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Heat maps and clustering are used frequently in expression analysis studies for data visualization and quality control. Simple
clustering and heat maps can be produced from the “heatmap” function in R. However, the “heatmap” function lacks certain
functionalities and customizability, preventing it fromgenerating advanced heatmaps and dendrograms. To tackle the limitations of
the “heatmap” function, we have developed an R package “heatmap3” which significantly improves the original “heatmap” function
by adding several more powerful and convenient features. The “heatmap3” package allows users to produce highly customizable
state of the art heat maps and dendrograms. The “heatmap3” package is developed based on the “heatmap” function in R, and it is
completely compatible with it. The new features of “heatmap3” include highly customizable legends and side annotation, a wider
range of color selections, new labeling features which allow users to definemultiple layers of phenotype variables, and automatically
conducted association tests based on the phenotypes provided. Additional features such as different agglomeration methods for
estimating distance between two samples are also added for clustering.

1. Introduction

Gene expression analysis is one of the most popular analyses
in the field of biomedical research. In the age of high-
throughput genomics, microarray technology dominated the
market of high-throughput gene expression profiling for
over a decade until the introduction of RNA-seq technology.
Regardless of which high-throughput gene expression pro-
filing assay used, the heat map is one of the most popular
methods of presenting the gene expression data. A heat map
is a graphical representation of data where the individual
values contained in a matrix are represented as colors. There
are many variations of heat map such as web heat map
and tree map. Here, we focus on the biology heat map,
which is typically used to represent the level of expression
of genes across a number of comparable samples. A gene
expression heat map’s visualization features can help a user
to immediately make sense of the data by assigning different
colors to each gene. Clusters of genes with similar or vastly
different expression values are easily visible. The popularity
of the heat map is clearly evidenced by the huge number of
publications that have utilized it.

Cluster analysis is another popular method frequently
usedwith gene expression study [1]. In our context, clustering

refers to the task of grouping together a set of samples based
on the similarity of their gene expression patterns. There
are two major applications of cluster analysis. First, it is
often used as a quality control measurement for identifying
outliers. Second, it can be used to classify sample subtypes.
The majority of the time in gene expression studies, gene
expression is quantified from samples originating frommulti-
ple biological conditions. For example, most gene expression
studies will consist of disease and control groups. Samples are
selected based on their phenotype. In the ideal scenario, after
performing the cluster, samples with a specific phenotype
are in one cluster and samples without this phenotype are in
another cluster. However, in the real world, many factors can
affect the cluster results. For example, biological contamina-
tion can cause a sample to fail to cluster within the group.
Also, the phenotype used to select the sample might not be
the driving force in this sample’s gene expression pattern.
There may be other phenotypes that cause the sample’s gene
expression pattern to behave differently from other samples
within the same group. Thus, cluster analysis is an ideal
tool to detect outlier samples in gene expression studies [2].
Also, cluster analysis can be used to identify novel subtypes
[3]. For example, the breast cancer study from The Cancer
GenomeAtlas (TCGA) project [4] used clustering techniques
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to discover the subtype of samples based on their gene
expression patterns.This is especially useful when subtypes of
the samples are unknown. Also, the clustering technique can
be applied to both sample and gene. When applied to both,
the heat map can help visualizing potential novel pathways
[5] and coexpression patterns [6].

Themost popular tools to generate heatmaps and clusters
include the “heatmap” function inR andCluster 3.0 [7]. How-
ever, these tools have some limitations. First, they can be slow
and sometimes not able to finish for large expression matri-
ces. Second, they are insufficient for producing advanced
graphics.Third, they lack customizability. For example, in the
breast cancer study fromThe Cancer Genome Atlas (TCGA)
project [4] mentioned previously, the authors used heat map
and cluster figures to present subtypes of the samples. The
heat map used in that publication showed several additional
bars to indicate phenotypes, and these phenotype bars are
the result of meticulous work done by hand. A tool that can
automatically display such phenotypes with the heat map is
highly desirable. Driven by such motivation, we have pro-
duced “heatmap3,” an advanced heatmap and cluster analysis
tool in R. Our “heatmap3” package significantly improves the
original “heatmap” function’s functionality by adding more
powerful and convenient features including highly customiz-
able legends, multiphenotype display bars including continu-
ous phenotypes such as age, a wider range of color selection, a
wider range of distance and agglomerationmethod selection,
and automatic association tests of phenotype and cluster
groups. Our “heatmap3” package allows users to generate
heat maps and clusters and to make annotations easily. Users
with basic skill in R can operate “heatmap3” without trouble.

2. Implementation

The“heatmap3” package is developed based on the “heatmap”
function in R, and it is also backward compatible with it (i.e.,
if a code were written for the “heatmap” function, it will also
run with the “heatmap3” package without problem). All the
commands and parameters for “heatmap” can also be used
in “heatmap3.” We have implemented many new parameters
in the “heatmap3” package in order to accommodate for
the more powerful features. Detailed explanations and a
manual of these parameters can be found at the hosting web-
site of “heatmap3” (http://cran.r-project.org/web/packages/
heatmap3/index.html).

2.1. Compute the Hierarchical Clustering between Rows and
Columns. To assess the similarity of gene expression patterns
between two samples, a distance or score needs to be com-
puted. The original “heatmap” function used the Euclidean
distance as the default distance method and complete linkage
as the agglomeration method; it is not easy to change the
default distance method within the original “heatmap” func-
tion. Our “heatmap3” package provides a wide selection of
distance and agglomeration options, such as centeredPearson
correlation, uncentered Pearson correlation, and average
linkage. More importantly, “heatmap3” uses the clustering
function in the “fastcluster” package when the expression
matrix is large. This package efficiently implements the

seven most widely used clustering schemes: single, complete,
average, weighted, Ward, centroid, and median linkage. By
using the “fastcluster” package, “heatmap3” is able to produce
hierarchical clustersmuch faster andmore efficiently than the
original “heatmap” function.

2.2. Plot the Heat Map and Dendrogram. The “heatmap3”
package sorts the rows and columns based on the hierarchical
clustering result. The colors will then be assigned to the
genes to represent the expression value. A balance option is
provided here to ensure the median color will represent zero
value. The heat map and dendrogram are plotted in the same
fashion as the original “heatmap” function. However, more
customization parameters are implemented. For example, the
user now can choose to display or hide the dendrogram.

2.3. Plot the Color Bar, Annotation, and Legend. A color bar
which represents the relationship between colors and values
will be automatically generated at the top left side of the
figure. The categorical phenotypes such as gender and race
and the continuous phenotypes such as age and drug dose
can be annotated in the column side of the heat map figure.
This allows users to easily compare the annotation with the
heat map results and make proper inference. Furthermore,
“heatmap3” provides the function interfaces for generating
the user’s own annotations and legends. Users can use their
ownR functions to generate figures in the legend position and
annotation position.

2.4. Cut and Statistically Test for Annotation in Different
Groups. Our “heatmap3” package provides an automatic
grouping method. A cutoff needs to be provided, and the
dendrogram tree will be cut at the height of cutoff. The
samples will be divided into several groups and labeled by
different colors at the cutoff level. Then, statistical tests will
be performed to see if the annotations are distributed equally
in different groups. We used a chi-squared test for factor
annotations and ANOVA for continuous annotations. These
group results and 𝑃 values will be returned to the user so that
they can be used as criteria for selecting the genes that best
separated the samples.

3. Results

To demonstrate the “heatmap3” package’s efficiency and
visualization power,we usedRNA-seq gene expression results
from the TCGA breast cancer (BRCA) dataset. The
example dataset and its command can be downloaded
from https://github.com/slzhao/heatmap3. The complete
read count and clinical information can be seen in Tables
S1 and S2 (see Supplementary Tables S1 and S2 available
online at http://dx.doi.org/10.1155/2014/986048). To install
the “heatmap3” package, type the following command in R:

install.packages(“heatmap3”)

First, we performed differential analysis by the “edgeR”
[8] package to compare the gene expression between triple
negative samples versus nontriple negative samples. The 𝑃
values and fold changes for genes were taken as annotation
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information (Table S3).We selected 500 geneswith the largest
standard deviations and randomly selected 30 samples to
generate the heatmap. By selecting genes with large standard
deviations, we effectively removed the nonexpressed genes
across all samples, and the results still remained unbiased.
We also included several important clinical variables for
demonstration purposes. The selected phenotype variables
were age, triple negative (TN) status, estrogen receptor
(ER) status, progesterone receptor (PR) status, and human
epidermal growth factor receptor 2 (HER2) status.

Using these data, a heat map with legend color bar,
column side annotations, and row side annotations was
generated (Figure 1). The legend color bar indicates the
relation between scaled expression values and colors, and the
colors were balanced to ensure the white color represented
zero value. We provided two annotation methods: color bar
and categorical bar. Color bar is ideal to represent multiple
phenotypes that aremutually exclusive. For example, for phe-
notypes of disease and normal, a sample can only be disease
or normal but not both. Categorical bar is ideal to represent
multiple phenotypes that are not mutually exclusive. For
example, a sample can beTNandERnegative simultaneously.

The annotation on the 𝑦-axis side demonstrates how the
customized function can be used for annotation. Here, we
used the “showAnn” function within the package as an exam-
ple. The categorical phenotype annotations (ER, PR, HER2
and TN) were separated into two columns, and the samples
were labeled by black squares. The numeric annotation (age)
was demonstrated by a scatter plot, and the values were
labeled at the right axis. The annotation on the row side
indicated an example of annotation by color bar. The green
to red and orange to white colors here represent the log2 fold
changes and the negative log10 𝑃 values, respectively. We can
easily find that the genes increased in tripe negative samples
(red color in log2 fold change annotation) were clustered in
the bottom of heat map, while the genes decreased in tripe
negative samples (green color in log2 fold change annotation)
were clustered in the top of the heat map.

Using a height cutoff of 0.85 for the dendrogram tree on
the column side, clearly, the samples were divided into two
groups and labeled by different colors. As expected, the triple
negative samples were enriched in the right group and non-
triple negative sampleswere enriched in the left group. For the
ER, PR, andHER2 levels, we can find thatmost of the samples
were HER2 negative, and the ER and PR negative samples
were enriched in the right group. Based on the results from
the heat map, we might able to infer that ER and PR positive
appear more in patients and they may have more important
roles in defining triple negative samples. To generate Figure 1
using example data, enter the following command in R:

# assume “counts” is the expression data, “colGene”
contains the colors indicating fold changes and 𝑃
value, and “clinic” contains the ER, PR, HER2, TN,
and age information,
temp<-apply(counts,1,sd),
selectedGenes<-rev(order(temp))[1:500],
heatmap3(counts[selectedGenes,],labRow=“”,margin
=c(7,0),RowSideColors=colGene[selectedGenes,],

Table 1: The statistical test result for categorical annotation in
different groups.

Cluster1 Cluster2 𝑃 value by
chi-square test

ER
Negative 2 11

0.003Positive 13 4
Positive Percent 0.87 0.27

PR
Negative 4 13

0.003Positive 11 2
Positive Percent 0.73 0.13

HER2
Negative 13 13

0.023Positive 2 2
Positive Percent 0.13 0.13

Table 2: The statistical test result for age in different groups,
ANNOVA 𝑃 value: 0.429.

Age Cluster1 Cluster2
Min. 41.00 46.00
1st Qu. 51.00 49.00
Median 61.00 55.00
Mean 60.00 57.13
3rd Qu. 64.25 62.50
Max. 89.00 80.00

ColSideCut=0.85,ColSideAnn=clinic,ColSideFun=
function(x) showAnn(x),ColSideWidth=1.2,balance
Color=T).

Association tests between phenotype and cluster groups
were performed automatically by “heatmap3” (Tables 1 and
2). The number of categorical phenotypes and quantiles of
continuous phenotype variables in each cluster group are
summarized and reported. Chi-square test for categorical
variables and ANOVA for continuous variables are per-
formed by “heatmap3.” Based on the results, ER, PR, and
HER2 were not equally distributed between the two clusters.
On the other hand, age had no association with the two
clusters (𝑃 = 0.429).

The “heatmap3” package also provides an option which
allows the generation ofmultiple heatmaps and dendrograms
based on the threshold criteria selected by the user. Using the
same dataset, we performed heat map and cluster analysis
using all genes, the top 3000 genes, and the top 500 genes
selected by standard deviation. Figure 2 shows the three
dendrograms. All three dendrograms showed clearly two
large clusters. Using TN status as the primary phenotype,
each time a more stringent standard deviation cutoff was
used, the clusters became clearer between TN and non-TN.
This example illustrates the importance of selecting more
statistically varied genes for subtyping purposes. We can
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Figure 1: An example of “heatmap3” package.The heat map was generated based on 30 samples from TCGA BRCA dataset.The dendrogram
of samples (top) was divided into two parts based on the correlation between samples’ gene expression and then labeled, respectively. The
categorical annotation bars (above heat map) demonstrate the annotation for age, TN, HER2, PR, and ER. The color bar on the left side
demonstrates the log2 fold changes and negative log10 𝑃 values from comparison of triple negative patients versus nontriple negative patients.

conclude that the genes with the highest standard deviations
can be used to separate the triple negative and nontriple
negative samples. To generate Figure 2 using the example
dataset, type the following commands in R:

# assume “counts” is the expression data, “colGene”
contains the colors indicating fold changes and 𝑃

value, and “clinic” contains the ER, PR,HER2, TN,
and age information,
heatmap3(counts,topN=c(500,3000,nrow(counts)),
labRow=“”,margin=c(7,0),RowSideColors=colGene,
ColSideCut=0.85,ColSideAnn=clinic,ColSideFun=
function(x) showAnn(x),ColSideWidth=1.2,balance
Color=T).
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Figure 2: The dendrograms and clusters generated by top 500, top 3000, and all genes which were selected by standard deviation. The triple
negative samples were more enriched in one group when genes with larger standard deviation were used. The results demonstrate that the
“heatmap3” package can be helpful in selecting genes that best represent the phenotypes of samples.

4. Discussions

In this paper, we discussed the importance of heat map and
clustering analysis as well as the limitations of existing heat
map and clustering tools. To address these limitations, we
implemented the “heatmap3” package in R and demonstrated
its effectiveness using RNA-seq data from a breast cancer
study in TCGA. The “heatmap3” package is designed with
advanced options and is completely backward compatible
with the original “heatmap” function in R. Users with limited
R skill can generate sophisticated heat maps and dendro-
grams with ease. In summary, the “heatmap3” package fills

the void of advanced graphical options in current heat map
tools. It provides the much needed customizability for heat
map and cluster analysis.
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