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An analysis of the model underpinning the description of the spread of HIV infection of CD4+T cells is examined in detail in
this work. Investigations of the disease free and endemic equilibrium are done using the method of Jacobian matrix. An iteration
technique, namely, the homotopy decomposition method (HDM), is implemented to give an approximate solution of nonlinear
ordinary differential equation systems. The technique is described and illustrated with numerical examples. The approximated
solution obtained via HDM is compared with those obtained via other methods to prove the trustworthiness of HDM. Moreover,
the lessening and simplicity in calculations furnish HDM with a broader applicability.

1. Introduction

The cause of the progressive depletion of CD4+T cells in
HIV-infected people is one of the most fundamental and
controversial issues in AIDS research. HIV infects and kills
CD4+T cells. The infection results in high T-cell activation
and turnover. An immediately intuitive assumption is that
HIV-mediated destruction of CD4+ cells directly reduces
the number of these cells and that the high turnover rates
of T cells and the slow progression to AIDS reflect a
long but eventually lost struggle of the immune system to
replace killed cells in its effort to maintain T-cell homeostasis
[1–4]. However, HIV mainly infects activated CD4+ cells,
and activated cells normally follow different dynamics than
cells that belong to resting populations whose numbers are
controlled by homeostatic mechanisms.

In this study, we consider that the HIV infection model
of CD4+T cells is examined in [5]. This model is given by the
components of the basic three-component model which are
the concentration of susceptible CD4+T cells, CD4+T cells
infected by the HIV viruses, and free HIV virus particles in
the blood. CD4+T cells are also called leukocytes or T helper
cells.These with order cells in human immunity systems fight

against diseases. HIV use cells in order to propagate. In a
healthy person, the number of CD4+T cells is 800/1200mm3.
This model is characterized by a system of the nonlinear
differential equations:

𝑑𝑇

𝑑𝑡
= 𝑝 − 𝛼𝑇 + 𝑟𝑇(1 −

𝑇 + 𝐼

𝑇max
) − 𝑘𝑉𝑇,

𝑑𝐼

𝑑𝑡
= 𝑘𝑉𝑇 − 𝛽𝐼,

𝑑𝑉

𝑑𝑡
= 𝑁𝛽𝐼 − 𝛾𝑉,

(1)

subject to the initial conditions

𝑇 (0) = 𝑇
0
, 𝐼 (0) = 𝐼

0
, 𝑉 (0) = 𝑉

0
. (2)

Here, 𝑟 is any positive constant, 𝑇(𝑡), 𝐼(𝑡), and 𝑉(𝑡) show
the concentration of susceptible CD4+T cells, CD4+T cells
infected by the HIV viruses, and free HIV virus particles in
the blood, respectively, 𝛼, 𝛽, and 𝛾 stand for natural turnover
rates of uninfected Tells, infected T cells, and virus particles,
respectively, (1−(𝑇+𝐼)/𝑇max) describes the logistic growth of
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the healthy CD4+T cells, and proliferation of infected CD4+T
cells is neglected. For 𝑘 > 0 is the infection rate, the term𝐾𝑉𝑇
describes the incidence of HIV infection of healthy CD4+T
cells. Each infected CD4+T cell is assumed to produce l virus
particles during its lifetime, including any of its daughter cells.
The body is believed to produce CD4+T cells from precursors
in the bone marrow and thymus at a constant rate 𝑝. T
cells multiply through mitosis with a rate 𝑟 when T cells are
stimulated by antigen ormitogen.𝑇max denotes themaximum
CD4+T cell concentration in the body [6–9].

As Andrianov and Manevitch wrote in the foreword of
a popular science book Asymtotology: Ideas, Methods, and
Applications, asymptotic methods belong to the, perhaps,
most romantic area of modern mathematics [10]. Though
computer science is growing very fast and numerical simula-
tion is applied everywhere, nonnumerical issues will still play
a large role [11–14]. There exist some alternative analytical
asymptotic approaches, such as the nonperturbative method,
modified Lindstedt-Poincaré method [13], variational iter-
ation method [14], Adomian decomposition method [15],
homotopy perturbation method [16, 17], and book-keeping
artificial parameter perturbation method [18].

The purpose of this paper is to derive analytical solutions
of model for HIV infection of CD4+T cells (1) via the
relatively new analytical solution homotopy decomposition
method (HDM). The HDM was recently used to solve one-
and two-dimensional fractional heat-like problem, Burgers
equation, the Klein-Gordon equation, a coupled Burgers
equation, 2D and 3D Poisson equations and biharmonic
equations, the groundwater flow equation [19], theHamilton-
Jacobi-Bellman equation, high even-order differential equa-
tion, parabolic equations and coupled Van der Pol’s nonlinear
partial differential equation, and coupled attractor one-
dimensional Keller-Segel equations. This method displays
some advantages over the existing methods.

2. Stability Analysis

The aim of this section is to present a stability analysis of
the system equation (1) that will be achieved via the use the
eigenvalues obtained via the Jacobian matrix. We will start
by providing the equilibrium point and also the desease free
equilibrium. To obtain the equilibrium points, we assume
that the system does not depend on the parameter 𝑡; this will
further imply that

0 = 𝑝 − 𝛼𝑇 + 𝑟𝑇(1 −
𝑇 + 𝐼

𝑇max
) − 𝑘𝑉𝑇,

0 = 𝑘𝑉𝑇 − 𝛽𝐼 ,

0 = 𝑁𝛽𝐼 − 𝛾𝑉.

(3)

After the first manipulations, we obtain that

𝐼 =
𝑘𝑉𝑇

𝛽
=
𝛾𝑉

𝑁𝛽
. (4)

From the above equation, we can obtain

𝑇 =
𝛾

𝑁𝛽
. (5)

However, replacing (5) into the first equation of system (3)
and rearranging it, we obtain the following:

𝐼 =
𝑝 + ((𝑟𝛾 − 𝛾

2
) /𝑁𝛽) − (𝑟𝛾

2
/ (𝑁𝛽

2
) 𝑇max)

(𝑟𝛾/𝑁𝛽𝑇max) + 𝛽
,

𝑉 =
𝑁𝛽

𝛾

𝑝 + ((𝑟𝛾 − 𝛾
2
) /𝑁𝛽) − (𝑟𝛾

2
/ (𝑁𝛽

2
) 𝑇max)

(𝑟𝛾/𝑁𝛽𝑇max) + 𝛽
.

(6)

Therefore, the equilibrium points are given as

(𝐼, 𝑉, 𝑇) = (
𝑝 + ((𝑟𝛾 − 𝛾

2
) /𝑁𝛽) − (𝑟𝛾

2
/ (𝑁𝛽

2
) 𝑇max)

(𝑟𝛾/𝑁𝛽𝑇max) + 𝛽
,

𝑁𝛽

𝛾

𝑝 + ((𝑟𝛾 − 𝛾
2
) /𝑁𝛽) − (𝑟𝛾

2
/ (𝑁𝛽

2
) 𝑇max)

(𝑟𝛾/𝑁𝛽𝑇max) + 𝛽
,

𝛾

𝑁𝛽
) .

(7)

The above equilibrium points are valid if the following
conditions are satisfied:

𝑝 +
𝑟𝛾 − 𝛾

2

𝑁𝛽
−

𝑟𝛾
2

(𝑁𝛽)
2

𝑇max
≥ 0. (8)

The disease free equilibrium is obtained by solving the
following equation:

−
𝑟

𝑇max
𝑇
2

+ (𝑟 − 𝛼) 𝑇 + 𝑝 = 0, (9)

which has the following solution:

𝑇 =

𝑟 − 𝛼 ∓ √(𝑟 − 𝛼)
2

+ (4𝑟/𝑇max)

2 (𝑟/𝑇max)
. (10)

Therefore, the diseases free equilibrium is given as

(𝐼, 𝑉, 𝑇) = (0, 0,

𝑟 − 𝛼 + √(𝑟 − 𝛼)
2

+ (4𝑟/𝑇max)

2 (𝑟/𝑇max)
) . (11)

With the above information on hand, wewill nowfind the
eigenvalues associated with this problem, which will allow us
to give stability of the system.The Jacobian matrix associated
with this problem is given by

𝐽 = (

𝑟 − 𝛼 − 𝑘𝑉 −
2𝑟𝑇

𝑇max
−
𝑇

𝑇max
−𝑘𝑇

𝑘𝑉 −𝛽 𝑘𝑇

0 𝑁𝛽 −𝛾

) . (12)
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Now, using the equilibrium free point, we obtain the follow-
ing:

𝐽 = (

𝑟 − 𝛼 −
2𝑟𝑇free
𝑇max

−
𝑇free
𝑇max

−𝑘𝑇

0 −𝛽 𝑘𝑇free
0 𝑁𝛽 −𝛾

) . (13)

In order to find the eigenvalues associate, we will solve the
following equation:

det (𝐽 − 𝜆𝐼) = (
𝑟 − 𝛼 −

2𝑟𝑇free
𝑇max

− 𝜆 −
𝑇free
𝑇max

−𝑘𝑇

𝑘𝑉 −𝛽 − 𝜆 𝑘𝑇free
0 𝑁𝛽 −𝛾 − 𝜆

) = 0.

(14)

Using the standardmethod, we obtain the following solution:

𝜆
1
= 𝑟 − 𝛼 −

2𝑟𝑇

𝑇max
,

𝜆
2
=
−𝛽 − 𝛾 − √(𝛽 − 𝛾)

2

+ 4𝑁𝛽𝑇free

2
,

𝜆
3
=
−𝛽 − 𝛾 + √(𝛽 − 𝛾)

2

+ 4𝑁𝛽𝑇free

2
.

(15)

With the Eigen values in hand, we conclude that there is
stability if and only if the following conditions are observed:

𝑟 − 𝛼 −
2𝑟𝑇

𝑇max
< 0, −𝛽 − 𝛾 + √(𝛽 − 𝛾)

2

+ 4𝑁𝛽𝑇free < 0.

(16)

3. Some Useful Information regarding the
Methodology of (HDM)

To illustrate the basic idea of this method, we consider
a general nonlinear nonhomogeneous differential equation
with initial conditions of the following form (see also in
[16, 19]):

𝜕
𝑚
𝑈 (𝑡)

𝜕𝑡𝑚
= 𝐿 (𝑈 (𝑡)) + 𝑁 (𝑈 (𝑡)) + 𝑓 (𝑡) , 𝑚 = 1, 2, 3, . . . .

(17)

Subjected to the initial condition,

𝜕
𝑖
𝑈 (0)

𝜕𝑡𝑖
= 𝑦
𝑖
, 𝑖 = 0, 1, 2, . . . , 𝑚 − 1. (18)

𝑚 is the order of the derivative.
𝑓 is a known function,𝑁 is the general nonlinear differ-

ential operator, 𝐿 represents a linear differential operator, and
𝑚 is the order of the derivative.Themethod’s first step here is

to apply the inverse operator 𝜕𝑚/𝜕𝑡𝑚 on both sides of (17) to
obtain

𝑈 (𝑡) =

𝑚−1

∑

𝑘=0

𝑡
𝑘

𝑘!
𝑦
𝑘

+ ∫

𝑡

0

∫

𝑡
1

0

⋅ ⋅ ⋅ ∫

𝑡
𝑚−1

0

𝐿 (𝑈 (𝜏)) + 𝑁 (𝑈 (𝜏))

+ 𝑓 (𝜏) 𝑑𝜏 ⋅ ⋅ ⋅ 𝑑𝑡.

(19)

The multi-integral in (17) can be transformed to

∫

𝑡

0

∫

𝑡
1

0

⋅ ⋅ ⋅ ∫

𝑡
𝑚−1

0

𝐿 (𝑈 (𝜏)) + 𝑁 (𝑈 (𝜏)) + 𝑓 (𝜏) 𝑑𝜏 ⋅ ⋅ ⋅ 𝑑𝑡

=
1

(𝑚 − 1)!
∫

𝑡

0

(𝑡 − 𝜏)
𝑚−1

𝐿 (𝑈 (𝜏)) + 𝑁 (𝑈 (𝜏)) + 𝑓 (𝜏) 𝑑𝜏

(20)

so that (19) can be reformulated as

𝑈 (𝑡) =

𝑚−1

∑

𝑘=0

𝑡
𝑘

𝑘!
𝑦
𝑘
+

1

(𝑚 − 1)!

× ∫

𝑡

0

(𝑡 − 𝜏)
𝑚−1

𝐿 (𝑈 (𝜏))

+ 𝑁 (𝑈 (𝜏)) + 𝑓 (𝜏) 𝑑𝜏.

(21)

Using the homotopy scheme, the solution of the above
integral equation is given in series form as follows:

𝑈(𝑡, 𝑝) =

∞

∑

𝑛=0

𝑝
𝑛

𝑈
𝑛
(𝑡) ,

𝑈 (𝑡) = lim
𝑝→1

𝑈 (𝑡, 𝑝) ,

(22)

and the nonlinear term can be decomposed as

𝑁𝑈(𝑡) =

∞

∑

𝑛=1

𝑝
𝑛

H
𝑛
(𝑈) , (23)

where 𝑝 ∈ (0, 1] is an embedding parameter. H
𝑛
(𝑈) is the

He’s polynomials that can be generated by

H
𝑛
(𝑈
0
, . . . , 𝑈

𝑛
) =
1

𝑛!

𝜕
𝑛

𝜕𝑝𝑛
[

[

𝑁(

𝑛

∑

𝑗=0

𝑝
𝑗

𝑈
𝑗
(𝑡))]

]

,

𝑛 = 0, 1, 2, . . . .

(24)
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The homotopy decomposition method is obtained by the
graceful coupling of decomposition method with He’s poly-
nomials and is given by

∞

∑

𝑛=0

𝑝
𝑛

𝑈
𝑛
(𝑡) = 𝑇 (𝑡) + 𝑝

1

(𝑚 − 1)!

× ∫

𝑡

0

(𝑡 − 𝜏)
𝑚−1

[𝑓 (𝜏) + 𝐿(

∞

∑

𝑛=0

𝑝
𝑛

𝑈
𝑛
(𝜏))

+

∞

∑

𝑛=0

𝑝
𝑛

H
𝑛
(𝑈)] 𝑑𝜏,

(25)

with

𝑇 (𝑡) =

𝑚−1

∑

𝑘=0

𝑡
𝑘

𝑘!
𝑦
𝑘
. (26)

Comparing the terms of the samepowers of𝑝, we obtain solu-
tions of various orders.The initial guess of the approximation
is 𝑇(𝑡); this is actually the Taylor series of the exact solution
of order𝑚. Note that this initial guess insures the uniqueness
of the series decompositions.

4. Applications

In this section, we applied the HDM to solve the system
of the nonlinear differential equations (1). To be consistent
in comparison with the existing methods, we chose the
following initial condition and parameters as in [20, 21]:

𝑇
0
= 0.1, 𝐼

0
= 0, 𝑉

0
= 0.1, 𝑝 = 0.1,

𝛼 = 0.02, 𝛽 = 0.3, 𝛾 = 0.3,

𝑘 = 0.0027, 𝑇max = 1500, 𝑁 = 10.

(27)

Following carefully the steps of the HDM, we obtain the
following equations:

∞

∑

𝑛=0

𝑝
𝑛

𝑇
𝑛
(𝑡)

= 𝑇 (0) + 𝑝∫

𝑡

0

(p − 𝛼
∞

∑

𝑛=0

𝑝
𝑛

𝑇
𝑛
(𝜏) + 𝑟

∞

∑

𝑛=0

𝑝
𝑛

𝑇
𝑛
(𝜏)

× (1 −
∑
∞

𝑛=0
𝑝
𝑛
𝑇
𝑛
(𝜏) + ∑

∞

𝑛=0
𝑝
𝑛
𝐼
𝑛
(𝜏)

𝑇max
)

−𝑘

∞

∑

𝑛=0

𝑝
𝑛

𝑇
𝑛
(𝜏)

∞

∑

𝑛=0

𝑝
𝑛

𝑉
𝑛
(𝜏)) 𝑑𝜏,

∞

∑

𝑛=0

𝑝
𝑛

𝐼
𝑛
(𝑡) = 𝐼 (0) + 𝑝∫

𝑡

0

(𝑘

∞

∑

𝑛=0

𝑝
𝑛

𝑇
𝑛
(𝜏)

∞

∑

𝑛=0

𝑝
𝑛

𝑉
𝑛
(𝜏)

−𝛽

∞

∑

𝑛=0

𝑝
𝑛

𝐼
𝑛
(𝜏)) 𝑑𝜏,

∞

∑

𝑛=0

𝑝
𝑛

𝑉
𝑛
(𝑡) = 𝑉 (0) + 𝑝∫

𝑡

0

(𝛽𝑁

∞

∑

𝑛=0

𝑝
𝑛

𝑇
𝑛
(𝜏)

−𝛾

∞

∑

𝑛=0

𝑝
𝑛

𝑉
𝑛
(𝜏)) 𝑑𝜏.

(28)

Comparing the terms of the same power of 𝑝, we obtain the
following integral equations that are much easier to solve.
Note that, with the homotopy perturbation method (HPM),
one will obtain a set of ordinary differential equations,
after comparing the terms of the same power of 𝑝, which
something is very heavy to compute in the case of high order
ODE. Consider

𝑝
0

= 𝑇
0
(𝑡) = 𝑇

0
, 𝑇

0
(0) = 𝑇

0
,

𝑝
0

= 𝐼
0
(𝑡) = 𝐼

0
, 𝐼

0
(0) = 𝐼

0
,

𝑝
0

= 𝑉
0
(𝑡) = 𝑉

0
, 𝑉

0
(0) = 𝑉

0
,

𝑝
1:𝑇
1
(𝑡)=∫

𝑡

0

(𝑝 − 𝛼𝑇
0
+ 𝑟𝑇
0
(1 −

𝑇
0
+ 𝐼
0

𝑇max
) − 𝑘𝑉

0
𝑇
0
)𝑑𝜏,

𝑇
1
(0) = 0

𝑝
1: 𝐼
1
(𝑡) = ∫

𝑡

0

(𝑘𝑉
0
𝑇
0
− 𝛽𝐼
0
) 𝑑𝜏, 𝐼

1
(0) = 0

𝑝
1:𝑉
1
(𝑡) = ∫

𝑡

0

(𝑁𝐼
0
− 𝛾𝑉
0
) 𝑑𝜏, 𝑉

1
(0) = 0

...

𝑝
𝑛:𝑇
𝑛
(𝑡)=∫

𝑡

0

((𝑟 − 𝛼) 𝑇
𝑛−1

−
𝑟

𝑇max
(

𝑛−1

∑

𝑗=0

𝑇
𝑗
𝑇
𝑛−𝑗−1
+

𝑛−1

∑

𝑗=0

𝑇
𝑗
𝐼
𝑛−𝑗−1
)

−𝑘

𝑛−1

∑

𝑗=0

𝑇
𝑗
𝑉
𝑛−𝑗−1
)𝑑𝜏,

𝑇
𝑛
(𝑡) = 0, 𝑛 ≥ 2

𝑝
𝑛: 𝐼
𝑛
(𝑡) = ∫

𝑡

0

(𝑘

𝑛−1

∑

𝑗=0

𝑉
𝑗
𝑇
𝑛−𝑗−1
− 𝛽𝐼
𝑛−1
)𝑑𝜏,

𝐼
𝑛
(𝑡) = 0, 𝑛 ≥ 2

𝑝
𝑛:𝑉
𝑛
(𝑡) = ∫

𝑡

0

(𝑁𝛽𝐼
𝑛−1
− 𝛾𝑉
𝑛−1
) 𝑑𝜏,

𝑉
𝑛
(𝑡) = 0, 𝑛 ≥ 2.

(29)

We will give the general algorithm in order to accommodate
scholars using computers program; the algorithmwill then be
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used to derive special solution of the system of equation for a
given set of theoretical parameters.

Algorithm 1.

(i) input: 𝐽
1
(𝑡), 𝐽
2
(𝑡), and 𝐽

3
(𝑡) as initial guest;

(ii) 𝑗-number terms in the rough calculation;

(iii) output: 𝑇approx(𝑡), 𝐼approx(𝑡), and𝑉approx(𝑡) the ap-
proximate solutions.

Step 1. Put 𝑇
0
(𝑡) = 𝑇

0
, 𝐼
0
(0) = 𝐼

0
, 𝑉
0
(𝑡) = 𝑉

0
, 𝑇approx(𝑡) =

𝑇
0
(𝑡), 𝐼approx(𝑡) = 𝐼0(𝑡) and 𝑉approx(𝑡) = 𝑉0(𝑡).

Step 2. From 𝑗 = 0 to 𝑛 − 1, do Steps 3 and Step 4.

Step 3. Compute

𝑇
𝑛
(𝑡)=∫

𝑡

0

((𝑟 − 𝛼) 𝑇
𝑛−1
−
𝑟

𝑇max
(

𝑛−1

∑

𝑗=0

𝑇
𝑗
𝑇
𝑛−𝑗−1
+

𝑛−1

∑

𝑗=0

𝑇
𝑗
𝐼
𝑛−𝑗−1
)

− 𝑘

𝑛−1

∑

𝑗=0

𝑇
𝑗
𝑉
𝑛−𝑗−1
)𝑑𝜏

𝐼
𝑛
(𝑡) = ∫

𝑡

0

(𝑘

𝑛−1

∑

𝑗=0

𝑉
𝑗
𝑇
𝑛−𝑗−1
− 𝛽𝐼
𝑛−1
)𝑑𝜏,

𝑉
𝑛
(𝑡) = ∫

𝑡

0

(𝑁𝛽𝐼
𝑛−1
− 𝛾𝑉
𝑛−1
) 𝑑𝜏.

(30)

Step 4. Compute 𝑇approx(𝑡) = 𝑇approx(𝑡) + 𝑇𝑛+1(𝑡), 𝐼approx(𝑡) =
𝐼approx(𝑡) + 𝐼𝑛+1(𝑡), and 𝑉approx(𝑡) = 𝑉approx(𝑡) + 𝑉𝑛+1(𝑡).

Stop.

We will now make use of the above algorithm to derive
the special solution. We therefore obtain the following series
solutions:

𝑇
0
(𝑡) = 𝑇

0
= 0.1, 𝐼

0
(𝑡) = 𝐼

0
= 0,

𝑉
0
(𝑡) = 𝑉

0
= 0.1,

𝑇
1
(𝑡) = 0.397953𝑡, 𝐼

1
(𝑡) = 0.000027𝑡,

𝑉
1
(𝑡) = −0.24𝑡,

𝑇
2
(𝑡) = 0.592849𝑡

2

, 𝐼
2
(𝑡) = 0.0000172737𝑡

2

,

𝑉
2
(𝑡) = 0.288041𝑡

2

,

𝑇
3
(𝑡) = 0.588719𝑡

3

, 𝐼
3
(𝑡) = −8.40515 × 10

−6

𝑡
3

,

𝑉
3
(𝑡) = −0.230415𝑡

3

,

𝑇
4
(𝑡) = 0.43829519𝑡

4

, 𝐼
4
(𝑡)=6.14727882 × 10

−6

𝑡
4

,

𝑉
4
(𝑡) = 0.1382427719𝑡

4

,

𝑇
5
(𝑡) = 0.2608633362𝑡

5

, 𝐼
5
(𝑡)=2.835861862 × 10

−6

𝑡
5

,

𝑉
5
(𝑡) = −6.635284213 × 10

−2

𝑡
5

,

𝑇
6
(𝑡) = 0.1291947662𝑡

6

, 𝐼
6
(𝑡) = 1.153299855 × 10

−5

𝑡
6

,

𝑉
4
(𝑡) = 2.653971892𝑡

6

,

𝑇
7
(𝑡) = 0.01363544556𝑡

7

,

𝐼
7
(𝑡) = −3.925609032 × 10

−7

𝑡
7

,

𝑉
7
(𝑡) = 2.481235575 × 10

−6

𝑡
7

,

𝑇
8
(𝑡) = −2.787485189×10

−5

𝑡
8

,

𝐼
8
(𝑡) = 4.5660570151 × 10

−11

𝑡
8

,

𝑉
8
(𝑡) = 1.28523993 × 10

−10

𝑡
5

.

(31)

Using the packageMathematica, in the samemanner, one can
obtain the rest of the components. But, in this case, 9 terms
were computed and the asymptotic solution is given by

𝑇 (𝑡) = 𝑇
0
(𝑡) + 𝑇

1
(𝑡) + 𝑇

2
(𝑡) + 𝑇

3
(𝑡) + 𝑇

4
(𝑡)

+ 𝑇
5
(𝑡) + 𝑇

6
(𝑡) + 𝑇

7
(𝑡) + 𝑇

8
(𝑡) + ⋅ ⋅ ⋅

𝐼 (𝑡) = 𝐼
0
(𝑡) + 𝐼

1
(𝑡) + 𝐼

2
(𝑡) + 𝐼

3
(𝑡) + 𝐼

4
(𝑡)

+ 𝐼
5
(𝑡) + 𝐼

6
(𝑡) + 𝐼

7
(𝑡) + 𝐼

8
(𝑡) + ⋅ ⋅ ⋅

𝑉 (𝑡) = 𝑉
0
(𝑡) + 𝑉

1
(𝑡) + 𝑉

2
(𝑡) + 𝑉

3
(𝑡) + 𝑉

4
(𝑡)

+ 𝑉
5
(𝑡) + 𝑉

6
(𝑡) + 𝑉

7
(𝑡) + 𝑉

8
(𝑡) + ⋅ ⋅ ⋅ .

(32)

4.1. Numerical Applications. To test the effectiveness and
the accuracy of the HDM for solving this type of problem,
we compare the approximated solutions obtained via other
methods and HDM, and the results are shown in Tables 1, 2,
and 3.

Numerical comparison shows that the approximated
solutions obtained via LADM-Padé [20] are in good agree-
ment with the results obtained via HDM. More precisely,
the approximated solutions are exactly the same. However,
in the technique used in [20], one needs first to apply the
Laplace transform on the system, following by the ADM,
and finally take the inverse Laplace transform to obtain the
approximated solutions, which is much time consuming and
sometimes can lead to a very difficult situation, for example,
if the inverse Laplace transform cannot be obtained.

5. Conclusions

In this paper, homotopy decomposition method has been
developed for finding approximate solutions ofHIV infection
model of CD4+Twhich is a class of nonlinear ordinary differ-
ential equation systems. We have demonstrated the accuracy
and efficiency of the present technique with an example
and comparison of the approximate solution obtained via



6 BioMed Research International

Table 1: Numerical comparison of 𝑇(𝑡) for𝑁 = 8.

𝑡 HDM LADM-Padé [20] Runge-Kutta MVIM [21] VIM [21] BCM [22]
0 0.1 0.1 0.1 0.1 0.1 0.1
0.2 0.2088072731 0.2088072731 0.2088080833 0.2088080868 0.2088073214 0.2038616561
0.4 0.4061052625 0.4061052625 0.4062405393 0.4062407949 0.4061346587 0.3803309335
0.6 0.7611467713 0.7611467713 0.7644238890 0.7644287245 0.7624530350 0.6954623767
0.8 1.3773198590 1.3773198590 1.4140468310 1.4140941730 1.3978805880 1.2759624442
1 2.3291697610 2.3291697610 2.5915948020 0.2088080868 2.5067466690 2.3832277428

Table 2: Numerical comparison of 𝐼(𝑡) for𝑁 = 8.

𝑡 HDM LADM-Padé [20] Runge-Kutta MVIM [21] VIM [21] BCM [22]
0 0 0 0 0.1 × 10

−13 0 0
0.2 6.03270728 ⋅ 10−6 6.03270728 ⋅ 10−6 6.032702150 ⋅ 10−6 6.032701651 ⋅ 10−6 6.032634366 ⋅ 10−6 6.247872100 ⋅ 10−6

0.4 1.31591617 ⋅ 10−5 1.31591617 ⋅ 10−5 1.315834073 ⋅ 10−5 1.315830167 ⋅ 10−5 1.314878543 ⋅ 10−5 1.293552225 ⋅ 10−5

0.6 2.12683688 ⋅ 10−5 2.12683688 ⋅ 10−5 2.122378506 ⋅ 10−5 2.1223310013 ⋅ 10−5 2.101417193 ⋅ 10−5 2.035267183 ⋅ 10−5

0.8 3.00691867 ⋅ 10−5 3.00691867 ⋅ 10−5 3.017741955 ⋅ 10−5 3.0174509323 ⋅ 10−5 2.795130456 ⋅ 10−5 2.837302120 ⋅ 10−5

1 3.98736542 ⋅ 10−5 3.98736542 ⋅ 10−5 4.003781468 ⋅ 10−5 4.0025404050 ⋅ 10−5 2.431562317 ⋅ 10−5 3.690842367 ⋅ 10−5

Table 3: Numerical comparison of 𝑉(𝑡) for𝑁 = 8.

𝑡 HDM LADM-Padé [20] Runge-Kutta MVIM [21] VIM [21] BCM [22]
0 0.1 0.1 0.1 0.1 0.1 0.1
0.2 0.06187996025 0.06187996025 0.06187984331 0.06187990876 0.06187995314 0.06187991856
0.4 0.03831324883 0.03831324883 0.03829488788 0.03829595768 0.03830820126 0.03829493490
0.6 0.02439174349 0.02439174349 0.02370455014 0.02371029480 0.02392029257 0.02370431860
0.8 0.009967218934 0.009967218934 0.01468036377 0.01470041902 0.01621704553 0.01467956982
1 0.003305076447 0.003305076447 0.009100845043 0.009157238735 0.01608418711 0.02370431861

the technique with those obtained with other methods.
Comparing the methodology HDM to homotopy pertur-
bation method (HPM), Adomian decomposition method
(ADM), variational iteration method (VIM), and homotopy
analysis method (HAM) has advantages. Disparate the ADM,
the HDM is free from the need of Adomian polynomials.
In this method, we do not need the Lagrange multiplier,
correction functional, stationary conditions, or calculation
of heavy integrals; the solution obtained is noise free, which
eliminate the complications that exist in the VIM [23]. In
contract to HPM, we do not need to continuously deform
a difficult problem to another that is easier to solve. In
contrast to LADM, the technique does not need any change
of space, which sometime can be very difficult situation to
handle, for example, in case the inverse Laplace transform
cannot be found. We can easily conclude that the homo-
topy decomposition method is an efficient tool to solve
approximate solution of nonlinear system partial differential
equations.
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