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In this work, we study a prism with a cross section
in polygon rolling on a ramp inclined at a small
angle. The prism under gravity rolls purely around
each individual edge, intermittently interrupted by a
sequence of face collisions between the side face of the
prism and the ramp. By limiting the prism in a planar
motion, we propose a mathematical model to deal
with the events of the impacts. With a pair of laser-
Doppler vibrometers, experiments are also conducted
to measure the motions of various prisms made of
different materials and with different edge number.
Not only are good agreements achieved between
our numerical and experimental results, but also an
intriguing physical phenomenon is discovered: the
purely rolling motion is nearly independent of the
prism’s materials, yet it is closely related to the prism’s
geometry. Imagine that an ideal circular section can
be approximately equivalent to a polygon with a large
enough edge number N, the finding presented in this
paper may help discover the physical mechanism of
rolling friction.

1. Introduction
Contacts/impacts are ubiquitous in diverse systems
and phenomena that span vast ranges of scales, from
the nanometre contacts inherent in micromachines and
nanomachines [1] to the geophysical scale characteristics
of earthquakes [2]. Despite the practical and fundamental
importance in many applications, challenges still exist
in many aspects of modelling contacts and impacts.
For instance, solutions for the impacts occurring in
an interface with either line or surface shape still
remain open.
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Virtually impact dynamics corresponds to an non-equilibrium process that usually manifests
different-size-scaled behaviours of materials to result in both dispersion and dissipation of
energy [3]. As an impact happens in an extremely small time interval and activates ignorable
deformation, a rigid body model, together with a certain impact law, is often used to predict
the impact output [4–6]. However, the impact laws in existing literature, e.g. the coefficients of
restitution given by Newton and Poisson, mainly play a role describing the energy dissipation
for an impact occurring at an isolated point [7–9]. When a finite or infinite number of points
are simultaneously involved in impacts, the motions of these points are often entangled together
to significantly influence the dissipation and dispersion of energy. In these cases, we need to
supplement other physical laws for characterizing the coupled motions [3,10].

Quantifying the coupled motions depends on understanding the temporal behaviours of
materials, which essentially should follow a constitution relationship prescribed in continuum
mechanics. For impacting bodies complying with reasonable rigid approximations, the
constitution relationship is often described as a spring-dashpot model with a stiffness-centralized
parameter to represent the material elasticity, plus a damping coefficient to quantify dissipation
of energy [11–13]. Although capable of capturing the main motion features, this technique often
requires parameters that have to be determined via fitting subjected to constraints imposed by
practical requirements. This is usually impossible in real physics and would cause relative large
discrepancies between the predicted scenarios and reality. Moreover, when numerical results
are mixed with information on different scales, the characteristics inherent in systems may be
confusing due to numerical errors involved in the mixture of information.

To avoid the disadvantages of spring-dashpot models, we recently developed a new
approach to solving impact problems [3,14]. Under the conventional assumptions of invariable
configuration and ignorable non-impulsive forces, material behaviours due to impacts are
described by a force–energy relationship between contact forces and elastic potential energy. This
relationship is deduced mathematically from a force–deformation relation specific to the material.
The elastic potential energy at each contact point is accumulated through integrating the normal
relative velocity over the corresponding normal impulse, equivalent to the work done by the
normal contact force via normal elastic deformation. By an energetic coefficient to scale the
energy dissipation in the work-to-energy transition, we can obtain an instantaneous distribution
for the potential energies among all the contact points, and then for the normal contact forces
by the force–energy relationship. Using the instantaneous distribution, we therefore can replace
the time scale in impact dynamics with an independent impulse scale and describe the impact
dynamics as a model with respect to a ‘time-like’ independent impulse. In this model, energy
dissipation is scaled by the energetic coefficient with a value limited in a range [0, 1], and the
energy dispersion is related to the ratios of the contact stiffness among all the points. Since
these quantities can be effectively estimated either by material properties or via independent
experiments, this method evades the difficulties in determining the concrete values of the stiffness
and damping coefficients in a spring-dashpot model. It also avoids the numerical difficulties
suffered by the stiff second-order ordinary differential equations within a small time period. The
validation of this method can be found in studies performed recently over different mechanical
systems [3,10,14–18].

This paper aims at extending the theory on point impacts into surface impacts. Consider a
polygonal prism with N edges rolling on a ramp. A face collision occurs at the instant when a side
face of the rolling prism falls down the ramp. This example has been theoretically investigated
first by Abeyaratne [19], then by Stronge [4] and MacDonald [20], and recently studied in
experimental work [21]. All the investigations have clearly revealed that such a simple system
manifests its dynamics sophisticatedly, and indicated that the physical mechanism underlying a
face collision would be much distinct from the one in a point impact.

For demonstrating the discrepancy of the dynamics between point impacts and face collisions,
Ruina et al. [22] designed a pair of wood prisms with seven equal edges. The only difference
between them is that one has flat side faces, whereas the other one has side surfaces that are
slightly concave. Surprisingly, the tiny difference in their side faces will result in entirely different
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motions as the prisms roll on the same ramp: the prism with flat side faces starts to roll along
the ramp, whereas the one with concave side faces immediately stops after the first impact. In
the electronic supplementary material,1 we demonstrate this intriguing phenomenon using the
prisms kindly offered by Ruina.

Focusing attention on the planar motion of a prism purely rolling on a fixed ramp inclined with
a small angle, we simplify the face collision within the prism’s motion into a two-dimensional
line impact. In order to model the material behaviour activated by an individual line impact, we
specify a linear stress–strain relationship to the contact interface, on which a thin elastic boundary
layer is assigned [23]. Combination of the linear stress–strain relationship and the geometry of the
flat surface allows the normal stress on the contact interface to form a linear distribution. As the
contact stress varies with an impact process, the coefficient scale in the linear distribution changes
accompanying the dispersion of energy. This permits the contact interface to be separated, and
eventually makes the prism roll on the ramp. Clearly modelling the line-impact dynamics needs
to correctly capture the evolution of the interface stress. For achieving this purpose, we adopt the
same idea as in [3,14] to deal with the line-impact dynamics. After specific treatments, a set of
first-order ordinary differential equations with respect to a ‘time-like’ independent stress impulse
is obtained.

Modelling the dissipation of energy correctly is also crucial in dealing with a line impact.
Basically, energy dissipation in impacts arises from different factors, including material plasticity,
impact-activating vibration and friction. For impacts with relative small velocity, the dissipation
by material plasticity can be ignored. If Coulomb’s friction law is introduced, friction dissipates
mechanical energy only when slip exists on the contact interface [24]. The difficult issue related
to the energy dissipation comes from the impact-activating vibration, which not only takes away
part of the energy, but also influences the friction property on contact interfaces [25,26].

For the line impacts in the prism’s motion, we adopt Coulomb’s friction law to quantify the
dissipation of energy by friction. By limiting the ramp in a small inclined angle, we observe from
experiments that no detachment occurs during the rolling motion of prisms. We take it as a
non-detachment condition to terminate the process of a line impact. By this condition, the energy
dissipation in a line impact is scaled without resorting to the complex physical mechanism in
association with the impact-agitating vibration and other small-scaled behaviours of materials.

In order to validate the model developed in this paper, we also perform experimental
investigations by measuring the motions of various prisms made of different materials and with
different edge number. In our experiments, a pair of laser-Doppler vibrometers is used to provide
accurate measurements. Knowledge of the time history of the simultaneous velocities at two
gauged points gives information to detail the prism dynamics. Good agreements are achieved
between our numerical and experimental results, and an intriguing physical phenomenon is
discovered: the purely rolling motion is nearly independent of the prism’s materials, yet it is
closely related to the prism’s geometry.

This paper is organized as follows: in §2, we present descriptions for a rolling prism, followed
by the equations in dynamics and kinematics. In §3, a theoretical model is developed to deal with
line impacts involved in the rolling motion of the prism. Details of experimental realization are
presented in §4, including introduction of the instruments and the measurement method for using
laser sensors. In §5, numerical and experimental results are compared for the motion of prisms
under different conditions. Conclusion and discussion follow in §6.

2. Description for a rolling prism
Suppose a prism with mass m and length l has N equal edges and N equal pieces of flat surfaces
(rectangles on sides). Figure 1 depicts a prism with N = 8 as an example for illustration. The

1(1) Video of a pair of almost identical polygon prisms with edge number N = 7 rolling on a slope. By releasing them
synchronously, the prism with flat side faces starts to roll along the slope, while the one with concave side faces immediately
stops after the first impact. (2) Video of a steel prism with 24 edges on a glass slope. (3) Video of two prisms with the same
shape (N = 30): one made from steel and one made from aluminium.
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Figure 1. A prism with N = 8 rolling on a ramp at an inclined angleβ .

distance from its centre of mass C to each individual edge is a0, the central angle for each side is
2α = 2π/N and width of the flat face is of value b = 2a0 sin α. The moment of inertia about centre
of mass C is J = ma2

0(cos 2α + 2)/6. A ramp is inclined with a small inclined angle β. Unit vectors
n and τ are related to the normal and tangential directions of the ramp, respectively. Define by
(O, xy) and (C, x′y′) an inertial frame and a body-fixed frame, respectively. The motion of a prism
is fully described by x and y coordinates of mass centre C in frame (O, xy) and the rotation angle
θ between frames of (O, xy) and (C, x′y′).

Suppose that the prism purely rotates around an edge at A and will collide against the ramp
by side face AB. We denote A and B as rolling edge and leading edge, respectively. Side face AB at
the current moment has an angle λ to the ramp. As the rolling edge changes after a line impact,
we define λ = 0 at the start of a line impact, while λ = 2α at the end of the line impact. Parameter
{ξ : |ξ ∈ D = [0, b]} is used for describing the points along AB.

The motion of the prism can be classified into two modes: the contact phase of the prism purely
rotating around an edge keeping contact on the ramp; and the line-impact phase when one side face
falling down the ramp. During a contact phase, the prism is in a fixed-axis rotation whose motion
can be fully described by selecting θ as the generalized coordinate. For a contact phase, we easily
obtain the governing equation and the corresponding constraint forces at A as follows:

JAθ̈ (t) = −mga0 sin φ1,

Fn
A(t) =

(
6 sin φ1 sin φ2

cos 2α + 8
− sin β

)
mg + ma0θ̇

2 cos φ2

and Fτ
A(t) =

(
6 sin φ1 cos φ2

cos 2α + 8
+ cos β

)
mg + ma0θ̇

2 sin φ2,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.1)

where φ1 = (α + β − λ), φ2 = (α + 2β − λ), JA = J + ma2
0, Fn

A(t) and Fτ
A(t) represent the normal and

tangential components of the contact force at point A, respectively.
Suppose friction satisfies Coulomb’s friction law. The pure rotation can be maintained only if

Fn
A(t) and Fτ

A(t) satisfy conditions as follows:

|Fτ
A(t)|

|Fn
A(t)| ≤ μs, Fn

A(t) > 0, (2.2)

where μs is the static coefficient of friction. Otherwise, the prism may either slip
(|Fτ

A(t)|/|Fn
A(t)| > μs) or detach from the ramp (Fn

A(t) = 0). A prism can enter into a pure rotation
mode only if inclined angle β is small enough and edge number N is large.
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As a side face, e.g. AB, falls down to the ramp, a line-impact phase is triggered. In this phase, we
need three degrees of freedom to describe the prism’s dynamics because the constraint equations
previously applied at A for the contact phase are no longer established. By selecting (x, y, θ ) as
the generalized coordinates to describe the motion of the prism in a line-impact phase, the impact
dynamics is governed by the following equations:

mẍ(t) = Fn(t) sin β + Fτ (t) cos β,

mÿ(t) = Fn(t) cos β − Fτ (t) sin β − FL

and Jθ̈(t) = Mc
n(t) + Mc

τ (t),

⎫⎪⎪⎬
⎪⎪⎭ (2.3)

where FL = mg denotes gravity, Fn(t) and Fτ (t) represent, respectively, the normal and tangential
components of the resultant forces by the interaction from the ramp, Mc

n(t) and Mc
τ (t) are the net

moments resulting, respectively, from Fn(t) and Fτ (t) about mass centre C.
Note that all the values of Fn(t), Fτ (t), Mc

n(t) and Mc
τ (t) are unknown now and will be

determined by incorporating certain physical laws into the relative motion on the contact surface.
Components vn(t, ξ ) and vτ (t, ξ ) along n and τ for the velocity of each point ξ ∈ D are given by

vn(t, ξ ) = ẋ(t) sin β + ẏ(t) cos β − θ̇ (t)
(

b
2

− ξ

)

and vτ (t, ξ ) = ẋ(t) cos β − ẏ(t) sin β + θ̇ (t)a0 cos α.

⎫⎪⎬
⎪⎭ (2.4)

The changing rates of vn(t, ξ ) and vτ (t, ξ ) with respect to time are

v̇n(t, ξ ) = ẍ(t) sin β + ÿ(t) cos β − θ̈ (t)
(

b
2

− ξ

)

and v̇τ (t, ξ ) = ẍ(t) cos β − ÿ(t) sin β + θ̈ (t)a0 cos α.

⎫⎪⎬
⎪⎭ (2.5)

If small deformation on the contact surface can be neglected, the kinematical relationships
shown in equation (2.4) and (2.5) always exist. These relationships will be used later in association
with the physical laws to reflect the interaction between the prism and the ramp.

3. Modelling a line impact
To solve equation (2.3) for the prism dynamics in a line-impact phase, other physical laws should
be supplemented to determine the interaction between the side face and the ramp. For achieving
this purpose, we introduce assumptions as follows:

A1. The material adjacent to the impact site behaves elastically in response of a line impact.
Coupling between normal and tangential deformation is weak enough to be ignored.

A2. The small deformation of the contact surface permits the prism’s configuration to be
invariable and the intensity of a line impact allows the non-impulsive forces to be ignored.

A3. The line impact is limited to an intensity that cannot make the prism be in free motion as
the impact vanishes.

(a) Property of the normal stress distribution
As assumption A1 is assumed, a contact interface can be modelled as an elastic boundary layer
that is confined in a thin lamina between two rigid bodies of the prism and the ramp. This allows
us to adopt a simple Winkler’s elastic base, rather than an elastic infinite half-space, to model the
material behaviours adjacent to the contact interface [23].

This model is illustrated in figure 2. The elastic layer, of small thickness �, rests on a rigid
base parallel to the ramp and is compressed by a rigid prism. Suppose no interaction between
adjacent elements in tangential direction in the elastic layer. Denote by δ(t, ξ ) the penetration
at point ξ ∈ D. Since only compression occurs in the elastic layer, we set δ(t, ξ ) just with negative
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Figure 2. Elastic boundary layer on contact surface.

values and divide the contact region D into two parts: (i) the separated region designated by D1(t) =
{ξ : δ(t, ξ ) > 0} and (ii) the effective region designated by D2(t) = {ξ : δ(t, ξ ) ≤ 0}. The normal elastic
strain at any point is given by

εn(t, ξ ) =
⎧⎨
⎩

δ(t, ξ )
� , D2(t) = {ξ : |δ(t, ξ ) ≤ 0}

0, D1(t) = {ξ : |δ(t, ξ ) > 0}.
(3.1)

Within the elastic boundary layer, the normal stress σ̄n(t, ξ ) at any point on contact region D
depends only on the strain εn(t, ξ ) at that point. Let us denote a linear relationship between σ̄n(t, ξ )
and εn(t, ξ ) as follows:

σ̄n(t, ξ ) = E∗εn(t, ξ ), (3.2)

where E∗ the effective elastic modulus related to the materials of contacting bodies. Noting that
σ̄n(t, ξ ) and εn(t, ξ ) always take negative values along the normal of the ramp since the boundary
layer is just in compression.

Denote by σn(t, ξ ) the interface stress applied on boundary AB of the prism. Clearly, the
direction of σn(t, ξ ) is opposite to the one of σ̄n(t, ξ ), and we have σn(t, ξ ) = −σ̄n(t, ξ ) ≥ 0. Unless
explicitly confusion, we will always use σn(t, ξ ) to represent the normal interaction between the
prism and the ramp.

Owing to the flat surfaces in the prism and the ramp, the interface stresses at different
contact points are not independent. The limitation from the two rigid flat planes only allows
elastic displacement δ(t, ξ ) to vary linearly along the boundary layer. Consequently, from
equation (3.2), the normal stress will be linearly distributed along the effective region of the
contact boundary. The stress concentration at two corner points are not taken into account in
the model.

Since σ (t, ξ ) = 0 outside the effective region, figure 3 shows four possible profiles for the
linear distribution of the normal stresses on the contact interface. The first two are termed
DS-I and DS-II with triangle shapes, whereas the others are termed DS-III and DS-IV with
trapezoid shapes.

Suppose that the stress-distribution line and contact-line AB intersect at point S. We define a
variable s(t) to represent the coordinate of point S in the ξ -axis. The effective regions in the four
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Figure 3. Instantaneous distribution of the normal stress on contact surface in (a,b) with a triangle shape, (c,d) with a
trapezoidal shape. (a) DS-I, (b) DS-II, (c) DS-III and (d) DS-IV.

modes from DS-I to DS-IV can be, respectively, quantified as follows:

D2(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[s(t), b], s(t) > 0 in DS-I

[0, s(t)], s(t) > 0 in DS-II

[0, b], s(t) < 0 in DS-III

[0, b], s(t) > 0 in DS-IV.

(3.3)

For convenience of distinguishing the four modes of the normal-contact-stress distribution, we
define s∗ as the position of a contact point with maximum stress σ ∗

n (t). So,

s∗ =
{

b in DS-I, DS-III

0 in DS-II, DS-IV.
(3.4)

Once the mode of the normal-contact-stress distribution is given, it is clear that the normal
stress at any point in D2(t) can be uniquely determined by σ ∗

n (t) and s(t)

σn(t, ξ )
σ ∗

n (t)
= ξ − s(t)

s∗ − s(t)
≡ fn(s(t), ξ ), ξ ∈ D2(t), (3.5)

where fn(s(t), ξ ) is a linear function with respect to ξ , and varies with time since s(t) and σ ∗
n (t)

change during a line impact.

(b) Resultant forces and net moments
Suppose the stresses along the direction of the prism axis are homogeneous. Integrating the
normal interface stress on the effective region D2(t) can express the resultant force Fn(t) as a
function with regard to s(t) and σ ∗

n (t).

Fn(t) = l
∫

D2

σn(t, ξ ) dξ � g1(s(t))σ ∗
n (t), (3.6)
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where g1(s(t)) is a function with respect to s(t) and depends on the mode of the stress distribution.
For the four kinds of modes from DS-I to DS-IV, we have

g1(s(t)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

(b − s(t))l, s(t) > 0 in DS-I

1
2

sl, s(t) > 0 in DS-II

1
2

b − 2s(t)
b − s(t)

bl, s(t) < 0 in DS-III

b
2s

(2s(t) − b)l, s(t) > 0 in DS-IV.

(3.7)

The normal stress in a linear distribution also generates net moment Mc
n(t) about the centre of

mass C, which is given by

Mc
n(t) = l

∫
D2

σn(t, ξ )
(

ξ − b
2

)
dξ � g2(s(t))σ ∗

n (t), (3.8)

where function g2(s(t)) also depends on the mode of the distribution of normal stress and takes a
form as follows:

g2(s(t)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
12

(b2 + bs(t) − 2s2(t))l, s(t) > 0 in DS-I

1
12

(2s(t) − 3b)sl, s(t) > 0 in DS-II

1
12

b3l
b − s(t)

, s(t) < 0 in DS-III

− 1
12

b3l
s(t)

, s(t) > 0 in DS-IV.

(3.9)

Besides the impact-agitating normal interaction, surface friction also affects the response of
a line impact. Suppose Coulomb’s Law can access friction property at a stress level. Then, the
normal and tangential stresses at every point satisfy a relationship given by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

τ (t, ξ )
σn(t, ξ )

= −μ sign (vτ (t, ξ )), if vτ (t, ξ ) 	= 0,

|τ (t, ξ )|
σn(t, ξ )

≤ μs, if vτ (t, ξ ) = 0,
ξ ∈ D2(t), (3.10)

where μ and μs are the slip and stick coefficient of friction, respectively, and vτ (t, ξ ) is the
tangential velocity of the contacting surface at position ξ . Note that sign(vτ (t, ξ )) = 1 if vτ (t, ξ ) > 0,
and sign(vτ (t, ξ )) = −1 when vτ (t, ξ ) < 0.

By assumption A1 that admits to ignore the tangential deformation in the boundary layer,
together with the kinematical relationship shown in equation (2.5), the tangential velocity vτ (t, ξ )
at every point on the contact surface will take the same value at the same time. Therefore, all
the points on the contact surface will either slip or stick synchronically. Obviously, the micro-slip
motion, as discussed by Mindlin [27] in studying the contact problem between elastic bodies, will
be excluded from our model.

Under the discussion above, we can define a generalized Coulomb’s Law of using a ratio
between Fτ (t) and Fn(t) to govern the friction related to the prism’s macroscopic motion

Fτ (t) = −μsign(vτ (t, ξ ))Fn(t) if vτ (t, ξ ) 	= 0

and |Fτ (t)| ≤ μsFn(t) if vτ (t, ξ ) = 0.

}
(3.11)
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In a slip state of friction, Fτ (t) is linked with Fn(t) by a slip coefficient μ. While in a stick state
of friction, equation (3.11) provides a velocity constraint vτ (t, ξ ) = 0. Differentiating the condition
with time gives a relationship as follows:

v̇τ (t) = ẍ(t) cos β − ÿ(t) sin β + θ̈ (t)a0 cos α = 0. (3.12)

The combination of equations (3.12) and (2.3) determines a unique relationship between Fτ (t)
and Fn(t) as friction is in a stick state. The transition from a stick to a slip state can be distinguished
by the upper bound μs in Coulomb’s friction law. While the transition from a slip to a stick state
is identified by checking whether the tangential velocity vanishes or not.

Note the centre of mass C apart from any side surface with the same distance a0 cos α. The net
moment of Fτ (t) about mass centre C can be expressed as

Mc
τ (t) = Fτ (t)a0 cos α. (3.13)

Since Fn(t) has been expressed as a function with respect to s(t) and σ ∗
n (t), both Fτ (t) and Mc

τ (t)
are also functions of s(t) and σ ∗

n (t) via Fn(t).

(c) Impulsive differential equations
Suppose that a line impact occurs at time t−l . From the start of the line impact, the evolution of
σ ∗

n (t) can be scaled by the normal stress impulse p∗, which is expressed as

p∗ =
∫ t

t−l
σ ∗

n (t) dt (3.14)

and is related to a differential form expressed as follows:

dp∗ = σ ∗
n (t) dt. (3.15)

Here, variable p∗ is continuous, though the profile of the normal-contact-stress may change
from one mode to another due to the evolution of interface stress during a line impact.

Rewrite equation (2.3) into an equivalent form as follows:

m dẋ = sin βFn(t) dt + cos βFτ (t) dt,

m dẏ = cos βFn(t) dt − sin βFτ (t) dt − FL dt

and J dθ̇ = Mc
n(t) dt + a0 cos αFτ dt.

⎫⎪⎪⎬
⎪⎪⎭ (3.16)

Define dPτ � Fτ (t) dt, dPn � Fn dt. Based on the invariable configuration and the ignorable
non-impulsive force as given in assumption A2, we can further simplify (3.16) by (3.6) and (3.8)
into a form:

m dẋ = sin βg1(s(t)) dp∗ + cos β dPτ ,

m dẏ = cos βg1(s(t)) dp∗ − sin β dPτ

and J dθ̇ = g2(s(t)) dp∗ + a0 cos α dPτ .

⎫⎪⎪⎬
⎪⎪⎭ (3.17)

Under coulombic friction, the differential tangential impulse dPτ is related to the differential
normal impulse dPn in the same way as the tangential force to the normal force. The generalized
coulombic friction in (3.11) can be equally rewritten as follows:

dPτ (t) = −μ sign(vτ (t, ξ )) dPn(t) if vτ (t, ξ ) 	= 0

and |dPτ (t)| ≤ μs dPn(t) if vτ (t, ξ ) = 0,

}
(3.18)
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which permits a unique relationship between dPτ (t) and dPn(t) for the prism’s motion in various
tangential states. Using (3.18) and (3.6), together with (3.12), we get a relationship between dPτ

and dp∗

dPτ � g3(s(t)) dp∗, (3.19)

where

g3(s(t)) =
⎧⎨
⎩

−μ sign(vτ (t, ξ ))g1(s(t)) if vτ (t, ξ ) 	= 0

− ma0 cos α

J + ma2
0 cos2 α

g2(s(t)) if vτ (t, ξ ) = 0. (3.20)

Then, equation (3.17) becomes

m dẋ = (sin βg1(s(t)) + cos βg3(s(t))) dp∗,

m dẏ = (cos βg1(s(t)) − sin βg3(s(t))) dp∗

and J dθ̇ = (g2(s(t)) + a0 cos αg3(s(t))) dp∗.

⎫⎪⎪⎬
⎪⎪⎭ (3.21)

Since σ ∗
n (t) ≥ 0 in a line impact, the value of p∗ will monotonically increase with time. This

means that (3.21) can be thought of as a set of first-order impulsive differential equations with
respect to a ‘time-like’ variable dp∗.

At the initial moment t−l of a line impact, equation (2.1) provides the pre-impact state of the
prism, including the velocity of the mass centre ẋ(t−l ), ẏ(t−l ) and the angular velocity θ̇ (t−l ). These
quantities initialize the impulsive differential equations (3.21).

During a line-impact phase, the value of s(t) usually changes, and the position of the contact
point with p∗ may vary if the normal-contact-stress distribution changes from one mode to
another. Furthermore, a terminal value should be specified to p∗ as it is taken as an independent
variable. Therefore, before (3.21) is adopted to obtain the post-impact outputs, we should
determine how the normal stress evolves on the contact interface and have to find the condition
by which a line impact is terminated.

(d) Potential energy density and stress–energy relationship
In order to reflect the evolution of the normal stress during a line impact, let us establish
a relationship between the normal interface stress and the potential energy reserving in the
boundary layer. This can be implemented according to the stress–strain relationship specific to
the boundary layer.

Let us denote by Πn(t, ξ ) a potential-energy-density function to consider the potential energy
reserving in per unit thickness of the elastic boundary layer. Its increment dΠn(t, ξ ) at a given
contact point can be calculated by stress σ̄n(t, ξ ) timing an infinitesimal normal strain dεn(t, ξ ) in
the internal of the boundary layer. Noting that σ̄n(t, ξ ) is opposite to the normal interface stress
σn(t, ξ ). The increment dΠn(t, ξ ) is given by

dΠn(t, ξ ) = −σn(t, ξ ) dεn(t, ξ ) = −dp(t, ξ )ε̇n(t, ξ ), ξ ∈ D2(t), (3.22)

where dp(t, ξ ) and ε̇n(t, ξ ) are, respectively, the infinitesimal impulse of the normal interface stress
and the strain rate at the same contact point.

Since both the prism and the ramp are considered as rigid bodies, and the ramp is fixed without
any motion, the strain rate can be expressed as ε̇n(t, ξ ) = vn(t, ξ )/�, and vn(t, ξ ) is just the normal
velocity of the point fixed on boundary AB of the rigid prism. At the start of a line impact, we
have Πn(t−l , ξ ) = 0 and p(t−l , ξ ) = 0. So, function Πn(t, ξ ) is expressed as follows:

Πn(t, ξ ) = − 1
�

∫ p(t,ξ )

0
vn(t, ξ ) dp(t, ξ ) ≡ 1

�
Π̄n(t, ξ ), ξ ∈ D2(t), (3.23)

where Π̄n(t, ξ ) = ∫p(t,ξ )
0 vn(t, ξ ) dp(t, ξ ).

When vn(t, ξ ) < 0, corresponding to a compressional phase at the point, Πn(t, ξ ) increases due
to the motion of the prism. As the contact point is in an expansion phase (vn(t, ξ ) > 0), Πn(t, ξ )
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decreases. For a fully elastic contact, its reduction will be fully transferred into the kinetic energy
confined in the motion of the prism.

Note that Πn(t, ξ ) couples with the normal stress that should satisfy the stress–strain
relationship specified to the elastic boundary layer. According to the stress–strain relationship
in equation (3.2), together with the substitution of σn(t, ξ ) for σ̄n(t, ξ ), its differential with regard
to time t can be given by

∂σn(t, ξ )
∂t

= −E∗ ∂εn(t, ξ )
∂t

=
⎧⎨
⎩−E∗

� vn(t, ξ ), ξ ∈ D2(t)

0, ξ ∈ D1(t),
(3.24)

where vn(t, ξ ) = ∂δ(t, ξ )/∂t.
Timing (3.24) with σn(t, ξ ) on both sides of it and noticing that dp(t, ξ ) = σn(t, ξ ), we have

σn(t, ξ ) dσn(t, ξ ) = −E∗

� vn(t, ξ ) dp(t, ξ ), ξ ∈ D2(t). (3.25)

Integrating (3.25) by an initial condition σn(t−l , ξ ) = 0, together with (3.23), leads to

1
2
σ 2

n (t, ξ ) = −E∗

�
∫ p(t,ξ )

0
vn(t, ξ ) dp(t, ξ ) = E∗

�
Π̄n(t, ξ ), ξ ∈ D2(t). (3.26)

So we have

σn(t, ξ ) = dp(t, ξ )
dt

=
√

2E∗
�

Π̄n(t, ξ ), ξ ∈ D2(t). (3.27)

Equation (3.27) establishes a relationship between normal interface stress σn(t, ξ ) and potential
energy density Π̄n(t, ξ ).

(e) Evolution of the normal interface stress
Once the relationship between normal interface stress and potential energy density is established,
the evolution of the normal interface stress can be quantified by Π̄n(t, ξ ) whose value will be
timely updated through the solutions of the dynamics of a line impact.

Note the feature of the normal interface stress with a linear distribution. Its evolution is
basically determined by the values of s∗ and s(t). Once both the values are determined, the
instantaneous profile of the normal interface stress can be obtained, then the dynamics of a
line impact governed by (3.21) is advanced via impulse p∗ increasing monotonically like a
time variable.

At the start of a line impact, we have vn(t−l , 0) = 0 and the magnitude of vn(t−l , b) is the
maximum. So, the normal-contact-stress distribution in the line impact will take a shape in mode
DS-I with an effective region D2(t−1 ) = [0, b]. At this time, the point with the value of p∗ is at B, and
we have s(t−l ) = 0, s∗(t−l ) = b, p∗(t−l ) = 0. Consequently, the values of gi(0), (i = 1, 2, 3), are known.

By allowing p∗ with an increment dp∗, we can calculate by (3.21) the variations of the velocities
in the prism’s motion induced by the increment dp∗. At the same time, the velocity distribution
on the contact surface can also be calculated by the kinematics specific to the rigid motion of the
prism.

The potential-energy density complies with the velocity distribution on the contact surface.
Therefore, as vn(t, ξ ) varies, the instantaneous value of Π̄n(t, ξ ) at any point also changes and can
be obtained by (3.23). Owing to the linear distribution, at any given instant we only need two
values of Π̄n(t, ξ ) for determining the distribution profile of the normal stress.

Let us arbitrarily select two distinct contact points, ξ1, ξ2 ∈ D2. The values of Π̄n(ξ1, t) and
Π̄n(ξ2, t) can then be calculated by (3.23) according to the outputs of (3.21) over the increment
dp∗. By the combination of (3.27) and (3.5), we have√

Π̄n(t, ξ1)
Π̄n(t, ξ2)

= ξ1 − s(t)
ξ2 − s(t)

. (3.28)
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Equation (3.28) provides a new value of s(t) in association with the variation of the potential
energy on the elastic boundary layer, and Π̄n(t, s(t)) = 0. Meanwhile, we can directly compare
the values of Π̄n(t, 0) and Π̄n(t, b), corresponding to the potential energy density at A and B,
respectively. If Π̄n(t, b) > Π̄n(t, 0), the stress at point B is maximum, such that it is related to
the independent variable p∗, and s∗ = b. Otherwise, the maximal normal stress appears at A, so
the independent variable p∗ should be designated to the stress impulse at point A, and s∗ = 0.
Note that any negative value cannot be permitted by Π̄n(t, ξ ). Its occurrence means that part of
the interface has lost contact stress.

Based on the values of s(t) and s∗, we can distinguish the mode of the normal-contact-stress
distribution at current time, then update the values of gi(s(t)), (i = 1, 2, 3). By prescribing a new
increment to p∗, and repeating the process shown above, the dynamics of a line impact (3.21) can
then be advanced along with p∗ until a condition to terminate the line impact is met.

Although the line-impact model presented in this paper is based on Winkler’s elastic base
to model material behaviours activated by impacts, the concrete values of the thickness of the
boundary layer and the elastic modulus of materials are not required. This allows our model to
take advantages over the techniques of using a spring-dashpot model, which require the above
values for the calculations of small deformation.

(f) Energy dissipation
When the boundary layer is elastic, it means that no dissipation is taken into account in modelling.
However, impact always triggers complex material behaviours that inevitably dissipate certain
mechanical energy.

To scale the energy dissipation of a line impact in a disc–ball system [15], we discretize a line
impact into a series of impacts at lumped points in which a coefficient of restitution is used
for considering energy dissipation. Although this method is validated by the good agreements
between our numerical and experimental results, the line impact specific to the prism’s motion
allows us to scale the energy dissipation in a simpler way.

Under assumption A3, the intensity of a line impact is not big, so the prism cannot enter into
a free motion after a line impact. According to our experimental observation, this assumption is
available for the prism with a large edge number N rolling on a ramp in a small inclined angle.
This scenario can be described as a non-detachment condition that allows one of the prism’s
edges to keep contacting the ramp after a line impact. Mathematically, a line impact finishes at
the instant when the following kinematic relationship is satisfied:

vn(t+l , b) = 0, or vn(t+l , 0) = 0; and vn(t+l , ξ ) ≥ 0 for all ξ ∈ D. (3.29)

Once the above condition is met, the solutions by (3.21) at current time are thought of the
outputs of a line impact. Its outputs are then adopted to initialize the subsequent motion of the
prism with a fixed-axis rotation.

At the instant of the condition satisfied, the effective region D2 is usually not null. This
means that certain potential energy will be discarded at the end of a line impact. In this sense,
the condition in (3.29) plays a role of scaling the dissipation of the energy occurring in a
line impact.

(g) The prism’s rolling motion independent of material
As a prism is in a pure rotation around an edge, its governing equation of (2.1) obviously shows
that the prism’s dynamics is independent of mass m and the coefficient of friction. Therefore,
the pure rotation will be independent of materials if the stick state in friction can be kept in the
dynamics. In addition, we can prove that the output of a line impact is also independent of the
prism’s material.
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Figure 4. Schematic of the experiment system for a prism rolling on a ramp. (Online version in colour.)

Let us replace the independent normal stress impulse p∗ by p̄∗ = p∗/m, which scales p∗ by the
prism’s mass m. After that, the impulsive differential equation in (3.21) is equally rewritten as

dẋ = (sin βg1(s(t)) + cos βg3(s(t))) dp̄∗,

dẏ = (cos βg1(s(t)) − sin βg3(s(t))) dp̄∗

and
(

J
m

)
dθ̇ = ( g2(s(t)) + a0 cos αg3(s(t))) dp̄∗.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.30)

Note that ratio J/m is irrelevant to m. As the stick state remains unchanged, the value of
s(t), determined by the outputs of (3.30) at each step of p∗, is independent of m, so does for
functions gi(s(t)). Therefore, the evolution of (3.30) is independent of m. In addition, the terminal
condition (3.29) for a line impact is of geometric consistence to be unaffected by mass m. When this
condition is incorporated into the line impact model, the outputs of a line impact will be material-
independent. The combination of the material-independent properties for the dynamics in line
impacts and in fixed-axis rotation makes the prism’s rolling motion independent of the material.
This property will be validated via the following numerical and experimental investigations.

4. Experimental set-up, measurement method and physical parameters
Figure 4 shows a schematic of the experimental system for a prism rolling on a ramp. Experiments
are committed on an experiment table that provides a quite horizontal standard. A glass plate,
with thickness 15 mm and a uniformly rough surface of 650 × 300 mm, is inclined to form a ramp
in a small angle β to the horizontal plane. An alternative steel plate with the same shape as the
glass plate is also used for checking the rolling motion on different rough surfaces.

Six prisms with different edge number N are fabricated from identical steel rods with the same
radius a0 = 15 mm and the same length l = 50 mm. In order to examine the effects of material
on the prism’s rolling motion, we also experimentally test two aluminium prisms with shapes
the same as the steel prisms with edge number N = 22 and 30. To make sure the flatness of the
side surfaces, all the prisms are precisely machined via a numerical control machine and are
galvanized to make their side surfaces reflect light effectively.

In experiments, we first place the prism in contact with the ramp by an edge, tilt it with an
initial angle λ0, then release it to trigger a rolling motion. It should be noted that the release
configuration of the prism is limited to a value of λ0 < α + β for the prism rolling forward.
Otherwise, the prism will fall down backwards due to gravity. Also, the inclined angle β must
be set at a small value in order to make the prism keep rolling without detachment.

Owing to impacts, high-frequency vibration will be excited along the prism’s rolling motion.
The agitated vibration may change the friction on the contact surface, which in turn influences
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the prism’s motion. For achieving a stable rolling motion, it is important to damp the impact-
agitating vibration by taking some measures. In our experiments, silica sheets are put under the
slope, and over the inclined surface outside the rolling route of the prism.

Two laser-Doppler vibrometers (Polytec-OFV-3001-353) are adopted to measure the prism’s
motion. Data acquisition is performed via an analogue-to-digital card (PMD-1608FS) with a
sample rate 10 kHz. A method of mirror reflection is used to guarantee the directions of the two
laser beams parallel to the ramp. Namely, the laser beam can be reflected back along the same
route as it shoots to a mirror vertical to the ramp. Owing to the creep effects in silica materials,
the parallelism of the two laser beams has to be carefully adjusted for each test in order to obtain
reliable experimental data. We also use a high-speed (CCD) camera to capture the prism’s motion.

The two parallel laser beams intersect the corresponding surface of the rolling prism at
two measured points, designated by p1 and p2, and a distance h1 and h2 apart on the ramp,
respectively. Suppose vp1 (t) and vp2 (t) the instantaneous components of the velocities of the two
measured points along the ramp direction. The rotary velocity of the rolling prism can be given
by

θ̇ (t) = vp1 (t) − vp2 (t)
h1 − h2

. (4.1)

Integration of θ̇ (t) can give the angle θ (t) passed by a rolling prism. The times of line impacts
occurring in a prism with N edge number performing a rotary angle θ (t) can be calculated by

Lp(t) = Nθ (t)
2π

. (4.2)

Note that the two gauged points p1 and p2 are not fixed on the prism, but comply with the
positions instantaneously intersected by two laser beams. According to the outputs of the prism’s
dynamics in simulations, the corresponding values of vp1 (t) and vp2 (t) can be calculated via a
relationship expressed as follows:

vpi (t) = ẋ(t) cos β − ẏ(t) sin β − θ̇ (t)(hi − (y(t) cos β + x(t) sin β)), (4.3)

where i = 1, 2 for points p1 and p2, (x(t), y(t)) and (ẋ(t), ẏ(t)) are the position and velocity of the
prism’s centre of mass, respectively.

5. Numerical and experimental results
In this section, we will experimentally and numerically investigate the rolling motions of prisms
under different conditions, including the changes in materials and friction as well as prism
geometries. Although the slip state in friction can access our model, we focus on a specific scenario
in which neither slip nor detachment occurs in the whole process of the prism’s rolling. This
special case, denoted as a pure rotation, allows the model of a line impact to be examined in a clear
physical picture with the manifestation of energy dissipation coming from the factor of impact-
agitating vibration. In addition, theoretical analysis indicates that the pure rotation is independent
of materials. This property benefits solidifying of our model through observing prisms in different
materials rolling on different contact surfaces.

(a) Validation for the pure rotation in prism’s motion
Capturing the prism’s motion by a high-speed camera can provide a vivid observation to examine
whether slip or detachment occurs. The electronic supplementary material video (see footnote 1)
shows a steel prism with 24 edges rolling on a glass ramp. It clearly reveals that the prism rotates
firstly around an edge, then changes its rolling axis via a line impact to another edge, and repeats
this process continually to form a pure rotation.

This phenomenon can be quantified by our experimental data. In our experiments, the
two laser sensors shoot two beams apart from the glass ramp with a distance h1 = 19.9 mm
and h2 = 11.6 mm, respectively. The beam with a direction opposite to the prism’s motion
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Figure 5. A steel prismwithN = 22 rolling on a glass ramp at an inclined angleβ = 0.4079◦. Comparison between numerical
and experimental results for the velocities of the gauged points p1 and p2 with distances h1 = 19.9 mmand h2 = 11.2 mmapart
on the ramp, respectively. Inset details the dynamics adjacent to a line impact. (Online version in colour.)

measures the velocity vp1 (t) with positive values, while the other one along the prism’s
motion measures velocity vp2 (t) with negative values.

Figure 5 shows the curves of vp1 (t) and vp2 (t) versus time for a steel prism with N = 22. Just after
releasing it, the prism rotates about an edge on the ramp and is accelerated by gravity to make
the magnitudes in vp1 (t) and vp2 (t) increase monotonically. When λ = 0, a line impact occurs. After
that, the prism retrieves its rotation around a subsequent edge, then keeps rolling on the ramp.

The cuspids in the curves correspond to the instant of line impacts, which not only change the
magnitude of the rotary velocity of the prism, but also alter its rolling axis. The inset in figure 5
shows a detailed inspection of the values of vp1 (t) related to the prism’s motion passing through
three times of line impacts. Clearly, only one sharp step exists at each individual cuspid in the
curves. This means that a line impact reduces the magnitude of the rotary velocity, but cannot
allow the prism to detach away from the ramp (the occurrence of other impacts will generate
multiple steps in the curves). Therefore, the prism after the impact begins to rotate about the
subsequent edge. Note that the concave shape in the curves is attributed to the different roles of
gravity that first resists then accelerates the rotation along the prism changing its configuration.
The rotation decelerates during the time interval when the prism’s configuration changes from
λ = 2α to λ = α + β, then accelerates until another line impact occurs.

Referring to the material manual, we estimate the glass–steel contact surface with a stick
coefficient μs = 0.12. This value is applied to our simulations to check the friction state in line
impacts and in the rotation of the prism about an edge. Our numerical simulations indicate that
the prism follows a pure rotation, namely no slip and no detachment occur on the contact surface.
By setting the prism with an initial configuration λ0 = 5.3220◦, good agreements are achieved in
the comparisons between our numerical and experimental results.

(b) Energy dissipation in a pure rotation
As a prism rotates about a fixed axis without slippage, no energy is dissipated. Therefore, the
energy dissipated in the motion of a prism only comes from the events of line impacts. When
slip friction and material plasticity are excluded from the dynamics of a line impact, the unique
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factor responsible for dissipation is just the impact-agitating vibration that is scaled in our model
via a kinematical condition given by equation (3.29) to terminate the process of a line impact.
This condition makes the rotary axes of a prism change from one edge to another, and manifests
dissipation of energy by the sharp decrease in the rotary velocity at the instant of a line impact.

Note that certain gravitational potential energy will be transferred into the rotation of
a prism. If the energy dissipated in an individual line impact is less than the pumped
energy related to the prism rolling a central angle 2π/N, the average rotary velocity will
continuously increase. Once the two parts of energy can be balanced, the rotary velocity will vary
periodically with a period the same as the time interval of two adjacent impacts, and the
prism moves along the ramp like an ideal cylinder performing a pure rotation with a uniform
rotary velocity.

Figure 6 plots the rotary velocities for three steel prisms with N = 22, 30, 38 rolling on a
glass ramp. In their initial stages, the motion of these prims follows an approximately uniform
accelerative motion. With the increase of rolling velocity, more energy will be dissipated in
each individual line impact. This will reduce the rolling acceleration to make the curves
of the rotary velocity in convex shapes. When balance is reached between the pumped
energy by gravity and the dissipated energy by line impacts, each curve of the rotary
velocity will reach a distinct platform accompanying local fluctuations. The curves in figure 6
clearly reveal this tendency, though no perfect platforms appear due to the limitation of the
ramp’s length. Figure 6 also shows that our numerical results can precisely agree with the
experimental findings.

(c) The prism’s motion independent of material
According to the model proposed in this paper, the prism’s motion in a pure rotation mode is
independent of the material. We use a high-speed camera to record the motions of two prisms
with the same shape (N = 30) but one made from steel and the other from aluminium. When they
are released in the same configuration on the glass slope, the electronic supplementary material,
video (see footnote 1), clearly shows that the two prisms roll synchronically on the ramp in the
same fashion.
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Figure 7. Velocities at the gauged points p1 and p2 with distances h1 = 22.3 mm and h2 = 11.9 mm for a steel prism and an
aluminium prism with the same edge number N = 24, separately released on the same glass ramp with an inclined angle
β = 0.3702◦. (Online version in colour.)

This property is further confirmed by comparing the experimental results for the prisms with
N = 24 in steel and aluminium materials, respectively. We plot the two sets of experimental results
in figure 7. Although the two experiments are performed separately to generate obvious deviation
in the initial stages of their motions, the two prisms will quickly converge to a synchronously
rolling motion. This also means that the perturbation in its initial configuration has little effect on
the long-term behaviour of a prism’s motion.

(d) Prisms with different edge number in rolling motion
By using prisms with different edge number, we numerically and experimentally investigate
the effect of N on the rolling motion of prisms. The investigation concerns six steel prisms
with identical radius a0 = 15 mm and the same length l = 50 mm, while the edge number
varies with N = 22, 24, 30, 32, 36, 38. All the experiments are performed on the same glass ramp
with the same inclined angle β = 0.3792◦. Simulations are implemented by specifying the initial
configuration λ0 = 7.2◦, 5.25◦, 5.3220◦, 4.8937◦, 5.06◦, 4.5◦, to the corresponding prism along
increasing N.

In order to explicitly expose the difference of the rolling motion in the six prisms, we plot line-
impact times Lp(t) versus time in figure 8. Aside from the good agreements between our numerical
and experimental results, these curves clearly show that the prism runs faster as N increases. This
implies that the line impacts in the prism dissipate less energy as the edge number N increases.

(e) Prisms rolling on different contact interfaces
In order to check the rolling motion of the prism on different contact surfaces, we re-examine the
rolling motion of the six steel prisms by setting them on a steel ramp. Experimental measurements
are performed by setting the heights of the two laser beams apart from the steel ramp at distances
h1 = 22.3 mm and h2 = 11.9 mm.

In comparison with the glass–steel surface, the steel–steel contact surface reduces friction with
a small value for the stick coefficient (μs = 0.08). Under the friction property, details of simulations
and experiments indicate that no slip and no detachment can occur in the motion of these prisms.
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Figure 8. Line-impact times Lp(t) in six steel prisms with N = 22, 24, 30, 32, 36, 38 rolling on a glass ramp with an inclined
angle β = 0.3702◦. Numerical simulations are performed by setting the prisms at their corresponding initial configurations
λ0 = 7.2◦, 5.25◦, 5.3220◦, 4.8937◦, 5.06◦, 4.5◦. The maximum relative errors between the numerical and experimental
results are 0.39%, 2.19%, 1.79%, 0.69%, 2.54% and 0.75% from N= 22 to N = 38. (Online version in colour.)
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Figure9. Line-impact times Lp(t) in six steel prismswithN = 22, 24, 30, 32, 36, 38 rollingona steel rampwithan inclinedangle
β = 0.3792◦. Numerical simulations are performed and themaximum relative errors between the numerical and experimental
results are 4.42%, 1.73%, 0.837%, 1.71%, 1.12% and 3.08% from N= 22 to N = 38. (Online version in colour.)

Figure 9 presents our numerical and experimental results for the values of Lp in the six
steel prisms. In comparison with the experiments on a steel–glass contact surface, the change
of material on the contact surface slightly enlarge the discrepancies between our numerical
and experimental data. The discrepancies essentially come from small-scaled behaviours in the
impact-agitating vibration. According to our experimental observations, vibration is more easily
agitated on the steel–steel surface than on the steel–glass surface. Although certain measures
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were taken to alleviate the vibration, its effects on the friction of the contact surface cannot be
completely annihilated.

6. Conclusion and discussion
In this paper, we have theoretically and experimentally studied a planar prism rolling on a fixed
ramp inclined at a small angle. In order to deal with the problem of line impacts involved in
the prism’s motion, we propose a line-impact model that can properly reflect the dissipation and
dispersion of energy occurring on the contact surface. Validation of the theoretical development
is supported by the good agreements between our numerical and experimental results related to
motions of many prisms made in distinct shapes and in different materials.

Essentially, a line impact agitates complex material behaviours with different size scales during
an extremely small time interval. By scaling these behaviours into an elastic boundary layer with
a linear stress–strain relationship and Coulomb’s friction, our theory clearly indicates that a line
impact results in complex evolution of stress on the contact surface, which cannot be neglected in
modelling. In addition, although the impact-agitating vibration only dissipates a small amount of
energy in each individual impact, its accumulative effects will be manifested in the long-term
behaviours of the prism’s motion. Without resorting to the concrete physical mechanism, we
discover that a non-detachment condition can be used to quantify the energy dissipation of a
line impact.

Through systematic experiments with results agreeing with numerical simulations, we have
also discovered some intriguing phenomena. If neither slip nor detachment occurs in prisms with
the same edge number N, its rolling velocity is nearly unaffected by the prism’s material and
the friction of the contact surface. If the length of ramp is large enough, the rotary velocity will
gradually converge to a constant value. Nevertheless, the value will be distinct for prisms with
different edge number N. The prism will roll faster as N increases.

Imagine that an ideal circular section can be approximately equivalent to a polygon with a
large enough edge number N. Approximately, the line impacts in the rolling motion of a prism can
be thought of discretizing the rolling process of an elastic cylinder, while augmenting the effects
of the energy dissipation by line impacts. Basically, an elastic body in contact may agitate more
complex material behaviours with different scales in size and time [28–30]. Coupling of these
scales will be more complex than that in the prism’s pure rotation. Nevertheless, the similarity
between them may allow us to expect some conclusions of this paper to apply to discovering the
physical mechanism of rolling friction in an elastic cylinder.
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