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Abstract

Most existing genome-wide association analyses are cross-sectional, utilizing only phenotypic data at a single time point,
e.g. baseline. On the other hand, longitudinal studies, such as Alzheimer’s Disease Neuroimaging Initiative (ADNI), collect
phenotypic information at multiple time points. In this article, as a case study, we conducted both longitudinal and cross-
sectional analyses of the ADNI data with several brain imaging (not clinical diagnosis) phenotypes, demonstrating the
power gains of longitudinal analysis over cross-sectional analysis. Specifically, we scanned genome-wide single nucleotide
polymorphisms (SNPs) with 56 brain-wide imaging phenotypes processed by FreeSurfer on 638 subjects. At the genome-
wide significance level (Pv1:8|10{9) or a less stringent level (e.g. Pv10{7), longitudinal analysis of the phenotypic data
from the baseline to month 48 identified more SNP-phenotype associations than cross-sectional analysis of only the
baseline data. In particular, at the genome-wide significance level, both SNP rs429358 in gene APOE and SNP rs2075650 in
gene TOMM40 were confirmed to be associated with various imaging phenotypes in multiple regions of interests (ROIs) by
both analyses, though longitudinal analysis detected more regional phenotypes associated with the two SNPs and indicated
another significant SNP rs439401 in gene APOE. In light of the power advantage of longitudinal analysis, we advocate its use
in current and future longitudinal neuroimaging studies.
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Introduction

There has been increasing interest in genome-wide association

studies (GWASs) with neuroimaging phenotypes. Alzheimer’s

Disease Neuroimaging Initiative (ADNI) provides a rich source of

brain imaging, neuropsychological and genetic data, including

genome-wide single nucleotide polymorphisms (SNPs) [1,2]. In

ADNI (or more specifically ADNI-1), while the subjects were

followed up to 5 years, most of the previous GWAS analyses of

brain-wide imaging phenotypes ignored the longitudinal data and

mainly focused on only the baseline phenotypes [3–9]. In genome-

wide association studies longitudinal analysis has been proposed

and applied [10–14], and in particular its advantage over cross-

sectional analysis has been established [15]. Hence, instead of

using only the baseline structural MRI scans as phenotypes, we

took advantage of the longitudinal imaging phenotypes measured

at multiple time points from the baseline to 48 months,

demonstrating the application of a linear mixed-effects model

and its associated power gains. The advantage of longitudinal

analysis is not surprising: assuming no SNP-age interactions, a

cross-sectional study based on the baseline can only capture the

mean differences of a phenotype across the (genetic) subgroups of

subjects; in contrast, a longitudinal study offers the opportunity to

estimate not only the mean values of the phenotype at the baseline,

but also the rates of the changes of the phenotype in the genotypic

groups. For example, as shown in Figure 1, the trajectories of the
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hippocampal volume appear to decline much faster for the

subjects with the homozygotic minor alleles of SNP rs2075650 in

gene TOMM40 than those from other two genotype groups.

However, we also notice the variations in the rates (i.e. slopes) of

the changes across the subjects, which call for a suitable statistical

model to account for this source of variations. As to be shown,

some alternative but popular and simpler models would fail for the

longitudinal data here.

Materials and Methods

Data
Data used in the preparation of this article were obtained from

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database

(adni.loni.usc.edu). The ADNI was launched in 2003 by the

National Institute on Aging (NIA), the National Institute of

Biomedical Imaging and Bioengineering (NIBIB), the Food and

Drug Administration (FDA), private pharmaceutical companies

and non-profit organizations, as a $60 million, 5-year public-

Figure 1. Trajectories of phenotype left hippocampus volume over time (in months) in three allele groups of SNP rs2075650.
doi:10.1371/journal.pone.0102312.g001

Table 1. Significant SNPs and each one’s associated phenotype numbers at the significance level of Pv 1:8 | 10{9.

Gene # Phenotypes

SNP (Chr) Position Longitudinal Baseline

rs2075650 TOMM40 45,395,619 3 1

(19) LHippVol: 2:77 | 10{13 LHippVol: 6:26 | 10{10

RCerebCtx: 1:48 | 10{10

LMeanTemp: 1:90 | 10{8

rs439401 APOE 45,414,451 1

(19) LMeanLatTemp: 8:81 | 10{10

0

rs429358 APOE 45,411,941 42 4

(19) LHippVol: v | 10{18 LHippVol: 5:04 | 10{18

LEntCtx: v 1 | 10{18 RHippVol: 8:12 | 10{16

LAmygVol: v 1 | 10{18 LAmygVol: 2:40 | 10{11

- - total 46 5

Top 3 SNP-phenotype associations are listed with corresponding P-values.
doi:10.1371/journal.pone.0102312.t001
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private partnership. The primary goal of ADNI has been to test

whether serial magnetic resonance imaging (MRI), positron

emission tomography (PET), other biological markers, and clinical

and neuropsychological assessment can be combined to measure

the progression of mild cognitive impairment (MCI) and early

Alzheimer’s dementia (AD). Determination of sensitive and

specific markers of very early AD progression is intended to aid

researchers and clinicians to develop new treatments and monitor

their effectiveness, as well as lessen the time and cost of clinical

trials.

The Principal Investigator of this initiative is Michael W.

Weiner, MD, VA Medical Center and University of California-

San Francisco. ADNI is the result of efforts of many co-

investigators from a broad range of academic institutions and

private corporations, and subjects have been recruited from over

50 sites across the U.S. and Canada. The initial goal of ADNI was

to recruit 800 subjects but ADNI has been followed by ADNI-GO

and ADNI-2. To date these three protocols have recruited over

1500 adults, ages 55 to 90, to participate in the research, consisting

of cognitively normal older individuals, people with early or late

MCI, and people with early AD. The follow up duration of each

group is specified in the protocols for ADNI-1, ADNI-2 and

ADNI-GO. Subjects originally recruited for ADNI-1 and ADNI-

GO had the option to be followed in ADNI-2. For up-to-date

information, see www.adni-info.org.

Specifically, we started with the following data on 818 subjects

in ADNI-1 [2]: FreeSurfer-processed brain imaging phenotypes,

Illumina SNP genotypes and demographic information (including

handedness, years of education, gender and age). For data quality

control, following [4]. we adopted the following procedure: (1)

including only non-Hispanic Caucasians; (2) checking each

subject’s identity and gender; (3) excluding the subjects with

heavy missing values. At the end, we had 638 subjects remaining

in the study.

The phenotypic data were processed with the FreeSurfer image

analysis suite [16] by UCSF researchers [17]. Briefly, FreeSurfer

version 4.3 was applied to T1 weighted structural MRI in the

NiFTI format after being pre-processed by the Mayo Clinic [1].

Both longitudinal and cross-sectional registrations were used for

the corresponding longitudinal and cross-sectional analyses. For

cross-sectional processing, each scan was segmented according to

an atlas defined by FreeSurfer, allowing for comparison between

groups at a single time point. For longitudinal processing, for each

subject with images at more than one time point, a within-subject

template based on his/her average image was created using robust

inverse consistent registration [18]. Then each subject’s template

was used to initialize the longitudinal image processing to increase

the reliability and statistical power when measuring the brain

changes over time [18].

For cross-sectional analysis, we used the phenotypic data only at

the baseline, while for longitudinal analysis we used all the data for

each subject, up to the measurements at the other five time points

(months 6, 12, 24, 36 and 48) beyond the baseline. Since many

subjects were not measured at some time points, we used only

available data without imputation for either phenotypic or

genotypic data.

Statistical models
For cross-sectional analysis of the baseline data, we use a

(standard) linear regression model:

Yi~b0z
X5

j~1

XijbjzSNP ib6zEi, ð1Þ

for subject i, i~1,2,3, � � � ,n. Yi is the (regional imaging)

phenotype of subject i at the baseline; SNP i~0, 1 or 2 is the

count of the minor allele for the SNP to be tested; Xij is one of the

five covariates: left or right handedness, education in years, age at

the baseline, gender and the baseline intracranial volume (ICV);

and Ei*N (0,s2) is an independent error term. The goal is to test

the null hypothesis H0: b6~0 versus H1: b6=0. We conduct

single SNP-based analysis on each phenotype: each of the SNPs is

Table 2. The number (percentage) of non-missing observations at each time point in Figure 1.

Month 0 6 12 18 24 36 48

#Obs 635 (99.5%) 616 (96.6%) 574 (90%) 246 (38.6%) 462 (72.4%) 263 (41.2%) 56 (8.8%)

doi:10.1371/journal.pone.0102312.t002

Table 3. The baseline characteristics of 638 subjects, including gender, age, years of education, handedness (R/L) and intracranial
volume (ICV).

Name HC MCI AD P-value

number of subjects 182 311 145 -

Gender(M/F) 103/79 204/107 80/65 0.0446

Baseline age 75:9 + 4:9 75:1 + 7:2 75:5 + 7:5 0.4153

Education (years) 16:1 + 2:7 15:7 + 2:9 14:9 + 3:0 0.0005

Hand(R/L) 170=12 285=26 136=9 0.6392

ICV 1:56 | 106 1:58 | 106 1:56 | 106 0.1463

+1:48 | 105 +1:68 | 105 +1:86 | 105

P-values were calculated to test for differences among the diagnostic groups, HC, MCI and AD.
doi:10.1371/journal.pone.0102312.t003
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Table 4. 56 cortical thickness and volumetric phenotypes.

Trait Name Trait Description Trait Name Trait Description

AmygVol Volume of amygdala MidTemporal Thickness of middle temporal gyrus

CerebCtx Volume of cerebral cortex Parahipp Thickness of parahippocampal gyrus

CerebWM Volume of cerebral white matter PostCing Thickness of posterior cingulate

HippVol Volume of hippocampus Postcentral Thickness of postcentral gyrus

InfLatVent Volume of inferior lateral ventricle Precentral Thickness of precentral gyrus

LatVent Volume of lateral ventricle Precuneus Thickness of precuneus

EntCtx Thickness of entorhinal cortex SupFrontal Thickness of superior frontal gyrus

Fusiform Thickness of fusiform gyrus SupParietal Thickness of superior parietal gyrus

InfParietal Thickness of inferior parietal gyrus SupTemporal Thickness of superior temporal gyrus

InfTemporal Thickness of inferior temporal gyrus Supramarg Thickness of supramarginal gyrus

MeanCing Mean thickness of caudal anterior TemporalPole Thickness of temporal pole

cingulate, isthmus cingulate, posterior

cingulate, and rostral anterior cingulate

MeanFront Mean thickness of caudal midfrontal MeanTemp Mean thickness of inferior temporal,

rostral midfrontal, superior frontal, middle temporal, superior temporal,

lateral orbitofrontal, and medial fusiform, parahippocampal, ling-

orbitofrontal gyri and frontal pole ual gyri temporal pole and transverse

temporal pole

MeanLatTemp Mean thickness of inferior temporal, MeanSensMotor Mean thickness of precentral and

middle temporal, and superior postcentral gyri

temporal gyri

MeanMedTemp Mean thickness of fusiform, MeanPar Mean thickness of inferior and

parahippocampal, and lingual gyri, superior parietal gyri, supramarginal

temporal pole and transverse gyrus, and precuneus

temporal pole

There are 2 phenotypes for each given phenotype name at the left and right sides of the brain respectively.
doi:10.1371/journal.pone.0102312.t004

Table 5. Significant SNPs and each one’s associated phenotype numbers at the level of Pv 8:9 | 10{10.

Gene # Phenotypes

SNP (Chr) Position Longitudinal Baseline

rs2075650 TOMM40 45,395,619 2 1

(19) LHippVol: 2:77 | 10{13 LHippVol: 6:26 | 10{10

RCerebCtx: 1:48 | 10{10

rs439401 APOE 45,414,451 1 0

(19) LMeanLatTemp: 8:81 | 10{10

rs429358 APOE 45,411,941 40 4

(19) LHippVol: v 1 | 10{18 LHippVol: 5:04 | 10{18

LEntCtx: v 1 | 10{18 RHippVol: 8:12 | 10{16

LAmygVol: v 1 | 10{18 LAmygVol: 2:40 | 10{11

- - total 43 5

Top 3 SNP-phenotype associations are listed with corresponding P-values.
doi:10.1371/journal.pone.0102312.t005
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tested one by one on each regional imaging phenotype sequen-

tially.

For longitudinal analysis, we use a linear mixed-effects model

with a random slope and a random intercept [19]:

Yik~(c00zU0i)z(c10zU1i)tik

z
X5

j~1

XijbjzSNP ib6z(SNP i|tik)b7zeik,
ð2Þ

for i~1,2, � � � ,n and k~0,1, � � � ,6, where Yik is the (regional

imaging) phenotype value of subject i at time point k, tik~k is the

time point k, c00 and c10 are the fixed intercept and fixed slope for

time, and U0i and U1i are random intercept and slope respectively:

U0i

U1i

� �
*N

0

0

� �
,

t2
0 t10

t10 t2
1

 ! !
,

Table 6. Significant SNPs and each one’s associated phenotype numbers at the level of Pv 10{7.

SNP L I M B

rs2075650 25 12 3 1

LHippVol: 2:77 | 10{13 LHippVol: 6:26 | 10{10

RCerebCtx: 1:48 | 10{10

LMeanTemp: 1:68 | 10{9

rs11677350 1 0 1 1

RCerebWM: 5:22 | 10{8 RCerebWM: 2:70 | 10{8

rs4902433 2 0 0 0

LMeanLatTemp: 5:23 | 10{8

LInfTemporal: 5:31 | 10{8

rs439401 6 10 0 0

RMeanLatTemp: 8:81 | 10{10

RcerebCtx: 3:45 | 10{8

RMeanTemp: 2:70 | 10{8

rs11762610 2 0 0 0

LFusiform: 5:91 | 10{8

LInfTemporal: 5:34 | 10{8

rs1800627 1 0 0 0

RAmygVol: 6:00 | 10{8

rs429358 46 40 5 5

LHippVol: v 1 | 10{18 LHippVol: 5:04 | 10{18

LEntCtx: v 1 | 10{18 RHippVol: 8:12 | 10{16

LAmygVol: v 1 | 10{18 LAmygVol: 2:40 | 10{11

rs2931352 0 0 0 1

RParahipp: 3:55 | 10{8

rs11875359 0 0 0 1

RInfLatVent: 4:51 | 10{8

total 83 62 9 9

In longitudinal analysis, column name ‘‘L’’, ‘‘I’’ and ‘‘M’’ indicate the number of traits associated with the SNP from the longitudinal joint testing (i.e. with
HJ,0 : b6~ b7~ 0), testing for interaction (i.e. HI ,0 : b7~ 0) and testing for the main effects (i.e. HM,0 : b6~ 0); the column named ‘‘B’’ is for cross-sectional analysis of
the baseline data. Top 3 SNP-phenotype association are listed with corresponding P-values.
doi:10.1371/journal.pone.0102312.t006

Table 7. The numbers of the significant SNP-phenotype associations at various levels of false discovery rate (FDR).

FDR 0:1000 0:0500 0:0350 0:0100 0:0011 0:0006

Longitudinal 112 90 83 64 46 43

Baseline 5 5 5 5 3 3

doi:10.1371/journal.pone.0102312.t007

Longitudinal Analysis Is More Powerful than Cross-Sectional Analysis

PLOS ONE | www.plosone.org 5 August 2014 | Volume 9 | Issue 8 | e102312



and eik*N (0,s2) is an independent error term. Other terms are

the same as in the standard linear regression model. The two

random terms induce some complex and time-varying within-

subject correlations and variances: for k=l, we have

Var(Yik)~t2
0zt2

ikt2
1z2tikt10zs2,

Cov(Yik,Yil)~t2
0ztiktilt

2
1z(tikztil)t10,

each of which is a function of time unless t1~t10~0.

The goal in the longitudinal analysis is to test for no joint main-

and interaction-effects of the SNP with HJ,0: b6~b7~0 versus

HJ,1: b6=0 or b7=0. This is the default test to be used in

longitudinal analysis. Although the above test is preferred [19],

sometimes we would like to see the separate contributions of the

main effects of the SNP and the SNP-time interaction, thus we

would conduct two separate tests. The first is to test for the zero

main effects of the SNP with HM,0: b6~0 versus HM,1: b6=0,

and the second is for the zero SNP-time interaction effects with

HI ,0: b7~0 versus HI ,1: b7=0.

The purpose of introducing the random intercept and slope

parameters is to take account of likely within-subject correlations

among the multiple phenotypes for the same subject; in addition,

the random slope parameter can account for heterogeneity of the

slope parameters among the subjects. Figure 1 shows the

trajectories of an imaging phenotype, volume of left hippocampus,

for the three groups of the subjects with various genotypes of SNP

rs2075650. It is clear that the longitudinal values of the imaging

phenotype at the several time points for the same subject are more

or less similar to each other as compared to the values from a

different subject, suggesting the necessity of using the random

subject-specific intercept term U0j ; on the other hand, the rates of

the change of the phenotype over time for different subjects may

be different, implying the use of the random subject-specific slope

parameter U1j . We used the function lme ( ) in R package nlme to

fit the linear mixed-effects model.

Figure 2. Comparison of the Manhattan plots for genome-wide p-values for phenotype left hippocampus volume from longitudinal
analysis (left) and from cross-sectional analysis (right); SNP rs429358 is not included due to its small p-value.
doi:10.1371/journal.pone.0102312.g002

Figure 3. Comparison of the Q-Q plots for genome-wide p-values for phenotype left hippocampus volume from longitudinal
analysis (left) and from cross-sectional analysis (right); SNP rs429358 is not included.
doi:10.1371/journal.pone.0102312.g003

Longitudinal Analysis Is More Powerful than Cross-Sectional Analysis
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Alternative models for longitudinal analysis
A simpler linear mixed model contains only a random intercept

term, which is perhaps more commonly used for longitudinal data:

Yik~(c00zU0i)zc10tik

z
X5

j~1

XijbjzSNP ib6z(SNP i|tik)b7zeik,
ð3Þ

for which the parameters are specified as in model (2). Compared

to model (2), the random slope parameter U1k is missing in the

new model (3). It is easy to verify that both models share the

following mean function of the phenotype (conditional on the

covariates):

E(Yik)~c00zc10tikz
X5

j~1

XijbjzSNP ib6z(SNP i|tik)b7: ð4Þ

However, their variances are different: instead of having a time-

varying within-subject covariance matrix for model (2), we have

Var(Yik)~t2
0zs2, Cov(Yik,Yil)~t2

0 ð5Þ

for k=l for model (3), suggesting a within-subject compound

symmetry (CS) correlation matrix. Obviously model (3) is a special

case of model (2).

To compare model (3) against model (2), we can test the null

hypothesis H0: t2
1~0 via a likelihood ratio test (LRT). The null

distribution of the LRT statistic D can be approximated by a

mixture distribution, 0:5x2
1z0:5x2

2 [20].

Alternatively, rather than using a linear mixed model, we can

use generalized estimating equations (GEE) to draw inference for

longitudinal data [21,22]. GEE only requires to correctly specify a

mean model and use a working within-subject correlation

structure. Here we will use the mean model specified in (4), and

use a working correlation matrix with a CS structure specified in

(5). If a model-based covariance matrix is used, the validity of the

GEE results depends on the correct specification of the working

correlation structure; if a so-called sandwich or robust covariance

matrix is used, then any working correlation can be used. We also

note that, in the presence of missing phenotypes, the validity of

GEE depends on the assumption of ‘‘missing completely at

random’’ (MCAR), a stronger assumption than that of ‘‘missing at

random’’ (MAR) required by linear mixed models; this may have

implications in real data analysis in the presence of missing

phenotypes, which is the case here. We used function geese ( ) from

R package geepack to fit a GEE model.

Simulation set-ups

A longitudinal phenotype Yi~(Yi1, � � � ,Yi7)
0

for each subject i
was simulated from the linear mixed-effects model with a random

slope and a random intercept as specified in equation (2). Each

simulated dataset consisted of n~638 subjects. The phenotypes

were generated either under H0 (i.e. b6~b7~0) to investigate

Type I errors or under H1 (i.e. b6=0,b7=0) for power analysis; all

parameters used were at at the maximum likelihood estimates of

model (2) fitted to the original ADNI data. The same set of

covariates (i.e. left or right handedness, education in years, age at

the baseline, gender and ICV) were used.

To evaluate the robustness of model (2), we also simulated

phenotypic data Yi from model (3). The parameters used under

H1 (i.e. b6=0,b7=0) were half of the maximum likelihood

estimates in model (3) fitted to the original ADNI data.

Three most significant SNPs in Table 1, rs429358, rs2075650

and rs439401, were chosen to be used in simulations. Under each

simulation set-up, 1000 sets of phenotypic data were indepen-

dently generated and analyzed by five methods: a linear mixed-

effects model with both a random slope and a random intercept

(LMR-RSI); a linear mixed-effects model with only a random

intercept term (LMR-RI); a marginal GEE model with a CS

working correlation matrix and with the sandwich covariance

estimator (GEE-Robust); a marginal GEE model with a CS

working correlation matrix and with the model-based covariance

estimator (GEE-Naive); a standard linear model for cross-sectional

analysis at the baseline, testing for the main effects of an SNP

(Baseline). We then estimated the empirical Type I error rate

under H0 and empirical power under H1 for each method.

Results

Data summary
After quality control, there were 638 subjects remaining in both

cross-sectional and longitudinal data, though there were missing

Figure 4. Comparison of the Manhattan plots for genome-wide p-values for phenotype volume of right inferior lateral ventricle
from longitudinal analysis (left) and cross-sectional analysis (right); SNP rs429358 is not included.
doi:10.1371/journal.pone.0102312.g004

Longitudinal Analysis Is More Powerful than Cross-Sectional Analysis
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data for some phenotypes and in later follow-ups; see Table 2 for

an example. Table 3 summarizes demographic information and

intracranial volume (ICV) of the 638 subjects at the baseline. The

P-values were calculated based on an F-test for a continuous

variable or a Chi-squared test for a categorical variable for its

mean or distributional differences among three diagnostic groups

at the baseline: healthy normal subjects (HC), subjects with mild

cognitive impairment (MCI) and patients with Alzheimer’s

dementia (AD). The table shows that the distributions of gender

and mean years of education were significantly different among

the three groups at the significance level 0:05.

We conducted cross-sectional and longitudinal analyses of each

of about 500,000 SNPs with each of 56 neuroimaging phenotypes

in some regions of interest (ROIs) as shown in Table 4 [4].

Figure 1 shows the longitudinal values of one phenotype, left

hippocampus volume, for subjects in each of the three genotype

groups for a (significant) SNP. We note the variation of the slope of

the subject-specific phenotype trajectory, which calls for the use of

a random slope parameter as specified in linear mixed model (2).

We also note many missing values at some time points (Table 2);

our analyses were all based on observed phenotypic (and

genotypic) data without imputation.

Genome-wide association testing: a summary
Since a total number of 56 phenotypes were to be tested, taking

the usual genome-wide significance level for a single phenotype at

10{7 (or 5|10{8), we used the Bonferroni method for multiple

testing correction, yielding the significance cut-off at

10{7=56 ¼: 1:8|10{9 (or 8:9|10{10).

Under the significance level Pv1:8|10{9, a total number of

46 pairs of significant SNP-phenotype associations were detected

in longitudinal analysis, including three SNPs, rs429358,

rs2075650 and rs439401 that were associated with 3, 1 and 42

out of the total 56 phenotypes respectively (Table 1). In contrast,

only 5 significant SNP-phenotype association pairs were detected

in cross-sectional analysis at the baseline, involving only two SNPs,

rs2075650 and rs429358, which were associated with only 1 and 4

phenotypes respectively. We reached the same conclusion with a

more stringent significance level Pv8:9|10{10, as shown in

Table 5.

If a less stringent significance level was employed, an even more

substantial difference between the results of longitudinal analysis

and that of cross-sectional analysis emerged. As shown in Table 6,

at Pv10{7, seven SNPs, rs2075650, rs4902433, rs439401,

Figure 5. Comparison of the Q-Q plots for genome-wide p-values for phenotype volume of right inferior lateral ventricle from
longitudinal analysis (left) and from cross-sectional analysis (right); SNP rs429358 is not included.
doi:10.1371/journal.pone.0102312.g005

Figure 6. Comparison of the Manhattan plots without (left) or with (right) top 10 PCs.
doi:10.1371/journal.pone.0102312.g006
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rs11762610, rs1800627, rs11677350 and rs429358, were discov-

ered to be associated with some phenotypes in longitudinal

analysis; in contrast, only five SNPs, rs2075650, rs11677350,

rs429358, rs2931352 and rs11875359 were detected from cross-

sectional analysis. The same conclusion was reached with even a

less stringent Pv10{6 (not shown): one hundred and forty-seven

significant SNP-phenotype association pairs were identified from

longitudinal analysis, while only 47 pairs were found from cross-

sectional analysis.

In summary, both longitudinal and cross-sectional analyses

indicated that both left and right hippocampus and amygdala were

statistically significantly associated with SNP rs429358 in gene

APOE at the genome-wide significance level Pv1:8|10{9. In

addition, SNP rs2075650 in gene TOMM40 was also identified to

be associated with multiple phenotypes. These results are in

agreement with some earlier studies. For example, both

TOMM40 and APOE were known to be linked to Alzheimer’s

disease [23–26]. Finally, longitudinal analysis also detected

another significant SNP rs439401, which also belongs to gene

APOE and is very close to SNP rs4420638; SNP rs4420638 was

shown to be related to late on-set Alzheimer’s disease [27,28],

dyslipidemia [29], schizophrenia [30], myocardial infarction [31]

and psychological stress [32].

In addition, longitudinal analysis identified other four margin-

ally significant SNPs that were missed by cross-sectional analysis at

the significance level Pv10{7: rs1800627, rs11762610,

rs4902433 and rs439401 on chromosomes 4, 7, 14 and 19

respectively. On the other hand, at the same significance level,

cross-sectional analysis, but not longitudinal analysis, uncovered

two marginally significant SNPs rs2931352 and rs11875359. Since

these SNPs were identified under a less stringent significance level,

they are only suggestive and need to be further replicated and

validated.

In addition to using the Bonferroni method to control the

family-wise error rate, we also applied the false discovery rate

(FDR) method [33] to adjust for multiple comparisons, as

implemented in R function p. adjust ( ). The numbers of the

significant SNP-phenotype associations at the various cut-offs of

Figure 7. Comparison of the Q-Q plots without (left) or with (right) top 10 PCs.
doi:10.1371/journal.pone.0102312.g007

Figure 8. The Q-Q plots for genome-wide p-values for phenotype left hippocampus volume from longitudinal analysis based on (a)
GEE with the sandwich covariance estimator (left, inflation factor = 1.070), (b) GEE with the model-based covariance estimator
(middle, inflation factor = 2.077), and (c) linear mixed model with only a random intercept term (right, inflation factor = 1.976).
doi:10.1371/journal.pone.0102312.g008
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FDR are shown in Table 7. It is clear that at any given FDR level,

longitudinal analysis identified a larger number of significant SNP-

phenotype associations than that of cross sectional analysis. Note

that, although an FDR (or q-value) is monotonic with the original

unadjusted p-value, their relationship is not linear, which explains

why at the FDR cut-offs of 0.035, 0.0011 and 0.0006, we reached

the same numbers of the significant associations for longitudinal

analysis, but not for cross sectional analysis, as those at the family-

wise error rates of Pv10{7, Pv1:8|10{9 and Pv8:9|10{10,

respectively.

Genome-wide association testing: more details with
some phenotypes

To visualize how the number of the significant SNPs increased

from cross-sectional analysis to longitudinal analysis, we present

their comparisons in Manhattan plots and Q-Q plots for two

phenotypes, left hippocampus volume and right inferior lateral

ventricle volume (Figures 2–5). For the volume of left hippocam-

pus, 4 SNPs passed the significance level of Pv10{6 from

longitudinal data analysis; in contrast, only 2 SNPs survived the

threshold in cross sectional analysis. For volume of inferior lateral

ventricle, there were respectively 6 and 2 SNPs passed the

significance threshold of Pv10{6 from longitudinal analysis and

cross-sectional analysis.

Population stratification
To explore the possible existence of population stratification, we

applied the principal component (PC) method [34]. Specifically,

we first randomly selected 100,000 SNPs across the genome, then

extracted the top ten PCs to be included as covariates in the linear

mixed-effects model. For comparison, the Manhattan plots of the

genome-wide p-values for phenotype volume of right amygdala

are shown in Figure 6, while the Q-Q plots are in Figure 7. It is

clear that whether or not to adjust for the top 10 PCs hardly made

any difference to the overall results. Furthermore, we also

calculated the genomic inflation factor l [35] in longitudinal data

analysis. For phenotype volume of right amygdala, the inflation

factor (l) was estimated as 1.007 with the top 10 PCs, compared to

1.010 without PCs. A systematic examination of the inflation

factors for all the 56 phenotypes without adjustment for PCs was

also conducted: the estimated inflation factors ranged from 0.986

to 1.025 with mean 1.010 and standard error 0.014. Hence, in

agreement with [4], there was no strong evidence for population

stratification that would have questioned the validity of the

genome-wide association results presented earlier.

Alternative approaches to longitudinal analysis
We also applied a simpler linear mixed model (3) with only a

random intercept term, and the corresponding GEE marginal

model with a compound symmetry (CS) matrix as the working

correlation structure. The results for phenotype left hippocampus

volume are shown in Figure 8. Note that the results for the

random-intercept model (3) and the GEE model with the model-

based covariance matrix were very similar, as expected; both

yielded severely inflated false positive rates with their estimated

inflation factors much larger than 1. As analyzed in the Methods

section, the problem was likely due to the mis-specification and

thus under-estimation of the phenotype variances. In contrast, the

GEE model with the sandwich estimator gave a much better

controlled inflation factor, which however was still larger than that

from the earlier linear mixed model (2); it could be due to the

stronger ‘‘missing completely at random’’ assumption required by

GEE, which might be violated here.

To establish the superiority of model (2) over model (3), we

conducted the LRT on the null hypothesis H0: t2
1~0 with

phenotype left hippocampus volume and each of the 10196 SNPs

on chromosome 19. The null hypothesis was rejected each time;

the LRT statistics were large, ranging from 228.9 to 289.2 with a

median of 279.9.

Table 8. Simulation results at significance level P with different methods for phenotypic data generated from model (2).

Type I Error

Model rs2075650 rs439401

P~ 0:01 P~ 0:05 P~ 0:10 P~ 0:01 P~ 0:05 P~ 0:10

LME-RSI 0.007 0.044 0.087 0.007 0.039 0.097

LME-RI 0.071 0.177 0.258 0.090 0.190 0.276

GEE-Robust 0.008 0.045 0.089 0.008 0.045 0.106

GEE-Naive 0.082 0.189 0.257 0.102 0.191 0.286

Baseline 0.006 0.042 0.084 0.006 0.059 0.112

Power

Model rs2075650 rs439401

P~ 10{8 P~ 10{10 P~ 10{15 P~ 10{8 P~ 10{10 P~ 10{15

LME-RSI 1 1 0.859 0.872 0.677 0.148

GEE-Robust 1 1 0.857 0.871 0.676 0.170

Baseline 0.736 0.448 0.038 0.077 0.015 0

LME-RSI: a linear mixed-effects model with random slope and intercept; LME-RI: a linear mixed-effects model with only a random intercept term; GEE-Robust: GEE with
the sandwich covariance estimator; GEE-Naive: GEE with the model-based covariance estimator; Baseline: a linear model at the baseline testing for the main effects of an
SNP.
doi:10.1371/journal.pone.0102312.t008
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Simulation results
When simulated phenotypic data were generated from model

(2), as shown in Table 8, it was confirmed that only LME-RSI,

GEE-Robust and Baseline could satisfactorily control the Type I

error, while the other two could not due to their use of mis-

specified models. Note that a difference between the real data and

simulated data was that there were no missing phenotypes in the

latter. For power, as expected, the two methods for longitudinal

analysis, LME-RSI and GEE-Robust, were almost equally

powerful, both more powerful than cross-sectional analysis.

When simulated phenotypic data were generated from model

(3), as shown in Table 9, the Type I error rates were generally

controlled, though GEE-Naive might be too conservative. In terms

of power, it is obvious that again longitudinal methods outper-

formed the cross sectional analysis of only the baseline data. Note

that, since the CS working correlation structure used in GEE was

correct, GEE-Naive also performed well. Most interestingly,

though LME-RSI was fitted to a larger model (2) covering the

true model (2) used in LME-RI, the power loss of LME-RSI was

negligible when compared with LME-RI, showing the robustness

of using model (2).

Discussion

We have conducted a genome-wide association scan on each

SNP with each of 56 regional imaging phenotypes utilizing the

ADNI-1 data. By taking advantage of the existing longitudinal

imaging phenotypes, we have illustrated the power gains from

longitudinal analysis of longitudinal phenotypes measured at

multiple time points over cross-sectional analysis of only the

baseline phenotypic data. In particular, application of a linear

mixed-effects model to longitudinal phenotypic data identified a

much larger number of SNP-phenotype associations, at both a

genome-wide and other less stringent significance levels. The

advantage of longitudinal analysis is expected due to its use of

more data, compared to only the baseline data in cross-sectional

analysis. Note that here our goal is, as usual, to identify genetic

variants associated with a phenotype in whatever way. We also

note that our longitudinal model is related to, but different from,

modeling gene-age interactions [36]: in the mean model (4), there

is no SNP-baseline age interaction. If desired, as an alternative

approach one can model SNP-age interaction directly. Since

almost all existing GWAS analyses of the ADNI-1 data are based

on the baseline data with only few exceptions [37–39], we hope

that our current study will help reinforce the message on the

preference of longitudinal analysis over cross-sectional analysis.

This issue will become even more compelling as more longitudinal

phenotypic data, e.g. various neuroimaging phenotypes from

ADNI-GO and ADNI-2, are being or will be collected.

We have only applied single SNP-based analyses, while there is

increasing evidence of possible power gains with SNP-set analyses

in cross-sectional studies [9,40]. However, it remains to be done to

extend some powerful SNP-set methods to mixed-effects models

with longitudinal data, such as the variance-component or kernel

methods, similarity-based tests and others [41–46]. Or, instead of

controlling family-wise Type I error rate as approached here, one

may apply some new methods to control false discovery rate (FDR)

[47]. Furthermore, with the availability of DNA sequencing data,

it will be useful to develop and apply new statistical tests to detect

rare variant associations with longitudinal phenotypes, again based

on some extensions of the methods for cross-sectional data [46,48–

53]. More generally, as pointed out by Lindquist [54], ‘‘Imaging

genetics promises to be an important topic of future research, and

to fully realize its promise, novel statistical techniques will be

needed.’’ These are all interesting topics to be investigated.
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