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Abstract

The aging phenotype is the result of a complex interaction between genetic, epigenetic and

environmental factors. Evidence suggests that epigenetic changes (i.e., a set of reversible, heritable

changes in gene function or other cell phenotype that occurs without a change in DNA sequence),

may affect the aging process and may be one of the central mechanisms by which aging

predisposes to many age-related diseases. The total number of altered methylation sites increases

with increasing age, such that they could serve as marker for chronological age. This article

systematically highlights the advances made in the field of epigenomics and their contribution to

the understanding of the complex physiology of aging, lifespan and age-associated diseases.
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Aging has emerged as a major global public health issue [1]. Worldwide, the number of

individuals older than 65 years of age are projected to increase from 420 million in the year

2000 to as many as 973 million by 2030 [2]. In the USA, this same age group presently

consists of 36 million individuals and could increase to nearly 80 million by 2050 [3]. Aging

is generally accompanied by age-associated chronic diseases, diminishing quality of life and

placement of additional burden on the healthcare system. These factors necessitate

identifying biological components that influence human aging and age-related diseases.

Both genome-wide association studies and candidate gene approaches have provided

valuable information on the role of DNA in aging and disease risk. These approaches,
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however, do not provide information on differential genetic expression due to

developmental or epigenetic changes. The latter relates to a series of histone modifications

and DNA methylations, which in turn affect gene expression. Examples of epigenetic

regulation of genome architecture and gene expression span across the evolutionary lineage,

including sirtuins [4], p66Shc [5], monozygotic twins [6], cloned animals [7] and the

maternal effect of agouti mice [8]. Inheritance of epigenetic modifications has been reported

in a variety of taxa, ranging from plants [9], yeast [10] and flies [11,12] as well as

vertebrates such as mice [13–15] and humans [16]. In general, DNA hypermethylation leads

to gene silencing, and DNA hypomethylation endorses gene activation. DNA

hypermethylation causing silencing of genes involved in the cell cycle, apoptosis,

detoxification and cholesterol metabolism [17] has been reported. Methylation changes may

lead to alterations in gene expression and thus contribute to the phenotype of decreased

incidence or delayed onset of age-related diseases. In addition, epigenetic changes in

specific gene regions have been associated with cancer risk [18]. Epigenetic modification

has been linked to many genetic syndromes such as Prader–Willi [19], Angelman [20],

Beckwith–Wiedemann [21,22] and Rett syndromes [23,24]. The agouti mouse model

provides an example of epigenetic variability and inheritance of a pleiotropic trait with

pathological effects [8].

Technological advances in the field

The concept of performing an unbiased approach to reveal age-associated methylation

changes and to quantify it using high-throughput machinery has only recently been explored

only recently through the use of newly developed high-throughput technologies. Genome-

wide DNA methylation and its various effects have been investigated using high-throughput

DNA methylation-profiling techniques. In the majority of epigenomic studies, BeadArray™

(Illumina) platform (with bisulfite-treated DNA) has been utilized to analyze a moderate

number of CpGs across the genome in a large number of samples [25]. Another strategy has

been the use of microarrays with restriction enzyme or affinity-based enrichment methods to

provide relative levels of methylation across the genome [25]. More recently, next-

generation sequencing-based methods have been implemented to assess tens of millions of

DNA fragments, allowing for detection of DNA methylation across the entire genome,

including interspersed repeat sequences that are inaccessible using microarrays. Sequencing

has several advantages over array platforms, particularly since array restricts the profiling

data to specific annotations and content [25]. A variety of platforms have been developed to

increase the number of CpGs for which methylation can be assessed. Table 1 reviews the

most current DNA methylation platforms. There is an increasing demand for understanding

of the genome-wide methylation status via high-throughput techniques for assessment of

methylation profiling. This review describes the challenges of applying epigenomic

unbiased screening, and reports on the most recent studies carried out in this area.

Epigenomic modification with age-empirical support

■ Humans

Evidence in literature suggests that epigenetic changes occur as a function of age in many

tissues and may serve as a marker of chronological age. An insight into the epigenetic
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changes that occur with aging was provided by Bocker et al.; the detailed methylation

profile of CD34+ hematopoietic progenitor cells demonstrated that epigenetic changes occur

with aging and there is de novo methylation of Polycomb chromatin genes [26]. Using a

different type of blood cell, CD4+, and utilizing the Infinium HumanMethylation27

BeadChip platform, 360 CpG sites (labeled as aging-associated differentially methylated

regions) that were either hypo- or hyper-methylated with age have been identified. In total,

60% of the hypermethylation sites were replicated in CD14+ of independent cohorts. The

aging-associated differentially methylated regions signature, especially hyper-methylation of

chromatin domain promoters, has been replicated in buccal cells [27].

Epigenetic changes in several CpG loci, mostly in CpG islands, assessed by Infinium

HumanMethylation27 BeadChip were associated with age in different parts of 387 humans

(1–102 years old) brains. This central effect of methylation, especially in genes associated

with DNA binding and transcription regulation, reemphasizes the importance of methylation

in the mechanism of aging [28].

Using the powerful tool of homozygote twins, Bocklandt et al. expanded on an observation

that was first reported by Fraga et al [6]. Studying the epigenetic changes with age in 21–55-

year-old homozygous twins, they showed that 88 methylation sites, representing nearly 80

genes, demonstrate significant changes with age. The association of those loci with age were

further replicated in independent cohort aged 18–70 years old [29] and a regression model

built based on this observation could predict an individual’s age with an accuracy of 5.2

years [29]. Changes in epigenomic modification such as methylation can vary substantially

between tissues and through the aging process. Christensen et al. examined a panel of 1413

autosomal CpG loci in 217 nonpathologic human tissues from ten anatomic sites and

demonstrated that age-associated epigenomic changes occur with age in multiple tissues,

and that the methylation pattern with aging can predict the tissue of origin [30]. Aiming to

detect an aging signature, Koch and Wagner used five different cell types from four tissues,

a total of 110 samples. The commercial DNA methylation platform initially employed to

screen contained 27,578 CpG sites. Five genes demonstrated methylation changes with age

across the board. These genes were further validated in eight more cell types representing

eight tissues, in a total of 766 samples leading authors to conclude that this assay can serve

as a predictor of donor age [31]. Using the same platform, Bork et al. studied mesenchymal

stromal cells (MSCs) in old (52–83 years of age) and young (21–50 years of age) donors

[32]. Significant methylation with age has observed in homeobox genes and genes involved

in cell differentiation. Further validation of the epigenome using an independent technology

(pyrosequencing) resulted in the discovery that six selected CpG sites demonstrated the

same trend. These results further support the role of epigenetics in regulating replicative

senescence and aging [32]. In a longitudinal study performed over 8 years in 1097 subjects

aged 55–92 years old, the Alu elements demonstrated decline in methylation with age, while

the LINE-1 repetitive elements did not change dramatically, emphasizing the role of

methylation loss with cellular senescence and aging [33].

Gentilini et al. screened the HUMARA locus for heterozygosity to test the hypothesis that

this locus is relevant for lifespan [34]. Using 50 female centenarians and three groups of

controls, authors screened 1085 CpG sites across the X chromosome on top of the HUMARA
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locus for methylation changes, and found no difference between the groups. They concluded

that although skewing of X-chromosome inactivation has been observed with aging, there

were no associated epigenetic modifications [34].

■ Animal models

There are very few animal studies that have assessed global methylation changes with age.

Genomic methylation changes were demonstrated with age using the HELP assay in liver

and visceral adipose tissues from young and old rats. These methylation changes were

validated with an independent technology (luminometric methylation assays) showing that

these changes are tissue dependent. While the pattern of methylation and expression of some

of the genes were similar in both the tissues, subsets of the genes that are associated with

metabolism and metabolic regulation were differentially expressed with age [35].

miRNA & longevity

miRNAs are small ncRNAs that were initially discovered in Caenorhabditis elegans and

since reported across the animal kingdom. In humans, thousands of miRNAs have been

demonstrated in a variety of tissues with major impact on transcription and translational

repression or gene silencing. The role of miRNAs in aging was demonstrated recently in C.

elegans and in mice [36,37]. miRNAs affect gene expression during the aging process in

mice and modulate senescence in human cell lines [38]. Studies in C. elegans and mice have

resulted within some important observations, such as: miRNAs work in groups (packs) by

coordinating and regulating gene expression/silencing resulting in age-dependent disease

states or alternatively with longevity [39]; inherited epigenetic effects in miRNA loci lead to

changes in gene expression that modulate longevity [40]; and miRNAs that target members

of the insulin/IGF-1 pathway (a known target for genetic disruption that leads to life

extension) can predict up to 47% of lifespan differences [36]. This observation on the role of

IGF-1 was further supported by Liang et al. in studies in long-lived mutant mice, higher

expression of three miRNAs altered IGF-1 signaling that in turn promotes long-lived

phenomenon [41]; and de Lencastre et al. demonstrated that miRNAs could affect lifespan

through disruption of multiple loci that are not necessarily associated with the insulin/IGF-1

pathway. Some loci illustrate positive effects on lifespan, promoting longevity, and some

however demonstrate the opposite effect leading to a shorter lifespan [42]. Such

observations are also reported by Ugalde et al.; altered expression of two miRNAs promoted

progeroid phenotype in a mouse model for a progeria syndrome through the effect on key

components of the DNA-damage response pathways [43]. Human studies are limited;

however, a genome-wide miRNA screen for differential expression between long-lived

individuals and controls revealed that 10% of the miRNA microarray (863 miRNAs)

demonstrated significant alterations in expression, of which only 16 were upregulated in the

exceptional long-lived individuals. Most of these differentially expressed miRNAs have

been associated with genes linked to major age-associated diseases, suggesting under-

regulation of key genes by miRNAs could promote longevity in humans [44].
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The role of the epigenomic modification in aging & age-related diseases

Aging is a complex physiological process that results in compromise of biological functions,

increased susceptibility to age-related diseases and eventually death [45]. It is well

recognized that human aging and longevity are influenced by both genetic and

environmental factors. Inherited genetic mutations and polymorphisms resulting in

alterations in gene function can explain some features of aging and age-related diseases [46].

However, in addition to inherited genetic factors, aging is influenced by the gradual

accumulation of molecular alterations after birth. Environmentally induced perturbations in

the epigenetic processes that involve alterations of gene expression without a change in

DNA sequence can determine different aspects of aging, as well as etiology and

pathogenesis of age-related diseases. Epigenetic changes can specifically play a role in the

modulation of aging processes and healthy life extension [47]. In particular, promoter DNA

methylation changes and associated gene silencing are the epigenetic changes seen in age-

related diseases [46].

Epigenetic mechanisms have been established to play a major role in aging at both cellular

and organism level [48,49]. In addition to DNA methylation, one of the well-characterized

epigenetic processes, several types of histone modifications have been demonstrated to

occur both globally and at gene-specific loci during aging [49]. Other epigenetic processes

include histone modifications of Polycomb group proteins, chromosomal position effects

and methylation of ncRNAs [49–52].

Common human age-related diseases are accompanied by a loss of genomic DNA

methylation. Progressive loss of genomic DNA methylation has been demonstrated

throughout the human genome [33], in mice and in cell lines [53–55], although this decrease

may be tissue and/or gene specific [56–58]. Age-related epigenetic changes have also been

demonstrated in sperm cells; however, the direction of change over time appears to be gene

specific [59]. Within pairs, differences in DNA methylation are greater in older than in

younger monozygotic twins [6].

DNA methylation dynamics can inf luence brain function. 5-hydroxymethylcytosine (5-

hmC) is a newly described epigenetic modification generated by the oxidation of 5-

methylcytosine by the ten–eleven translocation family of enzymes [60–62]. An increase of

5-hmC with age in the mouse brain as well as an age- and gene-expression level related

enrichment of 5-hmC in genes implicated in neurodegeneration have been demonstrated.

Many 5-hmC-regulated regions are dynamically modified during neurodevelopment and

aging [61], suggesting that 5-hmC may play an important role in the etiology and course of

age-related neurodegenerative disorders [60].

With aging, there is a decrease in long-term synaptic plasticity, especially long-term

potentiation (LTP), manifesting as cognitive decline. This decrease in LTP is linked to

histone acetylation, and BDNF/trkB signaling. Indeed, treatment with histone deacetylase

inhibitors or a neurotrophin receptor B agonist restores LTP in the hippocampus of old

animals. These studies suggest that epigenetic changes may play a significant role in age-

related diseases [63].
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Conclusion & future perspective: exciting directions in epigenomic

research in aging

Nutritional epigenetics has emerged as a novel mechanism underlying gene–diet

interactions, elucidating the modulatory role of nutrition in aging and age-related disease

development. Nutrients can regulate the placement of these epigenetic modifications [64–

67]. Nutrients involved in one-carbon metabolism, namely folate, vitamin B12, vitamin B6,

riboflavin, methionine, choline and betaine, are involved in DNA methylation by regulating

levels of the universal methyl donor S-adenosylmethionine and methyltransferase inhibitor

S-adenosylhomocysteine. The effects of folate on DNA methylation patterns have recently

been investigated in prenatal and early-postnatal life and aging. Folate exposure in the

intrauterine environment and during the aging process may have profound effects on DNA

methylation with significant functional ramifications [68]. In addition to folate and vitamin

B12, other nutrients and related compounds such as retinoic acid, resveratrol, curcumin,

sulforaphane and tea polyphenols can modulate epigenetic patterns by altering the levels of

S-adenosylmethionine and S-adenosylhomocysteine or directing the enzymes that catalyse

DNA methylation and histone modifications [64]. Indeed, sirtuin 1 may mediate some of the

effects of dietary restriction through effects on DNA methylation [66].

The field of epigenomics is exciting, new and is rapidly evolving. Although a nascent field,

significant progress and advancement of technology offer the promise of better

understanding of the role of epigenetics in the complex process of aging, age-related

diseases and, therefore, lifespan.
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Executive summary

▪ Epigenetic changes occur with age.

▪ Advances in the field of epigenetics have increased our understanding of the

association between disease states and methylation patterns.

▪ Technology to detect global epigenetic changes has made tremendous strides.

▪ Unique ‘epigenetic signatures’ may be detected in different tissues.

▪ The environment can contribute to the diversity in individual epigenetic

changes.

▪ New epigenetic mechanisms such as miRNAs play a role in gene regulation.

▪ Nutritional epigenomics is an exciting and emerging field with translational

potential.

▪ Evidence is accumulating that the presumed ‘junk DNA’ is indeed functional

with a role in epigenetics.

▪ Finally, altered epigenetic patterns could play a role in cell maintenance,

delay age-associated diseases and improve life expectancy.
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