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Abstract

The divergent synthesis of syn-1, 2-aminoalcohol or syn-1,2-diamine precursors from a common
terminal olefin has been accomplished using a combination of palladium(I1) catalysis with Lewis
acid co-catalysis. Palladium(l1)/bis-sulfoxide catalysis with a silver triflate co-catalyst leads for
the first time to anti-2-aminooxazolines (C—O) in good to excellent yields. Simple removal of the
bis-sulfoxide ligand from this reaction results in a complete switch in reactivity to afford anti-
imidazolidinone products (C—N) in good yields and excellent diastereoselectivities. Mechanistic
studies suggest the divergent C—O versus C—N reactivity from a common ambident nucleophile
arises due to a switch in mechanism from allylic C—H cleavage/functionalization to olefin
isomerization/oxidative amination.
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Introduction

The advent of powerful C—H oxidation reactions! enables reactive oxygen and nitrogen
functionality to be carried through synthetic sequences “masked” as inert C—H bonds and
strategically unveiled at late stages to improve efficiency and increase diversity.2 A
powerful approach to increase diversity would be to take a common hydrocarbon starting
material with an appended ambident nucleophile and, by fully exploiting its distinguishable
reactive centers, selectively transform a C—H bond into multiple functionalized products. In
this regard, homoallylic ureas could produce either imidazolidinones (cyclic ureas, C—N
functionalization) or 2-aminooxazolines (isoureas, C—O functionalization), two medicinally
important heterocycles® and precursors to 1,2-diamines or 1,2-aminoalcohols (Scheme 1).4
While C— O olefin functionalizations with ureas have been demonstrated using
stoichiometric hypervalent iodine reagents with limited scope,® in palladium-catalyzed
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reactions proceeding through either -allylPd or amino-palladated intermediates,5-11
ambident O/N nucleophiles have reportedly provided primarily3¢ C—N functionalization
products (Scheme 1).

Design Principles

Palladium(Il)/sulfoxide catalysis has proven itself to be a general platform or allylic C—H
to C—0*2 and C—N13 reactions of terminal olefins under mildly acidic, oxidative
conditions. For example, 1,2- and 1,3-aminoalcohol precursors are readily accessible from
homoallylic and bishomoallylic carbamates (respectively, Scheme 1). Under similar
conditions, homoallylic ureas could furnish either valuable 1,2-diamine (C—N) precursors
or 1,2-aminoalcohol (C— O) precursors. Under the reductive, basic conditions of Pd(o)-
catalyzed allylic substitutions, ambident urea nucleophiles have provided exclusively C—N
products in the form of imidazoidinones.® This is thought to be due to both a kinetic (base
promoted deprotonation at nitrogen) and thermodynamic preference for C—N alkylation
[Pd(0)-catalyzed equilibration].1# Given that Pd(ll)/suloxide catalysis proceeds under acidic,
oxidative conditions that do not favor nitrogen deprotonation or promote reversible
functionalization, O-alkylation may compete with N-functionalization using urea terminal
olefin substrates. Additionally, O-alkylation may be further promoted by the addition of an
azaphilic Lewis acid additive that binds to the nitrogen and retards nucleophilic attack.
Significantly, the 1,2-aminoalcohol products furnished by this method would have the
opposite regiochemistry to those previously obtained from carbamate nucleophiles (Scheme
1). With the goal of increasing diversity by tuning the reactivity of an ambident urea
nucleophile, herein we show that readily accessible homoallylic N-nosyl urea substrates can
be transformed into 2-aminooxazolines (C— Q) or imidazolidinones (C—N) by a simple
switch in the Pd(I1) catalyst in the presence of azaphilic Lewis acid co-catalysts.

Results and Discussion

Reaction Discovery: C—O Functionalization

We began our study by subjecting N-nosy!l urea 3 to our standard Pd(l1)/sulfoxide catalysis.
Interestingly, we found that although C-N (5) product was formed in slight excess, an
appreciable amount of C-O (4) product was present (Table 1, entry 1). As expected,
inclusion of a Brgnsted base co-catalyst (Table 1, entry 2) completely shut down the C—O
functionalization pathway and resulted in a strong preference for C—N functionalization.
However, we found that catalytic B(CgFs)3!® (entry 3) or silver triflatel6:17 (entry 4),
previously shown to have azaphilic properties with amides, increased the overall selectivity
favoring the formation of the desired 2-aminooxazoline (4.9:1 and 7:1, respectively)
furnishing 4 in 50% and 76% yield, respectively. In contrast, inclusion of an oxophilic
Lewis acid co-catalyst [Cr(salen)CI]32, previously shown to activate intermediate -
allylPd(BQ) electrophiles towards functionalization, led to diminished yields and did not
change the C-O to C-N selectivity (entry 5). As had been previously observed with
carbamate nucleophiles, N-tosyl ureas are less reactive (entry 6). Catalytic triflic acid
(TfOH) additive promotes reactivity but with lower selectivity for anti-aminooxazoline 4
(entry 7). This result is consistent with experimental observations that water, which may
form triflic acid in situ, erodes C—O:C—N ratios. Deletion experiments showed that the Pd/
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bissulfoxide catalyst 1 was critical for reactivity (entries 8 and 9). To the best of our
knowledge, this represents the first example of successfully tuning the reactivity of an
ambident O/N nucleophile under palladium catalysis to favor C-O bond formation.

Reaction Discovery: C—N Functionalization

We were intrigued by our discovery of a selective C—O bond-forming reaction using Pd(11)/
sulfoxide catalysis, and questioned whether the sulfoxide ligand was critical for the observed
selectivity. After removing the ligand from a standard reaction, we made the unexpected
observation of the exclusive formation of C—N alkylated product anti-imidazolidinone 5 in
46% yield (entry 10). Upon optimization, synthetically useful yields and excellent
diastereoselectivity (>20:1 dr) were obtained using either silver triflate (entry 11, 59% yield)
or B(CgFs)3 (entry 12, 62% yield). Notably, omission of the Lewis acid co-catalyst resulted
in lower product formation (32% yield) due to an oxidative amination pathway
(aminopalladation/B-hydride elimination) of the terminal olefin (entry 13). Additionally,
omission of the palladium catalyst gave no reactivity (entry 14).

Collectively, these two processes represent the first examples of transforming readily
accessible ambident urea nucleophiles into either C—O or C—N alkylated products by
simply switching the Pd(I1) catalyst.

Reaction Scope

As outlined in Tables 2 and 3, a range of N-nosy! urea olefin substrates were effectively
oxidized and aminated using these heterobimetallic catalytic systems to furnish either anti-2-
aminooxazolines or anti-imidazolidinones in good yields and selectivities. Substrates
containing moderate to high levels of steric bulk adjacent to the urea tether (R = ethyl,
isopropyl, t-Bu) furnished the corresponding products in high yields and selectivities with
both systems (4, 5, 6, 14, 15). anti-2-Aminooxazolines (7 and 8) and anti-imidazolidinones
(16 and 17), derived from common tertiary amines, can also be accessed in excellent yields
and selectivities. These represent a class of sterically challenging vicinal diamine and
amino-alcohol precursors that are difficult to access otherwise in optically enriched form. In
each case, a single starting material was converted selectively into either C—O or C—N
functionalized products simply by using the appropriate palladium catalyst. Substrates
containing proximal benzylated diols capable of catalyst deactivation via metal chelation are
also tolerated under both reaction manifolds [(-)-11, (-)-18, (-)-19]. Aryl moieties were
evaluated and the products generated displayed excellent selectivities for either the C—O or
the C—N functionalized products [(-)-12, (-)-13, 21]. The diastereoselectivity for both
processes appears to be very high; in most cases examined, only the anti-aminooxazolines
and anti-imidazolidinones are observed by 1H-NMR of the crude reaction mixtures. For
substrates that contain multiple stereogenic centers, the diastereomeric outcome is
predictable and controlled entirely by the stereocenter containing the urea ((+)-9, (-)-10,
(-)-11, (-)-13, (-)-18, (-)-19). Taken together, these results demonstrate the selective,
catalyst-controlled allylic installation of either O or N functionality using a bifunctional urea
nucleophile. It is significant to note that alternative methods to generate these products
require de novo syntheses of separate starting materials.>11: 18 Reactions such as these that
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take a common intermediate and obtain divergent outcomes based on catalyst control have
the potential to significantly advance synthetic efficiency and flexibility.

a,p-Diamino Acids and a-Hydroxy-f-Amino Acids

The vinyl imidazolidinones (ureas) and aminooxazolines (isoureas) generated via these
methods are precursors to valuable 1,2-diamines and 1,2-aminoalcohols. For example, the a-
olefin moiety can be easily elaborated to furnish a,B-diamino acids and a-hydroxy-p-amino
acids, nonproteinogenic amino acids found in numerous biologically active compounds and
synthetic peptides.19

Beginning with readily accessible homoallylic N-nosyl urea precursors (4 steps from
commercial starting materials, see Supporting Information), application of Pd(I1)/bis-
sulfoxide/LA-catalyzed oxidation or Pd(I1)/LA catalyzed amination methods furnished
either the corresponding aminooxazoline ()-8 or imidazolidinone ()-20 in excellent yields
and selectivities (Tables 2, 3). Elaboration of the vinyl moiety of aminooxazoline ()-8 via
ruthenium tetraoxide-catalyzed oxidative cleavage affords carboxylic acid (x)-22 in 86%
yield. Hydrolysis of the/V-nosyl-2-aminooxazoline (£)-22 under acidic conditions afforded
the a-hydroxy-p-amino acid (£)-23 in 80% yield. Imidazolidinone (x)-20 could also be
readily elaborated to a,-diamino acid (£)-25 via a three-step sequence involving oxidative
cleavage of the olefin (78%), mild PhSH/K,CO3 removal of the N-nosyl group, and acidic
hydrolysis (90% over two steps). These methods enable the selective and efficient
generation of heterocyclic and acyclic polyoxidized pharmacophores and may expedite
discovery of new medicinal agents.

Mechanistic Considerations

Data from the reaction discovery studies suggested that the C—O versus C—N selectivities
obtained with the ambident urea nucleophile are dictated by the choice of Pd!! catalyst
(Table 1). In order to confirm that it is a switch in palladium catalyst alone that is causing
the selectivity for C—O vs. C—N bond formation in these two reactions, we subjected a
common starting material 26 to either 10 mol% Pd(ll)/bis-sulfoxide catalyst 1 or Pd(OAc), 2
under otherwise identical reaction conditions of azaphilic Lewis acid co-catalyst, solvent,
oxidant, and temperature (Scheme 3). Remarkably, both Lewis acid co-catalysts B(CgFs)3
and Ag(OTf) furnished imidazolidinone product anti-15 and 2-aminooxazoline product
anti-6 in comparable yields with excellent C—O vs. C—N selectivities of >20:1 that are
dependent solely on the nature of the palladium catalyst.

A critical question raised by these studies relates to the means by which a switch in
palladium catalyst results in divergent product outcomes from a common urea starting
material. We hypothesized that the observed difference in the reactivity of the urea
nucleophile when switching from Pd(Il)/bis-sulfoxide 1 to Pd(OAc), 2 arises from a change
in mechanism from allylic C—H oxidation that furnishes anti-2-aminooxazoline products to
olefin isomerization/oxidative olefin amination that generates anti-imidazolidinones. Pd(ll)/
sulfoxide catalysis with terminal olefins has been well established to proceed via an allylic C
—H cleavage/n-allylPd functionalization mechanism with a wide range of oxygen and
nitrogen nucleophiles under varying reaction conditions.1213 Consistent with C—O
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alkylation proceeding via such a mechanism, stoichiometric n-allyl intermediate 28 affords
anti-aminooxazoline 29 as the major product in the presence of AgOTf (Scheme 4a).

Given that the sulfoxide ligand is known to retard olefin isomerization!2?, we envisioned
that its exclusion allows Pd(OAc),/B(CgFs5)3 to effect isomerization of the terminal olefin
starting material to the internal E-olefin; subsequently, the internal olefin would be capable
of undergoing an oxidative amination pathway (aminopalladation/p-hydride elimination).
Isomerizations of terminal olefins catalyzed by Pd(I1)-salts20 are well documented and the
addition of Lewis acid additives?! has been shown to promote these processes. To test our
hypothesis, we evaluated the rate of functionalization for terminal olefin substrate 3 and the
corresponding E-internal olefin substrate 33, which would lead to the observed anti-
stereochemistry via an aminopalladation mechanism. Consistent with our hypothesis, both
substrates formed the anti-imidazolidinone product with comparable overall kinetic profiles,
yields and selectivities (Scheme 5).

Additionally, 'H-NMR analysis of the reaction with terminal olefin substrate 3 revealed
complete conversion to the corresponding E-internal olefin 33 after only 1 hour22. Qur
studies demonstrate that a change in mechanism from allylic C—H oxidation to
isomerization/aminopalladation led to catalyst-controlled, divergent C—O and C—N allylic
functionalization reactions using tethered urea nucleophiles.

Interestingly, while inclusion of a Lewis acid results in O-functionalization from a m-allylPd
intermediate, exclusive N-functionalization is observed via an aminopalladation pathway.
This outcome may be explained by considering that w-allylPd N-functionalization proceeds
via external attack that requires an anionic, nucleophilic nitrogen (Scheme 6). In accord with
this, we have observed that Pd(0)-catalyzed allylic substitution of an analogous allylic
acetate substrate, known to proceed via a m-allylPd intermediate, does not proceed without
inclusion of stoichiometric base (Scheme 4b). The Lewis-acid co-catalysts used in this study
may coordinate to the urea nosy! nitrogen and block its attack on the Pd/m-allyl complex
and/or generate highly electrophilic n-allylPd intermediates that are preferentially attacked
by the hard oxygen urea nucleophile (Scheme 6). In contrast, aminopalladation is a process
that has been noted to proceed under both acidic and basic reaction conditions.23 Future
studies will seek to better understand the divergent reactivity of ambident nucleophiles with
m-allylPd and olefin intermediates.

Conclusion

In conclusion, we have developed a novel process that uses palladium catalysis in
combination with Lewis acid co-catalysis for the formation of either anti-2-aminooxazolines
or anti-imidazolidinone products from common ambident urea precursors. The inclusion of
Lewis acid promotes O-alkylation in reactions proceeding with ambident O/N nucleophiles
via -allylPd intermediates, thereby offering a strategy for expanding the scope of
nucleophiles subject to palladium catalysis. Moreover, the discovery of facile isomerization/
olefin palladation under LA/Pd(I1) conditions may broaden the scope of allylic
functionalization reactions available from terminal olefins. We anticipate that the general
strategy of taking a common hydrocarbon starting material and selectively transforming it
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into multiple useful products will find immediate use in streamlining and diversifying the
synthesis of medicinal agents and natural products.

Experimantal Procedures

General procedure for the allylic oxidation (Table 2)

A Y% dram borosilicate vial containing a Teflon stir bar was flame dried, sealed with a Teflon
lined cap and taken inside a glove box. The homoallylic N-nosyl urea starting material (1
equiv., dried over P,0s), freshly sublimed methyl-p-benzoquinone (1.5 equiv.), catalyst 1
(0.10 equiv.), 1,2-bis(phenylsulfinyl)ethane (0.05 equiv.) and freshly recrystallized AgOTf
(0.08 equiv.) were added to the ¥ dram vial in the glove box, in the order specified. The vial
was securely sealed with the Teflon lined cap and taken out of the glove box. Dry
dichloromethane (1.0M) (and DMA, if specified in Table 2) was quickly added to the %
dram vial outside of the glove box, under a flow of Argon gas. The vial was then sealed and
placed in an aluminum block to stir at 45°C for exactly 6 hours. If the reaction is allowed to
run longer than 6 hours an erosion of the C—O:C-N selectivity is observed. The solution was
allowed to cool to room temperature and then transferred using dichloromethane to a 250
mL separatory funnel. The solution was diluted with 15 mL of dichloromethane and rinsed
with 1x15 mL aqueous NH,4CI (sat.). The organic layer was collected and dried over
MgSQy, filtered and concentrated in vacuo. The crude reaction mixture was purified using
flash column chromatography (in general, gradient 25-30% EtOAc/hexanes was used).

General procedure for the allylic amination (Table 3)

A %2 dram borosilicate vial containing a Teflon stir bar was flame dried, sealed with a Teflon
lined cap and taken inside a glove box. The homoallylic N-nosyl urea starting material (1
equiv., dried over P,0s), sublimed benzoquinone (1.05 equiv.), Pd(OAc);, (0.1 equiv.) and
B(CgFs)3 (0.1 equiv.) were added to the %2 dram vial in the glove box, in the order specified.
The vial was securely sealed with the Teflon lined cap and taken out of the glove box. Dry
tetrahydrofuran (1.66M) was quickly added to the % dram vial outside of the glove box,
under a flow of Argon gas. The vial was then sealed and stirred in an aluminum block at
45°C for 72 hours, unless otherwise noted in Table 3. The solution was allowed to cool to
room temperature and the crude reaction mixture was directly purified using flash column
chromatography (in general, gradient 20-30% EtOAc/hexanes was used).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Scheme 1. Ambident Nucleophile Reactivity
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A 1 RuClgxtb0, Y 2. H380, NH,
N” "o NalO, N“ o Mewg ™ woo
tBu )—t —> Buny (WH = Bu
_ 86% 80% H
Me 4.8 Me COCH OH
795 hmed (£)-22 (£)-23
19:1 C-O:C-N
C-0 Reaction: (1) RuClzxH,0 (0.04 equiv.), NalO4 (6 equiv.), MeCN:CCl4zH,0
(1:1:1.5), rt (86%); (2) HoSO4D,0 (1:1), 130°C (80%)
B.
i j\ syn-diamine
NH
1. RuClyxH,0, 2.PhSH 2
HN)_QN: HelOg .78% HN)j:NNS KCOs | o )\rCOOH
R R
Bu — Bu COOH 3. 2M HCI NH;
()-20 (2)-24 90% (¥)-25
63% vyield (over 2 steps)
>20:1 C-0:C-N

C-N Reaction: (1) RuClyxH,0 (0.04 equiv.), HslOg (6 equiv.), MeCN:CClzH,0
(1:1:1.5), 0°C -> rt (78%); (2) PhSH (1.8 equiv.), K,CO3 (2.5 equiv.), DMF, 0°C -
> 45°C (99%); (3) 2M HCI, 100°C (90%)

Scheme 2. Diversification to biologically relevant motifs
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0.0
-S S-
Ph . Ph
)OL Pd(OAc), 2 j\ Pd(OAc), 1 )\HNS
HN NNs (10 moI%) HN NHNs (10 mol%) N 2 1)
)_\; LA (10 mol%) )\/\ LA (10 mol%) 3
tBu BQ (1.05 equiv) same  fBu
.5 THF (1.66M) 26 .
(=)- 45°C, 72h (=)- (2)-

Lewis acids (LA)*P B(C4Fs)5: 6, 61%, >20:1 6:15; 15, 64%, >20:1 15:6
Ag(OTf): 6, 60%, >20:1 6:15; 15, 61%, >20:1 15:6

Scheme 3. Ligand Effects on Selectivity

2 |solated yield, average of 2 runs at 0.3 mmol; P The ratios were determined by 1H NMR
analysis of crude reaction mixture.
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Scheme 4. Mechanistic Experiments for C-O Functionalization
(a) Stoichiometric formation and functionalization of a w-allyl Pd intermediate (b)

Functionalization of a preoxidized N-nosyl urea under Pd(0) conditions.
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Scheme 5. Mechanistic Experiments for C-N Functionalization
(a) Terminal vs internal olefin functionalization under Pd'!/B catalysis (b) Overall kinetic

profile of the terminal olefin and the internal olefin under the standard C-N

functionalization conditions
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Scheme 6. Proposed mechanisms
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Table 2
Pd!!/bis-sulfoxide/Ag catalyzed allylic C-O bond formation

o} o, /.0 NHNs
s P 5 &8:
h Ph z
HN NHNs Pd{OAc); 1 (10 mol%) N O
AgOTF (8 mol%) :
R J\/\\\ —_— R)_\=
H MeBQ (1.5 equiv.) 730 avy. isolated yield

DCM (1.0M), 45°C, 6h  10:1 to 20:1 C-0:C-N°

NHNs jl\HNs ,T\HNS
N7 0 N“ O N7 O
Bu — Me = Me —
_— ()7 ()8
()6 82% yield® 79% yield®
79% yield >20:1 C-O:C-N 19:1 C-O:C-N
17:1 C-0:C-N
NHNs NHNs NHNs

X L "o

_ — BnO  OBn
oTBS OTBS i
65% yieldd®
(”-'9 : (-)-10 19:1 C-O:C-N
79% yield 60% yieldd
>20:1 C-O:C-N 14:1 C-O:C-N
e NN NHNs
M O\©\ N0
(+)-12
61% yield><
10:1 C-0:C-N (-)-13
67% yield®
13:1 C-O:.C-N

aC-O:C-N = 2-aminooxazoline : anti-imidazolidinone; All yields are reported for the major diastereomer.
b7: 5.6:1 dr anti:syn 2-aminooxazoline; 12: 4:1 dr.

CReaction run at 45°C with a 0.12:1 DMA:DCM solvent mixture.

dReaction run at 40°C with a 0.12:1 DMA:DCM solvent mixture.

e . . . -
Unable to determine crude selectivity due to peak overlap; isolated selectivity reported.
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Table 3
Pd'!/B catalyzed allylic C-N bond formation
o]
Pd(OAc); 2 (10 mol%)
HN” “NHNs  B(CsFs)s (8 mol%) HN "~ NNs
~e"s)3 1O Mo ;
R BN BQ (1.05 equiv.) R —
THF (1.66M)

- 62% avg. isolated yield®
45°C, 7zh 10:1 to 20:1 C-N:C-O

i X X
HN JLNNS HN" “NNs HEL"™ NS
Et =  Bu = Me —

15 (£)-16
(:)-14 63(;'3 Yield 76% Yield®

55% Yield®

o o) o
)L HN )LNNS HN NNs
HN NNs 3 ".
Bu )—KH_ [ = { =
Me — BnO  OBn BnO  OBn
(-)-18 (-)-19
51% Yield 42% Yield
()17

94% Yield®

(o]

j:)L HN :NNS
H N N NS MeO ‘O_)_\z
>_:L (2)-21
Bu — 49% Yield®

(£)-20
63% Yield®

aDiastereoselectivities and C-N:C-O ratios were measured by 1H NMR of the crude reaction mixtures; >20:1 dr and >20:1 C-N:C-0 unless

otherwise noted.
b14: 9.8:1dr; 20: 7:1dr; 21: 12:1 dr.

C16: 10:1 C-N:C-0; 17: 10:1 C-N:C-0O
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