumes that a central ner-

vous system directly controls muscle activity in the whole

body, with little or no influence from either body mechanics

or the external environment.

To complete the formulation of the model, we also specify

the initial conditions u(x, 0) ¼ u(x, 0) ¼ f (x, 0) ¼ 0 and the

boundary conditions @xu(0, t) ¼ @xu(l, t) ¼ 0, consistent with

force-free ends.
3. Neuromechanics of proprioceptive crawling
To determine the range of parameters that allow for propriocep-

tive rhythmic movements and the dynamics associated with the

crawling gait, we need to solve the set of equations (2.2), (2.4)

and (2.5). Before starting, we scale all times by the viscoelastic

relaxation time scale T¼ m/E and length scales by the size L
of a contraction pulse, obtained from equation (2.2) by balancing

the muscular forces with the friction L ¼ (Fmax Am 2 EAc)/F.1

We also normalize the muscle stress and the friction force

to read �f ¼ (Am=EAc)f and �Ff ¼ (L=EAc)Ff. With these choices

for the typical length and time scales, we find that the dimen-

sionless maximum muscular force is related to the friction by

the equation Fmax ¼ F þ 1 so that any constraint on Fmax also

implies a condition on F.

For steady retrograde locomotion, we look for travelling

wave solutions of equations (2.2), (2.4) and (2.5) of width js

moving at speed n, leading to strides of length Ls. Looking

for solutions of the form g(x, t) ¼ g(x þ nt) for the neuromech-

anical variables u, u, f leads to the coupled ordinary differential

equations

u00 þ nu000 þ f 0 � Ff ¼ 0, (3:1)

nu0 ¼ 1

tu
(�sin uþ I) (3:2)

and nf 0 ¼ 1

tf
(�f þ J), (3:3)
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Figure 2. (a) Displacement u, (b) neuronal activity u and (c) muscular force f obtained by simulating equations (2.2), (2.4) and (2.5) with F ¼ 1.2, nf ¼ 10, tu ¼ 2,
vI ¼ 21, 1̂ ¼ 0:6, sI ¼ 103, tf ¼ 1, Fmax ¼ 2.2, û ¼ 0:05 and sJ ¼ 103. We plot only three out of the total number of simulated segments for clarity. See also the
electronic supplementary material, movie 2. (Online version in colour.)
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where the primes indicate differentiation with respect to

j ¼ x þ nt, with boundary conditions u(+1) ¼ u(+1) ¼

f(+1) ¼ 0 corresponding to the far-field quiescent state.

Equations (3.1)–(3.3) can be analytically solved (see the elec-

tronic supplementary material for details) and numerically

validated by solving the full nonlinear system of partial differ-

ential equations (2.2), (2.4) and (2.5) using a finite difference

method. In figure 2, we show a retrograde crawling pattern

with parameters chosen to mimic earthworm locomotion

(refer to [2] and appendix A). The travelling wave velocity v
is set by the requirement that a segment stops when the inter-

nal stress, which is proportional to @xxu, vanishes (see the

electronic supplementary material for details).

Despite the presence of many dimensionless parameters

(vI , 1̂, sI , Fmax, û, sJ , nf, F, tf , tu), the locomotor performance

is significantly affected only by the subset (F, tf , 1̂) (see

below), parameters that are easily controllable in common

experimental conditions. In fact, the maximum friction force

F can be adjusted by changing the substrate (or using cuticu-

lar mutants for certain larvae), and sensory feedback that

influences both muscular relaxation times and the threshold

strain can be regulated genetically [8]. On the other hand,

the locomotor pattern is insensitive to the exact values of

the neural activation threshold û of the sigmoidal sensitivi-

ties sI and sJ. Furthermore, if vI � 1 and tf ≃ 1, the

neuronal parameters tu and vI are only required to satisfy

p� û ,
vI

tu

2nF
Fmax

, 2p� û, (3:4)

corresponding to the activation u [ (p, 2p) when the exci-

tation I ¼ 0, as derived in the electronic supplementary

material (equation B21) and shown in figure 3a. Finally,

there is a lower bound on tu, and on the solid friction asym-

metry coefficient nf to allow the muscular forces to overcome

friction and lead to directional movement (see the electronic

supplementary material for details). In figure 3b–e, we

show the normalized travelling wave velocity v, pulse

width js, stride length Ls and body centre of mass velocity

v as a function of the forward friction F and the muscular

relaxation time tf. We note that while both the pulse width

js and the stride length Ls depend on the friction force F,

they are only weakly dependent on the muscular relaxation

time tf (see the electronic supplementary material). On the

other hand, both the travelling wave velocity v and the body

velocity v are monotonically decreasing functions of the
relaxation time tf, because slower muscular dynamics increa-

ses the time required to reach the frictional threshold force,

consistent with our detailed analysis (see the electronic sup-

plementary material). Overall, increasing the static friction F
(i.e. decreasing the ratio Fmax/F) induces a degradation of all

of the locomotory performance, as expected.
4. The role of noise and diffusive neural coupling
Compared with a CPG, our proprioceptive neuromechanical

model might seem unduly complex. However, this is not

true, because much of the difficulty associated with the

maintenance of globally synchronized motion is now auto-

matically resolved by coupling the mechanics of the body

and substrate with a local neural circuit. Then, coordination

during crawling locomotion is based entirely on local neur-

onal dynamics, muscular contraction and sensory feedback

that assigns a crucial role to body–substrate mechanics.

This coupled approach naturally leads to locomotor

behaviours that are relatively robust to noise in both the

internal dynamics and the environment, while suggesting

developmental pathways for how coordination arises in bio-

logical systems, and design principles for artificial robotic

crawling machines.

Our results for the deterministic case treated so far are

qualitatively unchanged in the presence of both internal

and external sources of noise. For example, additive Gaussian

noise on the right-hand side of equations (2.2), (2.4) and (2.5)

does not disrupt coordination until the noise amplitude is

about 10–20% of the maximum values assumed by, respect-

ively, Ff, I and J (electronic supplementary material, movie 3).

Similarly, the addition of neural coupling between segments

(i.e. of a term proportional to uxx on the right-hand side of

equation (2.4)), does not change the qualitative nature of

the propagation of waves of muscular contraction along the

body (see the electronic supplementary material, movie 4)

where equation (2.4) has been replaced with

tu@tu ¼ � sin uþ I þDu@xxu, (4:1)

with Du ¼ 0.01; higher values for D simply correspond to a

rescaling of the maximum value of the neural excitation I.
This robustness to the presence of diffusive neural connec-

tions might explain some experimental observations

associated with the development of rhythmic patterns
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during the unhatched larval stage in Drosophila melanogaster.
Although travelling waves of neural excitation are observed

even in the absence of sensory stimulus [19,20], they are

easily disrupted, and it is thought that sensory feedback is

important to stabilize them. One possible scenario that

accounts for this is that larvae start out with diffusive neural

connections to trigger the rhythmic pattern during the early

stages of development where sensory feedback is very limited

or even absent. As development progresses, and a stiff cuticle

and an array of stretch receptors are formed, the larva might

use this rough template to progressively tune the sensory feed-

back network to improve the robustness of the rhythmic

coordination observed in larvae that have hatched.
5. Discussion
Our proprioceptive neuromechanical framework allows us to

explain old and new observations that show that local dynamics

coupled with sensory feedback suffice to generate robust rhyth-

mic rectilinear crawling seen in different organisms [7,9], without

the need for a globally synchronized CPG. Our model also pro-

vides a number of testable predictions for the stride length,

stepping time, body velocity and travelling wave speed. For

example, using data from experiments on earthworms [2], we

find that the available dimensionless parameters are
�Fmax ¼ 2:2, �F ¼ 1:2 and �tf ¼ 1 (see appendix A). In the absence

of available measurements of vI and tu, we simply ensure that

they satisfy the constraints of equation (3.4) for the existence of

travelling wave solutions. Then, the solutions of the continuum

model (equations (3.1)–(3.3)) yield the predictions

L̂s ≃ 20 mm, T̂s ≃ 2 s, v̂ ≃ 5 mm s�1 and n̂ ≃ 40 mm s�1 in

good agreement with measurements on earthworms

Ls ≃ 28 mm, Ts ≃ 2:5 s, v ≃ 7 mm s�1 and n ≃ 40 mm s�1 [2].
More importantly, all these quantities show the right scal-

ing behaviour with respect to total body mass. In fact,

according to the data reported in [2,21], and by assuming

that the main source of stress is provided by the internal

pressure [21] and that a cylindrical worm deforms under

its own weight, the friction force per unit length scales

as F ¼ h(PrestaLbody=Lbody) � (m0
bm0:33

b m0:33
b =m0:33

b ) � m0:33
b ,

where h is the coefficient of static friction and a � m0:33
b is

the width of the contact area (see ch. 4 and 5 of [22]). A simi-

lar process leads to a scaling relation for the muscular force

given by FmaxAm ¼ (Pcirc � Prest)pr2
body � m0

b(m0:34
b )2 � m0:68

b .

Finally, the intrinsic cuticle and muscle mechanical properties

follow the relations m=E � m0
b, tf � m0

b. Balancing the muscu-

lar force and the friction then leads to the scaling law

L ≃ (FmaxAm � EAc)=F � m0:3
b . When combined with the

reported data [2,21] (see appendix A), this implies that

�Fmax � m0
b, �F � m0

b and �tf � m0
b, (5:1)

that is, the normalized crawling velocity, stride length,

stepping time and travelling wave velocity are not affec-

ted by the body size, in agreement with the experimental

observations [2,21] (see appendix A for details).

A similar scaling argument can be used to predict how body,

muscle and neuron properties scale in other organisms, even in

the absence of direct measurements for all the quantities

involved, suggesting a variety of developmental pathways. For

example, the scaling in D. melanogaster is similar to earthworms,

whereas in Malus domestica the stride frequency is significantly

affected by the body mass and scales as m0.68, and therefore

either the body viscoelastic properties or the muscle properties

(or both) should vary during development [23].

Our model thus sharpens biological questions about the

relative importance of centralized control and local/distributed



Table 1. Experimental data about earthworms, as reported in [2,21].

parameter symbol
value for
mb 5 5 g scaling

body mass mb 5 g mb

body length Lbody 176 mm m0:34
b

internal pressure

at rest

Prest 110 Pa m0
b

longitudinal

contraction

Plong 340 Pa m0
b

rspb.royalsocietypublishing.org
Pr

6
sensory feedback for the development and maintenance of

coordinated locomotion [19,20]. It also suggests alternative

design of bioinspired robotic systems by replacing global

coordination and actuation by decentralized modules where

most of the control effort is replaced by elementary interactions

of the body with the substrate that can trigger switch-like

behaviour and thus lead to coordinated locomotion [24].
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pressure

circular

contraction

pressure

Pcirc 600 Pa m0
b

body radius rbody 4.5 mm m0:34
b

typical strain 1typ 0.6 m0

oc.R.Soc.B
281:201410
Endnote
1In fact, by assuming u � L and balancing all the terms in equation
(2.2) one obtains

ð�AcE=LÞ þ ðAmFmax=LÞ � F ¼ 0,

and the suggested scaling directly follows.

b

cuticle thickness tc 50 mm m0:37
b

wall Young’s

modulus

E 10 kPa m0
b

stride length Ls 28 mm m0:33
b

stepping time Ts 2.5 s m0
b

crawling speed y typ 7 mm s21 m0:33
b

contraction wave

velocity

v 40 mm s21 m0:33
b

92
Appendix A. Comparison with experiments
A comparison of our predictions and experimental data on

the locomotory characteristics of earthworms described in

[2,21] as a function of body mass mb is possible using the rel-

evant parameters for our model as reported in table 1,

together with typical values that we have used to simulate

a 5 g earthworm.

As shown in the main text, all the kinematic quantities

show the correct scaling with respect to body mass, and there-

fore we only need to test whether we are able to correctly

predict Ls, y, n and Ts for one body size, which we chose to

be 5 g, as reported in table 1. The friction per unit length can

be estimated as F ≃ 300 mN m�1 by approximating the body

with a cylinder that deforms under its own weight, preserving

a constant internal pressure, as discussed in the main text.

Similarly, an estimate for the muscular force of approximately

FmaxAm ¼ 30 mN is deduced from the difference in internal

pressure between contracted and elongated segments, an esti-

mate that is also in agreement with the measurements reported

in [25]. Using these estimates, the typical length scale reads

L ¼ (FmaxAm � EAc)=F ≃ 55 mm, consistent with the obser-

vation that in real earthworms about one-third of the body
contracts simultaneously. Unfortunately, we do not have

direct experimental measurements of the cuticle viscosity m

and of the muscle relaxation time tf, although in [26] the

step response of a single segment is modelled as a slightly

underdamped second-order dynamical system. Approximat-

ing this using the overdamped system in our model, we get

m=E ≃ tf ≃ 1=vn ¼ 0:5 s, also in agreement with the data

reported in [27] and, for larvae, in [28]. By using these esti-

mates in our continuum model (equations (2.2), (2.4) and

(2.5), or, equivalently, equations (3.1)–(3.3) in the main text),

we obtain the predictions reported in §5.
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