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Abstract

Disruptions in DNA repair pathways predispose cells to accumulating DNA damage. A growing

body of evidence indicates that tumors accumulate progressively more mutations in DNA repair

proteins as cancers progress. DNA repair mechanisms greatly affect the response to cytotoxic

treatments, so understanding those mechanisms and finding ways to turn dysregulated repair

processes against themselves to induce tumor death is the goal of all DNA repair inhibition efforts.

Inhibition may be direct or indirect. This burgeoning field of research is replete with promise and

challenge, as more intricacies of each repair pathway are discovered. In an era of increasing

concern about healthcare costs, use of DNA repair inhibitors can prove to be highly effective

stewardship of R&D resources and patient expenses.
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Capitalizing on differences between cancerous and noncancerous cells to find more effective

therapeutic solutions is an area of ongoing, intense research. Defects in DNA and/or DNA

repair can cause cancer as well as promote its growth. As cancers become increasingly

mutagenic, genetic streamlining leads to deficiencies in one or more DNA repair pathways –

accompanied by compensatory activities that increase the levels of certain repair proteins in

the same pathway or a different one [1]. This contributes to intrinsic or acquired cellular

resistance to DNA-damaging agents [2]. Interrupting DNA repair in such a way that shuts
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down a tumor's compensatory repair mechanisms and induces cell death is the goal of all

research surrounding DNA repair inhibition.

DNA repair inhibitors, particularly small-molecule inhibitors, hold great promise for

damaging tumor cells. Their specificity can be honed to target a single step or single protein

of a DNA repair pathway. Achieving that goal moves us closer to truly personalized

medicine. However, the development of such inhibitors is offset by several real-world

challenges.

Research has amassed much data regarding DNA repair protein(s) that are under- or over-

expressed in cancers – but which ones do the cancers themselves uniquely require? In a

perfect world, one altered gene or gene product would create a unique footprint that

corresponded to just one repair pathway or would drive a rate-limiting or saturable reaction.

Unfortunately, finding a target that fulfils that wish list is the exception, rather than the rule.

A mutagenic phenotype is rarely the result of one under- or over-expressed protein, and

molecular pathogenesis is not linked to an isolated step in oncogenic progression. In

addition, the multifunctionality of many DNA repair proteins can complicate inhibition

efforts with unexpected results. Pathways are complex and crosstalk between pathways

occurs (Table 1) [3–5]. As mutagenesis increases, greater tumor heterogeneity from

crosstalk and compensation further complicates identification of viable targets for inhibition.

Finally, the relative lack of biomarkers to help sort this out is not unlike driving in uncharted

territory without a map. Research is in its infancy in corralling the collective contributions of

multiple proteins that constitute a mutagenic phenotype.

Inhibition & synthetic lethality

Because preserving the genome is paramount, DNA repair is replete with alternate plans. If

one pathway fails to repair a problem, another pathway can step in (Table 1) [3–5]. While

that elegant plan helps maintain genomic stability under normal circumstances, it contributes

to chemoresistance when repair mechanisms go awry. However, if the alternative pathway

contains a mutation that makes the pathway dysfunctional or nonfunctional, then impairing a

step in the main pathway can force repairs into the backup mode where repair will fail,

causing the cells to self-destruct. That is the principle of synthetic lethality, and PARP

inhibition is the leader in that principle.

PARP's primary activity is in the base excision repair (BER) pathway, where it gauges the

extent of damage and functions as a scaffold or stabilizer for other BER proteins. PARP

inhibition abrogates BER functionality, causing accumulation of unresolved single-stranded

breaks (SSBs) that convert to double-stranded breaks (DSBs) during S phase. Because

BRCA-deficient cancer cells cannot repair DSBs via the homologous recombination (HR)

repair pathway, they attempt to so do via the error-prone nonhomologous end joining

(NHEJ) pathway. However, recombinogenic lesions and other errors cause the collapse of

replication forks and cell death when NHEJ attempts the repairs [7,8].
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Successes & bumps in the road

The concept of `treating a weakness' to create a synthetic lethality [9] was launched in 2005

when two seminal papers demonstrated that PARP inhibitors (PARPis) could be used as

single agents to treat BRCA-deficient cell lines [8]. The first clinical study that

demonstrated the benefit of the PARPi olaparib as monotherapy in BRCA−/− patients was

presented in 2007; final results were published in 2009 [10]. PARP's stunning success

against BRCA1 and BRCA2 breast cancers led to an explosion of research surrounding

PARP inhibition, including a quest for its use in broader clinical applications (Table 2).

Since then, a plethora of clinical trials have studied PARPis both as monotherapy and

combination therapy. However, in early 2011, that research suffered two blows.

First, a Phase III trial of iniparib (BSI-201) to treat metastatic, triple-negative breast cancer

(TNBC) failed to prolong patient survival, despite promising Phase II trial results [12].

TNBC is clinically and pathologically similarity to BRCA1/2-mutated breast cancers in that

both have very aggressive profiles, poor prognosis and limited treatment options [13].

Subsequently, Phase III development of olaparib (AZD-2281) to treat hereditary BRCA1-

and BRCA 2-associated breast cancer was halted [7,14].

These seeming `failures' spawned greater scrutiny of both the products themselves as well as

protocol criteria. Iniparib was deemed technically not to be a PARPi but rather a cysteine-

binding poison (and is still being pursued as a chemotherapeutic). Heavily pretreated patient

cohorts and the phenotypical heterogeneity of some cancers, particularly TNBC, were

deemed to have contributed to differences observed in Phase II versus III testing, as well as

variations in patient outcomes within the same trial. Ultimately, this led to a redoubled effort

to learn more about PARP's precise mechanisms of action and a redirection of some clinical

trials in what patient populations to target [13].

Lessons learned from PARPis

The ups and downs of intense PARP research are helping scientists identify and anticipate

bumps in the road for developing targeted inhibitors in general. To summarize, science has

learned that:

• PARP proteins are not solely involved in DNA repair. They also play roles in

transcription, telomere replication, cellular transport, NF-κB regulation and HSP90

expression [15,16]. Hints at those (and yet-to-be discovered) functions are seen

outside PARP's catalytic region. Although the catalytic domain is conserved among

all 18 members of the PARP family, dissimilarities in PARP's automodification

domain and DNA binding domain distinguish each PARP from one another [10];

• PARPis do more than bind the catalytic domains of PARP1 and PARP2. Because

PARP1 has multiple domains that bind DNA damage, enzymatic activity can, in

theory, be blocked without interfering with the catalytic site itself and without

affecting essential functions of other PARP family members. This could increase

specificity and decrease treatment side effects [13];

• Not all PARPis are created equal. PARP must be inhibited by >90% to detectably

inhibit DNA repair [17]. However, some PARPis work on tumors that are resistant
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to other kinds of PARPis. For example, AZD2461 (first Phase I trial recently

completed) shows clinical activity on olaparib-resistant tumors [18]. This is due in

part to, but cannot be fully explained by, structural differences. First- and second-

generation PARPis are nicotinamide analogs, benzamides or substituted

benzamines; their specificity and potency vary greatly. Many third-generation

PARPis are derived from the 3-aminobenzamide structure; others are polycyclic

lactams; most are competitive inhibitors [10,16]. Ongoing research into the

structural and mechanistic aspects of PARP will hopefully clarify the reasons for

these differences;

• The `poisoning potency' of a PARPi depends on its strength in stabilizing PARP-

DNA complexes – irrespective of the compound's catalytic inhibition. Thus, the

extent to which PARP trapping occurs has a greater clinical effect on cell killing

than enzymatic inhibition of PARP activity [19,20]. This is one plausible

explanation for why various PARPis perform differently, even on the same cohort

of patients [16];

• The synthetic lethality that PARP inhibition confers (capitalizing on a weakness in

the HR repair pathway) is not limited to BRCA1- and 2-deficient cancers;

• Genetic deficiencies that confer high sensitivity to PARPis include deficiencies in

XRCC2, XRCC3, RAD54 and H2AX [20]. Cancers containing PTEN1 and ATM

deficiencies and microsatellite instabilities (as seen in colorectal cancers) also

respond well to PARPis [16].

These discoveries not only fuel the fire for broader therapeutic applications [16]; they also

provide clues regarding how to approach the development and use of other types of DNA

repair inhibitors.

Double-edged sword of inhibiting multifunctional repair proteins

PARP proteins, like many other DNA repair proteins, are multifunctional. That

characteristic cuts both ways. While inhibiting a multi-functional protein can affect multiple

pathways and theoretically increase its tumor-killing ability, it may produce unanticipated

results and/or increased toxicities.

Similar challenges and opportunities exist with checkpoint proteins, the sentries of DNA

damage response. Due to their ubiquitous nature and multitasking abilities, inhibiting them

could either cause great good or great harm – unless research can pinpoint how and when

such inhibition would have the greatest therapeutic effect. For a full discussion of

checkpoint inhibitors as monotherapy or combination therapy, see [21].

Overview of each pathway & inhibitors in development

Direct repair pathway

The direct repair (DR) pathway is unique in that only one protein is involving in performing

a solitary, nonenzymatic process that repairs instead of replacing a damaged base. The sole

protein involved, MGMT, removes one alkyl group from the O6 position of a damaged

guanine base, such as generated by treatment with the clinical alkylating agent
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temozolomide (TMZ), and transfers it to an internal Cys residue in MGMT. The non-

reversible reaction, which is greatest before late G1 [22], culminates with inactivation and

degradation of the MGMT molecule. The stoichiometric reaction is driven by cells' ability to

continually make more MGMT. To a lesser extent, MGMT performs the same function on

the O4 position of thymine. Without MGMT repair, alkyl adducts would cause thymine

mispairings during replication, leading to erroneous G:C-to-A:T transitions or strand breaks

– necessitating the recruitment of other pathways to perform more complex repairs [3].

Overactivity of MGMT is responsible for chemoresistance; for example, >90% of recurrent

gliomas show no response to a second cycle of chemotherapy. Conversely, inhibition of

MGMT renders cancer cells sensitive to TMZ. Addtionally, MGMT promoter alkylation is a

significant determinant in the sensitivity of drugs such as TMZ. There is abundant evidence

linking the methylation of the MGMT promoter to loss of protein expression resulting in

increased sensitivity to chemotherapeutic agents and to the prognostic outcome of patients

treated. However, the role of MGMT promoter methylation in tumorigenesis and its utility as

a prognostic bio-maker still needs further attention. Similarly, low MGMT expression

appears to be a biomarker for slower tumor progression [22].

DR inhibitors in development & on the market

Many compounds initially thought to be MGMT inhibitors have proved to be checkpoint

inhibitors instead. Only one true MGMT inhibitor, O6 benzylguanine (O6-BG), is currently

on the market. In vitro studies of O6-(4 bromothenyl) guanine (PaTrin-2 or PAT), a

pseudosubstrate inactivator of MGMT, show greater potency than O6-BG. However, it

causes dose-limiting toxicities when administered with TMZ [23].

More novel approaches to MGMT inhibition are also being tried (Box 1) [22,24–27]. A

Phase I trial of extended low-dose administration of TMZ to deplete MGMT prior to

standard TMZ dosing is showing promise for patients previously resistant to TMZ.

Oncolytic viruses (Adenovirus E1A protein, mutant HSV G207) show preclinical activity in

inhibiting MGMT transcription [22]. For more details on MGMT inhibitors in development,

see [22].

Base excision repair

The BER pathway corrects single-base (nonhelix-distorting) damage caused by oxidation,

alkylation, deamination and ionizing radiation (IR). If left unchecked, such damage would

cause incorrect base pairings that would become mutagenic if transcribed [4]. BER consists

of two subpathways; the activation of one or the other is predicated by first the cause and

type of damage, second the type of abasic (apurinic, apyrimidinic) (AP) site generated in the

first repair step [4] and third the cell cycle phase in progress when the damage occurs [29].

The short-patch pathway quickly repairs single-base damage during the G1 phase; the long-

patch pathway handles lengthier repairs during S or G2, when resynthesis of two to eight

nucleotides surrounding the AP site is required [29]. For details of BER pathway

mechanisms, see [30].
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Alkylating agents, platinating agents, cytotoxic antibiotics and taxanes create DNA lesions

that the BER pathway normally repairs [31]. Thus, BER inhibition holds promise for

potentiating the effects of those treatments. Inhibitors of four BER proteins that are either

unique to this pathway, have very specific BER functions or are otherwise attractive

candidates for inhibition are in development: APE1, Pol β, FEN1 and PARP (Table 3) [32–

39].

APE1 is the only DNA repair protein that also regulates reduction-oxidation (redox)

activities. Its redox functions affect DNA repair indirectly and influence many transcription

factors involved in cancer promotion and progression [34]. In the repair process, APE1

activity creates special ter-mini to prepare the abasic site so that a polymer-ase can insert the

correct resynthesized base [40]. APE1's redox functions help maintain transcription factors

in a reduced, activated state so they can fold properly, bind to DNA and produce proteins the

cells need. APE1 does this directly through a thiol/sulfite exchange and indirectly through a

`redox chaperone' function that is still being characterized [31].

APE1 overexpression confers chemo- and radio-resistance [31] and is associated with

shorter time to progression and poorer prognosis [34]. APE1 is dysregulated or upregulated

in many solid cancers, including hepatocellular, prostate, pancreatic, ovarian, cervical, germ

cell tumor, rhabdomyosarcoma and colon cancers [4,31,38]. Many other characteristics of

APE1 make it a highly desirable target for inhibitor development. APE1's diverse activities

offer multiple opportunities for inhibitor development to modulate multiple repair and

signaling pathways that represent multiple cancer survival mechanisms [4,38,41–42].

In preclinical studies, blockade of APE1's repair functions potentiates the cell-killing

abilities of many anticancer agents, including methyl methane sulfonate (MMS), H2O2,

bleomycin, TMZ, melphalan, cisplatin, IR and gemcitabine [4,43–44]. Blockade of APE1's

redox functions has numerous antiproliferative and antiangiogenic effects [41,43–45].

Redox inhibition also alters the tumor microenvironment, including downregulation of

HIF1α, AP-1 and NF-κB [34]. Treatment with an APE1 redox inhibitor could prevent DNA

binding of cytokine signaling. Very recent study results show that blockade of APE1's redox

function blocks phosphorylation (and thus transcription) of STAT3 [46]. Thus, treatment

with a STAT3 inhibitor (which directly blocks the DNA binding region of STAT3) plus an

APE1 redox inhibitor has been demonstrated to cause synthetic lethality in human

pancreatic and glioblastoma cell lines. A bonus is that APE1 redox blockade controls the

signaling crosstalk that occurs between the tumor and the tumor micro-environment [34,46].

This could eventually provide a new treatment paradigm for hard-to-treat cancers.

BER inhibitors in development & on the market

Inhibitors of both APE1's repair and redox functions are in various stages of preclinical

development. Some inhibitors originally touted to be specific for APE1 have turned out to

be more properly `BER inhibitors' because they bind to the aldehyde of the AP site on DNA.

An example is methoxyamine (MX, or TRC102). However, MX continues to be studied as a

component of combination treatment for a variety of cancers. At the time of this writing, one

Phase I trial had been completed and three more were in progress [47]. Other nonspecific

APE1 inhibitors are actually topoisomerase poisons [48]. A number of investigators have
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identified several specific APE1 repair inhibitors; however, research has not yet progressed

much past the cell culture stage [36–38,49–51].

E3330 and newer analogs show promise for specifically inhibiting APE1's redox functions.

Initial indications are that these will be used in adults and children with acute lymphoblastic

leukemia and other cancers [52].

The second BER protein that is a candidate for inhibition is Pol β. It is an attractive target

for inhibition for three reasons: it performs both DNA resynthesis and removal of the

blocking 5′-deoxyribose-5-phosphate (5′-dRP) residue in both short- and long-patch BER;

its associated lyase activity is often rate-limiting in BER; and it is upregulated in many

cancers, which contributes to resistance to IR, bleomycin, monofunctional alkylating agents

and cisplatin [31].

Research into scores of potential inhibitors showed that early candidates lacked specificity.

Interestingly, four naturally occurring compounds (oleanolic acid, edgeworin, betulinic acid

and stigmasterol) appear to affect DNA repair only – not scheduled replicative activity [39].

However, none of those compounds are very potent.

Two new compounds, NCS-666715 and NSC-124854, show high potency at very low

concentrations. Both are being evaluated in murine models as chemosensitizers for

colorectal cancers. Notably, both can block both short- and long-patch BER without

affecting APE1, FEN1 or DNA Ligase I activity, which theoretically would minimize

collateral damage to healthy cells. Studies to date show that combining TMZ with either of

these compounds blocks the growth of both mismatch repair (MMR)-proficient and MMR-

deficient colon cancer cells in vitro and causes antitumor activity in vivo [33,35].

Although the NCS compounds are far from moving into clinical trials, they underscore the

interactivity of multiple DNA repair pathways – and how the research of DNA repair

inhibitors must adopt a broader `systems' approach because of that. Many colon tumors

become resistant to alkylating agents, either due to MGMT overexpression, MMR

deficiency or both. Both BER and MMR can repair mismatch pairs and other alkylation

adducts that DR (MGMT) does not repair. However, if BER is inhibited and 8-oxoguanine

(8-oxoG) adducts accumulate, the damage becomes lethal to cells deficient in the MMR

proteins MLH1 or MSH2.

FEN1 is critical to DNA repair and replication. FEN1 is the major human endonuclease that

recognizes and cleaves 5′ DNA flaps in long-patch BER; it also removes Okazaki primers in

lagging strand DNA synthesis – approximately 50 million per cell cycle [53]. To perform

this endonuclease function imprecisely or inefficiently results in DNA that is not ligatable,

which delays cell replication and necessitates postreplicative repairs that endanger genomic

stability [53].

FEN1 is elevated in many cancers, including gastric, lung, prostate, pancreatic, breast and

brain cancers [53]. Cell studies demonstrate that lack of the FEN1 gene makes cells

hypersensitive to alkylating agents [31]. All these reasons make FEN1 an attractive target

for inhibition. Although its potential for broad therapeutic application has been likened to

Kelley et al. Page 7

Future Oncol. Author manuscript; available in PMC 2015 March 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



that of PARP [54], development of any FEN1 inhibitors is in only the very earliest stages, as

finding specific compounds with inhibitory capacity at nanomolar concentrations has been

elusive (Table 3) [33].

Finally, for BER, many PARPis are already in clinical use; trials are ongoing for second-

and third-generation PARPis, as discussed earlier in this article [3,16].

Mismatch repair

The MMR pathway is the cell's main repair mechanisms for correcting base–base

mismatches and repairing insertion and/or deletion loops formed during DNA replication

[55]. Before the damage can become permanent or duplicated in future cell cycles, MMR's

postreplicative damage control removes the DNA immediately surrounding the mismatch

and replaces it with a newly synthesized segment copied from the daughter strand as a

template. The MSH2–MSH6 complex attends to the repair of base substitutions and small

mismatched loops, while the MSH2–MSH3 complex repairs both small loops and large-loop

mismatches. Varying recognition complexes are formed based on the type of mismatch to be

repaired. Notably, the repair is completed specifically on the new strand [55].

Deficiencies in MMR increase mutation rates in cells up to 1000-fold [55,56]. Mutations in

four MMR genes (MSH2, MLH1, PMS2 and MSH6) predispose cells to a range of cancers,

including hereditary nonpolyposis colon cancer [55]. However, up to 20% of sporadic

cancers are due to MMR defects as well [57].

MMR inhibitors in development

Paradoxically, impaired MMR functionality fosters damage tolerance, which contributes to

increased mutagenicity, tumor heterogeneity and chemoresistance [56]. One way to exploit

the lack of one or more MMR genes is to create a synthetic lethality – to ensure that the

damage is truly beyond repair. Studies showing that a high accumulation of oxidative stress

induced in MMR-deficient cells can create such a synthetic lethality. A Phase II clinical trial

is underway to test the efficacy of methotrexate on MSH2-deficient cells [55,58]. Cell

studies show that a Pol β inhibitor can create a synthetic lethality in MSH2-deficient cells.

Similarly, a Pol γ inhibitor can create a synthetic lethality in cells lacking MSH2 (Table 4)

[55,59]. Both polymerase inhibitors create an abundance of 8-oxoG lesions [60]. The BER

pathway would normally repair such oxidative lesions; but because those polymerase

inhibitors would also affect BER, a synthetic lethality is created.

MMR proficiency increases cells' sensitivity to alkylating agents, antimetabolites and

fluoropyrimidines by 2- to 100-fold – enabling other cellular processes to arrest the cell

cycle in G2 and later trigger cell death pathways [61]. Because hypermethylation of the

hMLH1 gene promoter reduces promoter expression in many sporadic cancers,

hypomethylation could restore MMR function, sensitizing cells to those classes of

chemotherapeutics. Cell studies of fluoropyrimidine derivative, 5-fluoro-2-deoxycytidine

(FdCyd), have demonstrated this potential utility [57].
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Nucleotide excision repair

NER repairs bulky, helix-distorting lesions caused by UV irradiation and chemical mutagens

that crosslink adjacent purine bases and form intrastrand adducts. Deficiencies in NER

render cells sensitive to platinating agents, which attempt to arrest the cell cycle at G2 [62].

The success of this drug class is demonstrated most dramatically in the 95% cure rate of

testicular cancer treated with cisplatin [63]. However, intact NER activity contributes to

chemoresistance because it can repair damage inflicted by cisplatin, carboplatin and

oxaliplatin [62].

More than 30 proteins compose the NER pathway, four of which appear to be unique to

NER or drive rate-limiting reactions in NER, making those proteins key targets for

inhibition [63]. The XPA protein of NER opens the DNA helix, forming a bubble of

approximately 30 base pairs around the lesion. RPA and XPA stabilize the opened structure

and recruit other proteins to the site, including two endonucleases (XPG and XPF-ERCC1)

to perform the incision step [62–64]. RPA also activates ATR to halt cell cycle progression

[62]. In short, without XPA, NER cannot occur [62–64]. Damaged-strand incision is the

rate-limiting step for the pathway; thus, XPG, XPF, XPA, RPA and ERCC1 are the focus of

virtually all inhibitor research that targets NER. The first three proteins appear to be unique

to NER; ERCC1 has functions in other repair pathways, including HR [64]. For more details

of the mechanisms involving NER activity, see Table 5 and [63].

Mutations at the XPA binding site within ERCC1 can prevent the interaction between the

two proteins; even more notably, this also prevents recruitment of XPF, which normally

binds almost all of its residues to ERCC1. Upstream blockage of ERCC1-XPF activity via

XPA inhibition has been shown to sensitize cancer cells to IR [64].

NER inhibitors in development

As exciting as these findings are, research into NER inhibition is still in early stages – and

most so-called NER inhibitors appear to be rather nonspecific (Table 5) [62,64–65]. One

compound originally thought to be a NER inhibitor (7-hydroxystaurosporine [UCN-01]) is

actually a checkpoint inhibitor [64]. When the current article was written, 19 clinical trials

(seven Phase II; 18 Phase I) had been completed to test UCN-01 as a monotherapy or

combination therapy for a variety of recurrent or relapsed blood-based and solid tumors

[66]. Another compound, F11782, is a topoisomerase I and II inhibitor, but it also appears to

have some capacity to inhibit NER's helicase or incision step [67].

Another compound in clinical trials is trabectedin (also known as Ecteinascidin 743 or

ET-743), which shows activity against the transcription-coupled (TC) NER subpathway

(active during transcription) and HR pathway deficiencies. Although trabectedin's mode of

action is still being elucidated, this alklyloid's DNA binding in the minor groove bends DNA

toward the major groove in a fashion that seems unique to this compound. The net result is

interference with several transcription factors, DNA binding proteins and repair pathways.

Whether direct inhibition of a specific DNA protein occurs is in question. If trabectedin is

specific to TC-NER, then it must affect that subpathway's unique damage sensors (CSA,

CSB). However, to date, that has not been confirmed. We do know that TC-deficient cells
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and XPG-deficient colorectal cancer cells show resistance to trabectedin [68]. At the time of

this writing, 43 clinical trials, including many Phase II trials, were underway for the use of

trabectedin in numerous cancers [69].

MCI13E, a novel isoborneol haloacetate, shows promise in cell studies as an RPA inhibitor

and a sensitizer to platinating agents. Although it irreversibly binds to RPA, the half-life of

this experimental compound is relatively short-lived compared with platinating agents,

which take at least 48 h to produce effects. So, current studies are pursuing a model of

sequential treatment, administering cisplatin 24 h before adding the inhibitor [62].

TDRL-505, a reversible inhibitor that binds to a different site on RPA, is also under study.

Both compounds are still being characterized to determine their mechanisms of action [62].

ERCC1 plays a unique role in NER. It is recruited by XPA, but ERCC1's functionality rests

in its heterodimer form with XPF [65]. The ERCC1–XPF heterodimer excises the damaged

stretch of DNA [33]. Thus, separating the protein–protein interactions of ERCC1 with XPA

and XPF and identifying the domains essential to dimerization are topics of intense research.

Blocking ERCC1–XPF is tantalizing, but the crystal structure for this domain of human XPF

is yet unknown, and a number of endonucleases with similar divalent cation-based cleavage

mechanisms complicate the search for specific inhibitors [70].

In silico models have uncovered a compound, NERI01, which is more flexible and

establishes more hydrogen bonds with ERCC1 than all other compounds that generated to

date from high-throughput screening [65]. Despite the essentially blank slate for ERCC1

inhibitors, research has correlated ERCC1 overexpression with cisplatin resistance [71]; and

ERCC expression is emerging as a predictive biomarker of patients who will respond to

platinum-based chemotherapeutics [64].

Repair of DSBs

A single unrepaired DSB is highly toxic and can lead to aneuploidy, genetic aberrations or

cell death [72]. Such damage can occur naturally when topoisomerases uncoil DNA or be

induced by IR or chemotherapeutics. The most common occurrence is when replication

forks stall and break at the site of unrepaired DNA lesions [28]. Two main pathways repair

DSBs. NHEJ inhibition performs repairs in less than a half hour; in contrast, the time-

intensive work of HR takes many hours [73]. Inhibition of either or both is an important

lynchpin in treating cancers, as unrepaired base damage and SSBs have their last hope for

repair via one of these pathways. However, despite the plethora of repair proteins employed

in each pathway, therapeutic inhibition poses many challenges.

Homologous recombination

The biggest gun in the arsenal of repairing DSBs is HR, as it accurately corrects the most

serious and complicated forms of DSB damage. HR operates predominantly during the S

and G2 phases of the cell cycle so that it can find a large area of homology on a sister

chromatid to use as a template for resynthesizing damaged or lost bases [74,75].
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HR repair can proceed via one of several subpathways [76], but they all follow the same

general steps: resect DNA ends to generate an overhanging area of ssDNA; form a filament

on the end of the overhang to search for a large area of homology on the sister chromatid;

`invade' the filament onto the homologous area; form a DNA heteroduplex (a D-loop),

created from displacing the invading strand; slide or migrate the D-loop to read the area of

homology; extend the overhang as new nucleotides are generated past the original break

point; resolve the Holliday junction that forms as the D-loop pushes along the border

between hetero- and homo-duplex during resynthesis; migrate the repaired ends toward each

other; and restore the duplex strand [28]. For a review of HR and its subpathways, see [72].

HR activity is dysregulated in many cancers. A defect in one or more of its proteins may

impair or upregulate it, or loss of an upstream regulatory protein in another pathway of DNA

damage recognition and repair may cause compensatory HR upregulation. This article has

already discussed how loss of both BRCA1 or 2 alleles impairs HR; to compensate, NHEJ is

used to repair DSBs. However, inhibition of PARP, which is not directly associated with

either DSB repair pathway, can create an accumulation of damage that NHEJ cannot repair –

effectively killing BRCA-deficient cancer cells [76].

Two crucial players in HR are the RPA complex and Rad51. RPA enters early in the repair

process; it stimulates the unwinding of damaged DNA [72,77], then protects and stabilizes

the segment that is resected as a single strand. However, RPA must be replaced by Rad51 in

order for repairs to proceed [72]. Thus, defects, mutations in (or inhibition of) RPA can stall

HR repair [78]. Because RPA has a common cleft for binding many types of proteins, early

efforts are underway to inhibit RPA's protein–protein interactions without perturbing the

binding of RPA to ssDNA [79].

Rad51 initiates strand exchange by complexing with other proteins to form a filament, the

structure that finds and reads an area of homology so the right nucleotides can be

resynethsized to repair the damage [56]. Post-translational modification of mediator proteins

involved in HR repair highly regulate the balance of RPA and Rad51 so that repair is not

inhibited and disassociation does not occur before Rad51's work is complete [72]. Rad51

overexpression is associated with breast and pancreatic cancers, non-small-cell lung cancer

and leukemias [80].

cAbl is a nonreceptor tyrosine kinase that is activated by ATM. As such, it is not truly HR-

specific, but the combination of ATM and cAbl affect Rad51 induction [81].

HR inhibitors in development & on the market

Efforts to modulate dysfunctional HR in malignancies are in their infancy. Many compounds

investigated lack HR specificity. For example, mirin, which inhibits the MRE11–RAD50–

NBS1 (MRN) complex (HR's damage sensor), also inhibits ATM and downregulates NHEJ

[82]. With the exception of RI-1 (which has been tested in cell studies only) [82], small

molecules that directly inhibit specific HR proteins are not in development (Table 6) [80,82–

84].
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Rad51 inhibition can be achieved either by directly blocking its recombinase activity or by

attempting to interfere with Rad51's interactions with other proteins that form the filament.

RI-1 appears to do the former by inhibiting the polymerization of Rad51 onto ssDNA,

which, in turn inhibits monofilament formation. Studies with cancer cell lines indicate RI-1

has a synergistic effect on mitomycin activity. Other potential Rad51 inhibitors appear to

work indirectly: for example, by activating the proapoptopic JNK and p38-MAPK pathways

or by inhibiting ATPase activity. Such compounds have not progressed beyond identifying

them from high-throughput screening of chemical libraries [80].

Three HR-related proteins show promise in indirectly inhibiting HR for anticancer activity:

PARP (already discussed), cAbl and HSP90. Inhibitors of cAbl and HSP90 can arrest the

cell cycle to the point that unrepaired damage triggers apoptosis.

Three classes of cAbl inhibitors exist, their primary distinction being where they bind to the

kinase. Nine kinase inhibitors are currently US FDA approved, but not all of them act on

cAbl [84,85]. Mutations at or distal to the drug-binding site can either cause direct loss of

interaction with the drug or conformational changes that obviate kinase autoinhibition,

respectively. Second-generation inhibitors, including dasatinib and bosutinib, are

overcoming these problems (Table 6). However, a few mutations still do not respond to

those drugs, either; so hybrids of the two drugs are in early development, as are other

compounds that target alternative binding pockets [84].

HSP90 is a molecular chaperone that helps more than 200 proteins fold to their correct

conformation; 48 of those proteins are associated directly with oncogenesis [86]. Inhibition

of HSP90 decreases Rad51 activity and prevents multiple checkpoint proteins from being

activated, both of which can delay cell cycle progression to the point where cumulative

damage triggers apoptosis [83,87]. HSP90 inhibition can simultaneously disrupt tumors'

growth signals, resistance to apoptosis, unregulated replication, neoangiogenesis and tissue

invasion/metastasis [88].

Four classes of HSP90 inhibitors are in development today. Newer analogs of geldamycin,

the first HSP90 inhibitor studied [83], include 17-DMAG, restapimycin (IPI-504), and

tanespimycin. Of the purine and purine-like analogues, PU-H71 is also being tested as a

predictive indicator of tumor dose response [83]. The third class of HSP90 inhibitors is

resorcinol derivatives, including ganetespib, NVP-AUY922, KW-2478 and AT13387.

Finally, SNX-5422, a dihydroindazolone derivative, is in Phase I and II trials (Table 6) [83].

Nonhomologous end joining

NHEJ represents the simplest and fastest mechanism for repairing DSBs [76]. Active

throughout the entire cell cycle but especially in G0/G1, NHEJ directly rejoins the two

severed DNA ends with minimal end processing, regardless of sequence homology. Such

activity may be preferred in G0/G1, as much of the genome is non-coding – and HR's

involvement at those phases could cause deletions, duplications, misalignments and

crossovers [89]. Nonetheless, NHEJ can lose one to 20 nucleotides from either side of the

DSB junction, causing erroneous repair [76]. Interestingly, NHEJ repairs the majority of

damage that IR causes, even though IR damage rarely produces blunt, ligatable DNA [90].
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Investigators have much to learn about NHEJ and its subpathways; however, all forms of

NHEJ follow five general steps: encircle the DNA/detect and tether DSB ends together;

process and remove end groups that cannot be ligated; process ends to make them ligatable;

resynthesize nucleotides; and seal the break [76,86]. For details of all the proteins involved

in NHEJ, see [91]. Within the framework of NHEJ's general steps, proteins in three steps

appear to be unique to that pathway, and, as such, are potential targets for inhibition.

NHEJ inhibitors in development

Like MMR, diminished or defective NHEJ functioning leads to increased risk of cancer,

particularly lymphoid malignancies [92]. Dysfunctional NHEJ also results in damage

tolerance and chemoresistance [76]. Thus, counterintuitively, intact NHEJ function is linked

to better prognosis or treatment response [92]. However, inhibiting NHEJ and thus forcing

cells to perform DSB repair via the more time-intensive HR pathway could induce a

synthetic lethality in HR-deficient tumors. This and other technical issues are hurdles yet to

cross in today's forays into NHEJ inhibition. Indirectly modulating NHEJ activity through

other means may ultimately prove to be at least as effective as a direct approach [92].

Regarding direct inhibition of NHEJ proteins, the most promising candidate is the catalytic

subunit of DNA-PKcs (Table 7) [73,93]. Cells contain an abundance of DNA-PKcs, a

nuclear serine/threonine kinase that is a prerequisite for establishing a functional NHEJ

complex. Through complex autophosphorylations on 20 known sites, DNA-PKcs determines

how/when to engage and disengage from DNA; regulates end access; modulates how

damage is constrained to NHEJ [73]; is involved in telomere protection [94] and interacts

with other DNA repair proteins, including cAbl, HSP90, PARP1 and H2AX, to name a few

[90]. Overexpression of DNA-PKcs correlates with radioresistance in oral squamous cell

carcinoma, lung carcinoma and esophageal cancer [95]. Thus, chemical inhibition of DNA-

PK can enhance HR.

The first foray into DNA-PK inhibition started with wortmannin, a noncompetitive inhibitor

of the related family of PI3Ks. The first nonspecific competitive PI3K inhibitor identified

was LY294002, a morpholine derivative of quercitin [90]. Although its relative instability

and high toxicity did not lend itself to use in humans, NU7441, a more potent and DNA-PK-

specific inhibitor, was developed from it [96]. NU7026 likewise shows similar specificity in

cell studies [94]. However, the only two DNA-PK inhibitors in clinical trials are dual-action

inhibitors that potentially represent two first-in-class drugs. CC-115 is a DNA-PK and TOR

inhibitor; CC-122 is a pleiotropic pathway modulator [11]. Additionally, the oral pan-class I

PI3K inhibitior NVP-BEZ235 is in Phase I/II clinical trials [97].

PNKP, a protein active in NHEJ, processes incompatible termini to prepare them for

nucleotide resynthesis and strand ligation. Interestingly, PNKP can process blunt-ended and

3′-overhanging termini; APE1 is relatively ineffective on the former and cannot process the

latter, so PNKP can handle termini processing that the BER pathway cannot. In addition,

emerging evidence exists for PNKP participation in an APE1-independent form of BER

repair [92]. The one PNKP inhibitor currently being investigated is a polysubstituted

imidopiperidine compound (A12B4C3) that is a noncompetitive but specific binder of
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PNKP. Cell studies indicate that A12B4C3 is a chemosensitizer to topoisomerase inhibitors

[98].

Patients with intrinsically low levels of Ligase IV are radiosensitive. The one inhibitor being

tested preclinically against it is SCR7; it appears to selectively interfere with Ligase IV–

DNA binding [95]. Such disruption in sealing DSBs leads to accumulation of unrepaired

breaks, activation of ATM and, ultimately, an intrinsic pathway of apoptosis. Other potential

Ligase IV inhibitors have been modeled in silico [99]. See Table 7 for more details of all

these inhibitors in development.

DNA inhibition as treatment for chemotherapy-induced peripheral

neuropathy

Up to 90% of all cancer patients experience persistent chemotherapy-induced peripheral

neuropathy (CIPN) [100,101]. The severity of CIPN can result in treatment delays, dose

modifications or discontinuation of antineoplastic drugs [100,102]. A `perfect storm' of

factors makes sensory neurons especially susceptible to damage: they are nondividing cells

with high metabolic activity; by residing outside of the blood-brain barrier, they are exposed

to higher amounts of agents that cause oxidative stress or direct DNA damage; and gene

transcription and translation are much higher in neurons than other cells, so damage to

mitochondrial DNA is particularly harmful to neurons. Collectively, this makes neurons

very susceptible to functional damage [100,103].

Many potential treatments for CIPN, including antiepileptics and antidepressants, have had

little to no effect in alleviating CIPN's symptoms, let alone reversing neuronal damage.

Inconclusive or limited evidence exists for the efficacy of topical anesthetic creams,

antioxidants, nutraceuticals, certain ion channel modulators or modalities (acupuncture,

magnetic stimulation and electrostimulation) [100–101,104–105].

However, molecular characterization of how DNA-damaging agents affect neurons can

reveal how to treat CIPN effectively [100,106]. Interestingly, the primary repair pathways in

peripheral nerves are NER and BER [107–109]. Recent evidence suggests that modifying

DNA repair pathways in CIPN models has an effect on a variety of neuropathic markers.

Downregulation and inhibition of DNA repair elements may have adverse effects on sensory

neurons [110] – but selectively upregulating a DNA repair protein could possibly alleviate

CIPN.

Evidence for this exists in multiple forms. For example, in mouse models, the significant

increase in thermal and nociceptive responses from oxaliplatin can be prevented by

administration of antioxidants (flavonoids) [111]. The severity of CIPN correlates with

dosing of platinating agents when NER is dysfunctional: mice deficient in XPA and XPC

accumulate more platinum adducts in sensory neurons than wild-type mice given the same

cisplatin dose [112]. However, cisplatin-induced increases in cell death and decreases in

capsaicin-evoked release of CGRP in sensory neuronal cultures can be attenuated by

overexpression of repair-competent APE1, an important BER endonuclease [113]. Other
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studies indicate that selectively enhancing the repair function BER's endonuclease, APE1,

can prevent or alleviate CIPN [106].

However, modulating DNA repair components is not a clear-cut issue of selective

upregulation. Inhibition of certain DNA repair elements may actually have a positive effect

on sensory neurons. In a mouse model, concurrent administration of cisplatin or oxaliplatin

with an experimental PARPi (Compound 4a) attenuated allodynia and hyperalgesia [114].

However, PARP may interfere with the activity of APE1 when significant DNA damage is

present [115]. Additionally, PARP expression can stimulate or inhibit many hallmarks of

cancer besides DNA repair [15].

The ongoing challenge is to find a laser focus for ameliorating CIPN without increasing

tumor cells' survival capabilities. Modulation of DNA repair elements to treat CIPN is an

emerging field. Ongoing studies are investigating diagnostic markers, molecular

mechanisms, drug comparisons and potential treatments for CIPN [116–118]. Development

of an effective small-molecule DNA repair inhibitor would be a first-in-class drug for

neuropathic pain, which could change both survival and quality-of-life outcomes for many

cancer patients.

Changing face of R&D in DNA repair inhibition

The potential clinical utility of DNA repair inhibitors is attractive, so several companies

solely focused on DNA repair inhibition have emerged in recent years. Here are the ones

that have been in the news for their research.

Inotek Pharmaceuticals Corporation (MA, USA; and Israel) is working to produce a line of

PARPis, which are in late preclinical stages of development [119]. Its pipeline also includes

a reactive oxygen species inhibitor and other classes of investigative drugs.

ApeX Therapeutics (IN, USA) is developing inhibitors to the DNA repair protein Ref1/

Ape1, to treat cancers as well as other diseases involving pathological neovascularization

[52]. It has several inhibitors in late preclinical development.

Tracon Pharmaceuticals (CA, USA) has three Phase I trials in progress for its lead

compound, TRC102, which is showing promise in reversing BER-generated resistance to

alkylator and antimetabolite chemotherapy. In addition, Tracon is developing TRC105, an

antiangiogenic monoclonal antibody being tested as both monotherapy and combination

therapy for a variety of solid tumors as well as macular degeneration (Phase I and II clinical

trials) [120].

Sentinel Oncology (Cambridge, UK) is developing highly selective CHK1 and PI3K-mTOR

inhibitors, as well as a `targeted synergy' vehicle for delivering and specifically activating

drugs in the hypoxic microenvironment uniquely found in solid tumors [121].

The DNA Repair Company (MA, USA) is profiling all DNA repair pathways in tumor

samples from registries. By determining which pathways are `on' or `off', they are

generating antibodies that can be used in the future to test patients to determine what drugs
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they will most likely respond to. The company's longer-range goal is to screen for small-

molecule inhibitors of all DNA repair pathways [122].

Mission Therapeutics (Cambridge, UK) concentrates on the `backside' of DNA damage

response and repair: ubiquitination and related processes. In certain cancers, mutations in

genes or activation of oncogenes (e.g., c-myc) prevent cells from disposing of misfolded or

damaged proteins; the concentration of proteins involved in the cell cycle is also deregulated

[123]. Among the dozen potential targets of ubiquitin inhibition that Mission Therapeutics is

investigating are E2 conjugating enzymes, which affect the cyclins involved in cell cycle

checkpoints, p53 (a tumor suppressor protein) and NF-κB (the transcription factor involved

in inflammation and immune responses) [124]. E2s are relatively nonspecific, have many

yet-unstudied functions and are not classically druggable (therefore, difficult to inhibit).

Despite those challenges, the reversible process of ubiquitination makes inhibition of

deubiquitinating enzymes a tantalizing target [123].

It is interesting that this is relatively short list. However, research efforts with DNA repair

inhibitors within large multidivision pharmaceutical companies remain publicly unknown.

Future perspective

Emerging methods of molecular analysis to better manage a patient's disease or

predisposition to disease are moving us closer to the reality of truly personalized medicine.

Concurrent development of DNA repair inhibitors and companion testing for their targets is

growing. In just the past 2 years, the FDA approved four cancer drugs for use in patients

whose tumors have specific genetic characteristics that are identified by a companion

diagnostic test [125].

Finding specific biomarkers poses multiple challenges because variant alleles may create

different effects, based on tumor types, patient populations, treatment regimens and different

stages of illness. Testing altered gene expression plus compensatory mechanisms can more

accurately convey DNA repair activity in a given tumor [126].

Sifting through such massive data to determine whether a particular gene, its upstream

regulators or mediators, or SNPs are clinically relevant as prognostic or predictive

biomarkers is a daunting task. Next-generation genomic sequencing and accelerated data

analyses of cancer tissues are providing ways to identify the molecular drivers of individual

tumors. In the USA, Foundation Medicine [127] is doing that to provide actionable genomic

information for physicians in choosing optimal treatments for individual tumors. Building a

repository of such information may uncover new biomarkers as well as identify off-label

treatments that could work when others fail (or when conventional treatment options are

limited, such as with rare cancers).

On the international front, efforts such as the Gene-PARE project are underway. By

analyzing its huge biorepository, it can validate tests that can predict which patients with

specific genetic variants would be most likely to develop adverse responses to radiation

treatment [128].
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To offer widespread benefit, biomarker tests need to be reliable, readily available, able to be

run using existing clinical laboratory technology [126], and fast enough to provide a timely

turnaround without delaying the start of treatment. Advanced screening procedures and

more careful selection of patient cohorts for clinical trials will help ensure that the outcomes

of those trials accurately reflect the selected intervention's anticancer capabilities.

In the near future, comprehensive molecular characterization of DNA repair proteins will

provide greater understanding of the crosstalk between DNA repair functionality and genetic

stability. The REPAIRtoire database seeks to facilitate this. It is the first database of its kind

to categorize all DNA repair proteins and repair intermediates, all diseases associated with

DNA defects, all known DNA lesions linked to environmental mutagenic and cytotoxic

agents, and all transformations that occur during the DNA damage response and repair

process [129].

Better characterization of DNA repair proteins will lead to discoveries of more effective

repair inhibitors and more efficient cancer-killing, synthetically lethal therapeutic

combinations. Highly localized radiotherapy will also play an increasing role in combination

or sequential treatment. For example, sequential treatment of multiple myeloma with a

thymidylate synthase inhibitor followed by nanoirradiation by an Auger electron-emitting

thymidine analog shows promise in eradicating multiple myeloma stem cells [130].

Also, treatment regimens will be more finely tuned to the stage of cancer. For example, as

cancer progresses, its microenvironment becomes hypoxic, causing replicative stress,

disrupting DNA synthesis and downregulating DNA repair [76], which makes cancer cells

increasingly prone to DNA mutations. Thus, in advanced cancers, checkpoint inhibitors may

be more effective than DNA repair inhibitors. Interestingly, chronic hypoxia often makes

tumors more sensitive to radiotherapy [131].

Pinpointing what treatments will work best and when presents both opportunity and

challenge: researchers must demonstrate not only that inhibitors are safe as single agents,

but also that they augment DNA damage when given with chemotherapy or radiotherapy.

After the efficacy of combination therapy is established in preclinical studies, the proper

dosing and regimen in clinical trials is crucial to determine. With the addition of DNA repair

inhibitors, standard chemotherapy could become more effective but also more toxic. The

ultimate goal would be to be able to reduce the dose of chemotherapy in combination with

DNA repair inhibitor and achieve more profound effects on tumor regression. Finding ways

to fast-track combination-treatment clinical trials will be imperative in bringing discoveries

from bench to bedside [24]. From an economic standpoint, researchers will also be

increasingly involved in showing how the development of DNA repair inhibitors is highly

effective stewardship of R&D resources and patient expenses [132].

Cancer cells can overcome genotoxic effects in at least three ways: by compensatory DNA

repair mechanisms, by developing damage tolerance; and/or by reversing a genetic or epi-

genetic defect. Epigenetic research is just starting to scratch the surface of the potential for

more options for DNA repair inhibition, such as hyper- or hypo-methylation of gene

promoters [131]. In the next 5–10 years, many relevant discoveries regarding cancer's
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behavior, thus, treatment are expected to emerge from epigenetic studies. In the meantime,

intense research efforts to develop DNA repair inhibitors continue (Figure 1).

Conclusion & future perspective

Research and clinical trials have validated the therapeutic importance of using specific DNA

inhibitors, primarily in combination with DNA-damaging drugs. Unanticipated issues can

occur when trying to directly inhibit steps in some DNA repair pathways, but a greater

understanding of pathway crosstalk is leading to `back-door' routes of inhibition. Globally,

perhaps the biggest technical challenge in developing DNA repair inhibitors is target

specificity, as a repair protein's active sites are often relatively small and are buried deep

within the protein's tertiary structure [33]. In some cases, inhibitory binding to regions

outside of the catalytic site can also modulate protein function, and some next-generation

inhibitors (particularly kinase inhibitors) are seeking to exploit such divergent binding

pockets. To provide the greatest therapeutic benefit from these therapies, the development of

biomarkers is crucial in helping establish which patient populations are candidates for, and

will respond best to, use of DNA repair inhibitors as part of their therapeutic regimen. The

concurrent development of DNA repair inhibitors and biomarkers will enable earlier

detection and treatment of cancers and will move us closer to delivering truly personalized

medicine.
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Box 1. MGMt inhibitors in development and clinical use

Function(s)

• Removes alkyl groups from the O6 position of guanine, and, to a lesser extent,

the O4 position of thymine

Why it is a good target for inhibition

• A discrete protein with a highly specialized function in one repair pathway

• Methylating MGMT's gene promoter sensitizes cells to alkylating agents and IR

• Related: MGMT methylation status appears to be a good prognostic biomarker

Challenges

• MGMT inhibition affects both healthy cells and tumor cells

• MGMT levels vary greatly among cancers and even within tumor cells

• MGMT inhibition does not work if a deficiency exists in the MMR pathway

• Other pathways can repair methylating damage in the absence of MGMT

Compounds being investigated

• In clinical use: O6-BG; first drug developed as a chemosensitizer

• In clinical trials: O6-BG + many other drug combinations; PaTrin-2

• Under investigation: oncolytic viruses; extended low-dose TMZ (an alkylator)

to deplete MGMT levels before administering standard-dose TMZ

• Other notes: KU-60019 turned out to be a checkpoint (ATM/ATR) inhibitor

IR: Ionizing radiation; MMR: Mismatch repair; O6-BG: O6-benzylguanine; PaTrin-2:

O6-(4 bromothenyl)guanine; TMZ: Temozolomide. Adapted with permission from [28].
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EXECUTIVE SUMMARY

Inhibition & synthetic lethality

• Development of DNA repair inhibitors is a burgeoning field of research.

• Currently the most widely used DNA repair inhibitors block steps in the direct

repair and base excision repair pathways.

Overview of each pathway & inhibitors in development

• Multiple targets for DNA repair inhibition are discussed, as well as challenges

and lessons learned in their development.

• Pathway crosstalk, overlap and multifunctional proteins complicate the

development of DNA repair inhibitors, but also provide opportunities for wider

application, such as the tremendous success seen with PARP inhibitors.

• Counterintuitively, the proficiency of some DNA repair pathways helps ensure

sensitivity to chemo- and radio-therapeutics; for example, an intact mismatch

repair pathway increases cells' sensitivity to many chemotherapeutics by 2–100-

fold.

• Although direct inhibition of a repair pathway is not always feasible, indirect

inhibition and creating synthetic lethalities can be effective. Both approaches are

discussed in this review.

Changing face of R&D in DNA repair inhibition

• Concurrent development of biomarkers for cancers will aid in earlier detection

and more effective treatment planning.
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Figure 1.
current targets of nuclear DNA repair pathway proteins and their functions.
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Table 1

Overlap and crosstalk among DNA repair pathways.

Pathway Backup Type of problem/provision for repair

DR MMR If MGMT fails to remove O6-methylguanine, the MMR pathway can recognize and fix O6-methylguanine misspairs

MMR MMR can repair postreplicative guanine/thymine mismatches
Futile MMR cycles create DSBs, which either induces apoptosis or activate repair by HR or NHEJ

NER NER can repair larger adducts at the O6 position of guaninethat MGMT cannot repair

BER BER can repair mismatch pairs and other alkylation adducts that DR does not repair

BER NER NER can serve as a backup for repairing minor oxidative damage

HR If BER does not repair ssDNA breaks, they may lead to DSBs, which HR can repair

HR/NHEJ If BER fails to repair SSBs, HRcan repair them during replication (S phase). If signaling arrests the cell cycle at G1,
then NHEJ can repair the breaks

NHEJ HR HR can repair DNA DSBs that the NHEJ pathway fails to process

BER: Base excision repair; DR: Direct repair; DSB: Double-stranded break; HR: Honnologous reconnbination; MMR: Misnnatch repair; NER:
Nucleotide excision repair; NHEJ: Nonhonnologous end joining.

Data taken from [6].
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Table 2

Clinical trials in progress for PARP inhibitors.

Compound (alt. name) Manufacturer Clinical
trials in
progress

Targeted cancers NCT identifiers

Iniparib (SAR240550, BSI-201) Sanofi-Aventis Phase I Brain metastases,
advanced solid tumors

NCT01551680, NCT01213381

Phase II Primary and metastatic
breast, advanced or
recurrent uterine, stage
IV NSCLC

NCT01045304, NCT00687687, NCT01086254

Phase III Metastatic TNBC NCT00938652

Olaparib (AZD2281, KU-0069436) AstraZeneca Phase I Ovarian, fallopian
tube, breast, HER and
PR breast, metastatic
TNBC, pancreatic,
advanced and
metastatic solid
tumors, melanomas,
Ewing's sarcoma

NCT00516373, NCT00707707,
NCT00516724, NCT00515866, NCT00516802

Phase II Breast, HER and PR
breast, ovarian,
fallopian tube,
prostate, gastric,
colorectal, Ewing's
sarcoma

NCT00494234, NCT01116648,
NCT00679783, NCT01078662, NCT01583543

Phase III Platinum-sensitive,
BRCA-mutated,
relapsed ovarian

NCT01874353

Niraparib Tesaro Phase III Platinum-sensitive
ovarian, HER2,
BRCA-mutated, breast

NCT01847274

Rucaparib (CO-338, AG-014699,
PF-O1367338)

Pfizer Phase I Advanced solid tumors NCT01009190

Phase II Primary and metastatic
breast and ovarian,
BRCA-mutated,
fallopian tube,
peritoneal

NCT00664781, NCT01074970, NCT01482715

Phase III Ovarian, fallopian
tube, peritoneal

NCT01968213

Veliparib (ABT-888) Abbott Phase I BRCA-mutated,
numerous leukemias,
lymphoma,
medulloblastoma,
pontine glioma,
ependymoma,
astrocytoma, advanced
solid tumors,
numerous stage II–IV
gynecological and
peritoneal cavity
cancers, TNBC,
gastric, locally
advanced rectal,
metastatic melanoma

NCT01853306, NCT00740805,
NCT00946335, NCT01514201,
NCT01123876, NCT01063816,
NCT01434316, NCT01749397,
NCT01145430, NCT01012817,
NCT00989651, NCT01589419, NCT01366144

Phase II Breast, metastatic
breast, TNBC, ovarian,
fallopian tube, BRCA-
mutated, colorectal,
non-Hodgkin's

NCT01149083, NCT01506609,
NCT01009788, NCT01306032,
NCT01540565, NCT01690598,
NCT01051596, NCT01326702,
NCT01489865, NCT01585805
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Compound (alt. name) Manufacturer Clinical
trials in
progress

Targeted cancers NCT identifiers

lymphoma, metastatic
pancreatic, recurrent
NSCLC, primary
peritoneal

AZD2461 AstraZeneca Phase I Refractory solid
tumors (activity
against olaparib-
resistant tumors)

NCT01247168

BMN673 BioMarin Pharmaceutical Phase I AML, CLL, mantle
cell lymphoma,
myelodysplastic
syndrome, advanced
solid tumors, NSCLC,
prostate, pancreatic

NCT01399840, NCT01989546, NCT01286987

Phase III Breast, BRCA-mutated NCT01945775

CEP-9722 Cephalon Phase I Mantle cell lymphoma,
advanced solid tumors

NCT01345357

E7016 Esai Phase I Advanced solid tumors NCT01127178

Phase II Stage III and IV
melanoma

NCT01605162

INO-1001 Inotek Pharmaceuticals Phase I Melanoma NCT00272415

MK-4827 Merck Phase I Advanced solid
tumors, CLL, T-cell-
prolymphocytic
leukemia

NCT0079502

Methoxyamine Sigma Aldrich Phase I Numerous lymphomas NCT01658319

PARP inhibitor clinical trials in progress as of Novennber 2013: 115 (status is unknown on some trials; those were not included in this total).

alt: Alternative; AML: Acute myelogenous leukemia; CLL: Chronic lymphocytic leukemia, NSCLC: Non-small-cell lung cancer; TNBC:Triple-
negative breast cancer.

Data taken from [11].
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Table 3

Base excision repair inhibitors in development and clinical use.

BER protein Function(s) Rationales for inhibiting Challenges Compounds being investigated

APE1 Repair: prepares AP
site to receive new
nucleotide(s)
Redox: maintains
genes in their active,
reduced state

Overexpressed in many cancers
Associated with resistance to alkylating
and oxidizing agents
No substitute exists for this protein

Achieving
specificity to
solely inhibit the
repair or redox
function

Repair:

• Nonspecific: methoxyamine
(binds to the aldehyde in the AP
site of DNA); lucanthone

• Specific: AR03; lnhibitor-1;
ML-199 and analogs

Redox:

• E3330and analogs

Pol β Resynthesizes
nucleotides
Removes certain
blocking residues

A rate-limiting step in BER Often
overexpressed in tumor cells
Associated with resistance to IR,
bleomycin, some alkylating agents,
cisplatin

Difficult to
develop an
inhibitor specific
to the polymerase
domain that would
not also inhibit
polymerases
involved in DNA
replication
Inhibiting its lyase
function may be
more lucrative

>60 inhibitors identified; most
lack specificity

Most promising so far (cell
studies only):

• Oleanolicacid

• Edgeworin

• Betulinic

• Stigmasterol

•NCS-666715

•NSC-124854

FEN1 Progressivity factor
Helps polymerases
synthesize
nucleotides
efficiently and
accurately

Elevated in many cancers Inhibition
creates unligatable DNAand makes cells
hypersensitive to alkylating agents

Importance of
protein in pathway
could prove
difficult in
identifying
inhibitors with
lowtoxicity to
normal cells

Afewhydroxyurea-based FEN1
inhibitors (cell studies only)

PARP1 Surveillance/damage
sensor
Assesses extent of
damage; determines
whether to signal
apoptosis Helps
decondense
chromatin
Recruits repair
proteins to the
damage site
Facilitates repairs

Uses NAD+to transfer ADP-ribose
polymers onto specific acceptor proteins
including itself; this modifies the
protein's properties Although not
essential to BER, PARPI's absence
causes an accumulation of DNA damage
that certain cancers cannot repair
Inhibitors potentiate the effects of
alkylating agents, platinating agents,
topoisomerase 1 poisons, IR

Secondary
mutations can
correct for this
repair deficiency,
causing resistance
to PARPis

Already in clinical use:

• Iniparib

• Olaparib

In clinical trials:

• ABT-888

• AZD2461

•BMN673

• E7449

• INO-1001

• CEP-9722

• MK-4827

• Rucaparib

• Velaparib

• >115 clinical trials in progress
for newer-generation PARPis and
broader use of first-generation
inhibitors

Cell studies only:
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BER protein Function(s) Rationales for inhibiting Challenges Compounds being investigated

• PJ-34

•DPQ

AP: Abasic (apurinic, apyrimidinic); BER: Base excision repair; IR: Ionizing radiation; PARPi: PARP inhibitor.
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Table 4

Mismatch repair inhibitors in development.

MMR protein Function(s) Rationales for inhibiting Challenges Compounds being investigated

MLH1 Scaffolding
protein Damage
sensor Helps
determine the
specific strand
error

Can be hypomethylated to restore
functionality
Inhibition in deficient cells could
theoretically cause a synthetic
lethality

MMR deficiencies cause
or increase
chemoresistance Intact
MMR function is crucial
for proper cell cycle
checkpoint control

To restore functionality:

• FdCyd

To create synthetic lethality in
MLH1-deficient cells (cell
studies):

• Pol γ inhibitor

MSH2 Damage sensor Its damage-sensing ability can be
bypassed by inducing a synthetic
lethality

MMR deficiencies cause
or increase
chemoresistance Intact
MMR function is crucial
for proper cell cycle
checkpoint control

In clinical trials:

• Methotrexate

In MLH2-deficient cells (cell
studies):

• Pol β inhibitor

MMR: Mismatch repair.
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Table 7

Nonhomologous end joining inhibitors in development.

NHEJ protein Function(s) Rationales for inhibiting Challenges Compounds being investigated

DNA-PK Processes
incompatible
ends so they can
be ligated

Appears to be unique to
NHEJ Essential for NHEJ
activity

Increases DNA damage tolerance
Causes chemoresistance
Predisposes cells to autosomal
recessive disorders and
malignancies, especially lymphoid
cancers

Nonspecific (inhibit PI3K):

• Wortmannin LY294002 DNA-
PK-specific (cell studies only):

• NU7441

• NU7026

Phase I studies:

• CC-115

• CC-122

PNKP Processes
incompatible
ends so
nucleotidescan be
replaced and the
termini ligated

Appears to be unique to
NHEJ

Increases DNA damage tolerance
Causes chemoresistance
Predisposes cells to autosomal
recessive disorders and
malignancies, especially lymphoid
cancers

Cell studies only:

• A12B4C3

Ligase IV Seals nicks in
final repair step

A rate-limiting step Cannot
work in the absence of
XRCC4

Increases DNA damage tolerance
Causes
chemoresistancePredisposes cells
to autosomal recessive disorders
and malignancies, especially
lymphoid cancers

Murine models:

• SCR7

Indirect ways of modulating NHEJ functionality are being explored as more viable options than direct inhibition. Examples: overexpression of a
truncated form of XRCC4 can inhibit NHEJ by interfering with DNA Ligase IV; DNA-PKcs can be inhibited indirectly by inhibiting EGFR or by
inhibiting ATM (by using miRNA or small-molecule inhibitors); topoisomerase inhibitors prevent NHEJ repair proteins from gaining access to
areas of damage; and epigenetic factors (methylation of gene promoters) are under investigation as well. It is yet unknown how or if these findings
can translate into future clinical use.

NHEJ: Nonhomologous end joining.

Adapted with permission from [28].
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