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Abstract

Protein-ligand recognition plays key roles in many biological processes. One of the most fascinating questions about
protein-ligand recognition is to understand its underlying mechanism, which often results from a combination of induced fit
and conformational selection. In this study, we have developed a three-pronged approach of Markov State Models,
Molecular Dynamics simulations, and flux analysis to determine the contribution of each model. Using this approach, we
have quantified the recognition mechanism of the choline binding protein (ChoX) to be ,90% conformational selection
dominant under experimental conditions. This is achieved by recovering all the necessary parameters for the flux analysis in
combination with available experimental data. Our results also suggest that ChoX has several metastable conformational
states, of which an apo-closed state is dominant, consistent with previous experimental findings. Our methodology holds
great potential to be widely applied to understand recognition mechanisms underlining many fundamental biological
processes.
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Introduction

Protein-ligand recognition plays a key role in many aspects of

biological processes, such as enzyme catalysis, substrate transloca-

tion, and drug therapy [1]. Current studies indicate two prevailing

models to address the recognition process: the induced fit model

(where ligand binding induces conformational changes of the

protein) and the conformational selection model (where the ligand

selects a pre-existing conformation of the protein to bind), both of

which describe extreme situations (SI Fig. S1) [2–10]. Recent

studies, however, suggest that many realistic systems show

characteristics of both mechanisms [11–17].

A better understanding of the role of the two models may lead

to an increased utilization of protein engineering techniques – for

example we may fine tune their respective contributions to allow

the creation of new properties [18]. In particular, augmenting the

relative contribution of the induced fit mechanism might increase

the binding specificity of a protein receptor. Direct applications of

such protein engineering can also lead to better chemical sensors

[19].

Hammes et al. have developed an analytical model based on

flux analysis to determine the contribution of conformational

selection and induced fit mechanism [20]. However, difficulties

arise in obtaining the thermodynamic and kinetic parameters

necessary for the flux analysis from experiments. For example, it

is difficult for experiments to directly examine which conforma-

tion ligands choose to bind in the conformational selection model,

or observe protein conformational changes upon the ligand

binding in the induced fit model. Recent progress of NMR

techniques such as paramagnetic relaxation enhancement and

residual dipolar coupling enable the detection of metastable

conformations of the apo protein in solution, and further provide

dynamic information for transitions between these conformations

[21–24]. However, it is still difficult to apply these techniques to

monitor the dynamics of the ligand binding process. In any case,

as long as one obtains necessary kinetic and thermodynamic

parameters, the flux through each pathway can be quantified,

allowing one to assign a percentage to the involvement of induced

fit or conformational selection for a particular recognition

process.

Quantifying the flux is difficult by direct Molecular Dynamics

(MD) simulations as well. The current timescale of MD

simulations, mostly on the order of tens to hundreds of

nanoseconds, is far too short to witness many biological events

which occur on the order of milliseconds to seconds [25]. Only if a

specific protein-ligand recognition process occurs very quickly can

direct MD simulations be efficient, as our previous study on the

binding mechanism of L-Lysine-, L-Arginine-, L-Ornithine-

binding protein (LAOBP) demonstrated [26]. For that particular

system, we used a total of 13 ms MD simulations and Markov State
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Models (MSMs) to examine the binding events between arginine

and LAOBP that occurs at a couple of microseconds.

In this work, we propose a novel approach to qualify the flux

following conformational selection and induced fit model for a

particular molecular recognition process. By combining the

techniques of MSMs for apo protein dynamics, direct MD

simulations of the protein-ligand binding and flux analysis, we

offer a systematic method for finding the necessary kinetic

parameters to quantitatively measure the portion of each flux

through two binding pathways. Our application of such an

approach in choline binding protein (ChoX) [27], a periplasmic

binding protein (PBP) [28] from the ATP-binding cassette

transporter ChoVWX, demonstrates that our method can explore

the free energy landscape and successfully quantify the indepen-

dent contribution of two concurrent binding mechanisms –

induced fit and conformational selection – in a complex realistic

protein-ligand system.

As the periplasmic component of the choline import system,

ChoX binds choline or acetylcholine before transferring it to the

transmembrane domain of ChoVWX. Currently, X-ray crystal-

lography has characterized several structures of this protein, all of

which are in the closed or semi-closed conformations, whether

there is a ligand bound or not (Fig. 1) [27,29]. In comparison to

other PBPs, this unique property of ChoX – that it can apparently

stay at its closed state without the help of the ligand – made the

researchers raise the hypothesis that the binding mechanism of

ChoX and its ligand follows the conformational selection model

[30].

MSMs are a powerful approach to automatically identify

metastable states from short MD simulations and calculate the

equilibrium thermodynamic and kinetic properties [31–49]. It

divides the protein conformational space into a number of non-

overlapping metastable states such that the transitions within each

state are fast but transitions across different states are slow. Time is

coarse grained (with the smallest unit of t, termed as the lag time)

to ensure the model is Markovian so that the probability of

transitioning from state i to j only depends on i but not any

previously visited states. With the help of MSMs, one can extract

long time dynamics from short simulations and directly obtain

many useful parameters of thermodynamics and kinetics [50–60],

which can be further utilized in the flux analysis. For example,

Noé et al. have performed the first flux analysis based on the

transition path theory and MSMs to investigate the major

pathways for the folding of the WW domain [55]. More recently,

Noé and coworkers have also used MSMs to study the

mechanisms of protein-ligand association where protein does not

undergo substantial conformational changes [61].

The flux analysis proposed by Hammes et al. [20] is an useful

tool to calculate and compare flux in both induced fit and

conformational selection pathways, allowing one to analyze the

contribution of these two limiting mechanisms in a complicated

binding event. To conduct the flux-based approach, many kinetic

parameters are required – namely, the binding constants and

transition rates between different metastable conformational states

of the system.

The combination of MSMs and MD simulation allows us to

obtain such parameters, which are difficult to be directly measured

from experimental assays [20]. In our study, the three-pronged

approach of MSMs, MD simulation, and flux analysis was

successfully applied in ChoX binding event to quantify both

limiting recognition mechanisms.

Results/Discussion

Construction and validation of MSMs for apo ChoX
We used MD simulations to investigate the free energy

landscape of apo ChoX. In particular, we have generated initial

twenty 100-ns simulations, ten from apo-closed (PDB ID: 2RF1)

and ten from apo-semiclosed (PDB ID: 2REJ) crystal structures

[29]; and one hundred 50-ns additional simulations, seeded from

random conformations of the previous twenty trajectories. In total,

we collected 7 ms of apo simulations and constructed a MSM using

the MSMBuilder package [33] (see Methods for the details of

model construction). The implied timescale plots flatten at ,15 ns,

indicating that the model is Markovian with this or longer lag time

(SI Fig. S2) [33]. We thus selected 20 ns as the lag time to

construct our MSM. Since the macrostate-MSM underestimates

the kinetics, we computed all the quantitative properties reported

Figure 1. A cartoon representation of the choline-binding
protein ChoX in (a) apo-closed (PDB ID: 2RF1) and (b) holo-
closed (PDB ID: 2REG) states. The ligand choline is shown in red
spheres.
doi:10.1371/journal.pcbi.1003767.g001

Author Summary

Molecular recognition plays important roles in numerous
biological processes including gene regulation, cell signal-
ing and enzymatic activity. It has been suggested that
molecular recognition employs a variety of mechanisms,
ranging from induced fit to conformational selection. In
many realistic systems, conformational selection and
induced fit are not mutually exclusive. An analytical flux
analysis has been developed to determine the contribu-
tion of each model, but it is extremely challenging to
obtain the necessary kinetic parameters for this flux
analysis through experimental techniques. In this work,
we have developed an approach integrating Markov State
Models, molecular dynamics simulations, and flux analysis
to tackle this problem. Using this approach, we have
quantified the recognition mechanism of the choline
binding protein to be ,90% conformational selection
dominant in the experimental conditions. Our methodol-
ogy provides a way to quantify the molecular recognition
mechanisms that are extremely difficult to be directly
accessed by experiments. This opens up numerous
possibilities for in silico design to fine tune the recognition
event either to increase the degree of conformational
selection or induced fit, so that new properties could be
created to accommodate the needs of protein engineer-
ing, drug development and beyond.

Quantitating Molecular Recognition Mechanisms
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in this work such as equilibrium state populations and other kinetic

properties based on the 500-state microstate-MSM. To better

visualize the conformational dynamics of ChoX, we have also

lumped the 500 microstates into 5 metastable states, denoted as S1

to S5 with descending populations (see the Methods section for

details).

Free energy landscape of apo ChoX
The projection of the free energy landscape of apo ChoX on the

domain-domain opening and twisting angle is plotted in Fig. 2. It

is clear that the most populated region is near (0u, 0u),
corresponding to an apo-closed crystal structure. Our simulations

demonstrate that such a conformation lies in the most dominant

metastable state S1 with a population of ,47%. This result is

consistent with previous X-ray crystallography research, which

noted that ChoX could exist in the closed conformation without

the help of a ligand [29]. In addition to this metastable state, we

found other states with different degrees of opening or twisting.

Such metastable conformations were not discovered by X-ray

crystallography, possibly due to the very compact crystal

environment and strong contacts between unit cells present in

the available apo structures of ChoX (SI Fig. S3) [29].

We also studied kinetics for the transitions between these

metastable states. The mean first passage times (MFPTs) were

calculated for each pair of states (SI Table S1), and these

timescales are on the order of microseconds.

Structural and dynamic features of metastable states of
apo ChoX

The structural features of the five metastable states are displayed

in Fig. 3. The most populated state S1 is a closed conformation

very similar to those discovered crystal structures. S2 is an open-

and-twisted conformation with an essential hydrogen bond

between N229 and G232 at the back of the hinge region. S3 is

a closed conformation with a small opening at the side of the

domain-domain interface, which is large enough to allow the

diffusion of the ligand to the binding site (Fig. 3b). S4 is twisted to

a very large degree. S5 is another closed structure similar to S1

with a different orientation of the helix containing residues 262–

275. Further investigations show that hydrogen bonds may play an

important role to stabilize these metastable conformations. One

example from the metastable state S2 involves N229 and G232.

When N229 was mutated to alanine or G232 was mutated to

bulkier tyrosine to diminish the hydrogen bonds, fast transitions

(within 50-ns) were observed from S2 to S1 (SI Fig. S4) compared

to the wild type (,2.07 ms), demonstrating the critical contribution

of the hydrogen bond (N229-G232) to the metastability of S2.

Ligands can selectively bind to the closed ChoX
conformation to reach the bound states

We performed ten 50-ns simulations for each of the five

metastable states by introducing ligands to the system. To increase

the chance of observing a binding event within the length scale of

MD simulations, we have added 20 ligands to the system (at a

concentration of ,0.069M). In each simulation, 20 ligands were

randomly placed in the simulation box away from the binding site

with the minimum distance of 17 Å and the protein conformations

were randomly chosen from each metastable state.

For S1 with closed protein conformations (S1+L), we discovered

two out of ten simulations where the ligand recognized the target

and bound to it. In order to enhance the sampling, we have

performed additional twenty 50-ns MD simulations and three of

them were identified with binding events.

The pathways of the ligand binding to S1 can be mainly

characterized as conformational selection, and these binding

simulations achieved similar conformation compared to the X-ray

bound structure with a RMSD as small as 1.6 Å of protein Ca atoms

which are within 8 Å to the binding site (Fig. 4a). In addition, we

examined the distances of the ligand choline to four essential residues

at the binding site after the ligand binds to S1, and the values are

similar to those from crystal structure. These results indicate that MD

simulations have the capability to predict the bound state in silico.

The ligand binding can also induce the conformational
changes of the metastable state S3 to reach the bound
state

In addition to these ligands that can directly bind to the closed

conformation S1, we also found in other simulations that the

ligand can interact with the conformation from the state S3 and, at

the order of tens of nanoseconds induce the conformational

change to the bound conformation S1L. Recall S3 was a closed

and twisted state with a side-opening cavity ready for a ligand to

insert. We also demonstrated that, from a distance analysis and an

overlay of S3L with the holo crystal structure, the ligand stays close

to Y119 and W205 (Fig. 5b). One trajectory was discovered with a

transition from S3L to S1L, which suggests the possibility that the

ligand can bind ChoX through an induced fit mechanism. Since

only a single transition event was observed among ten simulations

of S3+L, we have performed additional twenty 50-ns MD

simulations of S3L complex to enhance the sampling. Among

these twenty simulations, two of them displayed the transitions

from S3L to S1L (SI Fig. S5).

For the remaining metastable states S2, S4 and S5, no ligands

were found to bind to the correct binding site to form the complex:

S2L, S4L or S5L (SI Fig. S6). However, in order to examine

whether or not these protein-ligand complexes (S2L, S4L or S5L)

if exist can induce the transitions to the bound state S1L, we have

modeled these complexes using the AutoDock Vina [62], and

initiate ten 50-ns MD simulations from each of these docked

conformations. As shown in SI Fig. S7, none of these simulations

contained any transitions to the bound state (S1L). These results

Figure 2. Projections of the free energy landscape onto the
opening and twisting angles for the apo ChoX. The free energy
profiles were obtained by averaging over contributions from five
different metastable states of MSMs weighted by their equilibrium
populations. The unit of the color bar is kT. See SI Fig. S9 and Methods
for the definition of opening and twisting angles.
doi:10.1371/journal.pcbi.1003767.g002
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indicate that the direct transitions from S2L, S3L and S5L to the

bound state S1L are unlikely to occur.

Quantifying the binding flux
From the MD simulations discussed above, we can obtain a

rough picture of the hybrid mechanism of conformational

selection and induced fit for ChoX. However, the great challenge

is to quantify the percentage of each mechanism in complicated

scenarios. In order to achieve this, we have applied the flux

analysis theory [20], where the flux going through each pathway is

utilized to quantify binding mechanisms. At first, the conforma-

tional selection pathway can be described as (SI Fig. S1):

P1zL

k1
on

k1
off

P1
:L ð1Þ

where P1 represents the closed conformation S1 of ChoX, and other

Figure 3. (a) The equilibrium populations of five metastable states obtained from the MSM for apo ChoX. (b) Representative
conformations from these five states. The two domains of the protein are colored in cyan and green respectively, and two viewpoints, front and side
views, are shown. (c) Projections of free energy landscape on the protein opening and twisting angle for each metastable conformational state. The
interval between two adjacent contour levels is 1 kT.
doi:10.1371/journal.pcbi.1003767.g003
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metastable conformations Pi (i = 2–5) can interconvert with P1:

Pi

ki1

k1i

P1 ð2Þ

In this work, we consider the conformational selection mechanism

in a general context where the ligand selects to bind a certain

metastable protein conformation including the ground state (P1 in

this case).

On the other hand, the induced fit pathway can be described by

a two-step process (SI Fig. S1), where the ligand first binds to

any metastable conformation Pi other than the closed conforma-

tion P1:

PizL

ki
on

ki
off

Pi
:L ð3Þ

And the binding will further induce the conformational change to

reach the bound state:

Pi
:L

kL
i1

kL
1i

P1
:L ð4Þ

The flux flowing through each of the above two pathways can be

derived from the flux analysis theory as the following (see Methods

for the details of the derivation):

FCS~
1X5

i~2
ki1½Pi�

z
1

k1
on½P1�½L�f

0
@

1
A

{1

ð5Þ

FIF~
X5

i~2

1

ki
on½Pi�½L�f

z
1

kL
i1½Pi

:L�

 !{1

ð6Þ

where FCS and FIF represent the flux through conformational

selection and induced fit pathway respectively. ki
on and ki

off are

the kinetic rate constant for ligand binding/unbinding to state i

respectively; ki1 is the rate constant for the transition from state i to

state 1; kL
i1 is the rate constant for the transition from the complex

Si?L to the bound state S1?L; and [L]f is the free ligand

concentration.

In this study, we have derived important parameters from

MSMs and MD simulation that are missing in the flux analysis.

Specifically, ki1 can be derived from the transition probability

matrix. For MD simulations starting from state S2, S4 and S5, we

didn’t observe any successful binding events, therefore k2
on , k4

on ,

k5
on are all set to be zero. For S3, there exist multiple binding and

unbinding events in our ten 50-ns MD simulations. Therefore, we

have obtained k3
on and k3

off by computing the fraction remaining

in the unbound state S3 as a function of time followed by fitting to

Eq. 19 (SI Fig. S8). k1
on can be derived from MD simulations with

ligands in a similar way to k3
on (Eq. 20). At last, we need to derive

the values for kL
i1 (i = 2–5). Since the simulations of S2L, S4L and

S5L didn’t show any transitions from each state to S1L (SI Fig.

S7), these values (kL
21 , kL

41 , kL
51 ) are all set to be zero. For kL

31 , we

can obtain its value from twenty S3L MD simulations since the

ligand binding further induced the conformational changes to the

bound state in a fraction of these trajectories (Eq. 24).

We can then proceed to measure the percentage contribution of

conformational selection and induced fit mechanism using

equations (5) and (6). At the protein concentration fixed to

1 mM, Fig. 6 shows the contribution of conformational selection to

the binding pathway depending on the ligand concentration.

Conformational selection is dominant for a wide range of the

ligand concentration, accounting for around 90% of the binding

Figure 4. Choline can selectively bind to the closed protein
conformation S1 to reach the holo state. (a) The X-ray bound
conformation (red, PDB ID: 2REG) is superimposed with a conformation
selected from MD simulations in the presence of ligands and with
smallest RMSD to the bound state (blue). Four critical residues in the
binding sites that are in direct contact with the ligand are highlighted in
stick representation. (b) Distances (Å) between the center of mass of
ligand and four centers of mass of critical residues in the binding site
obtained from the holo structure (red bars) and five MD trajectories in
which only those conformations after the ligand binding have been
included in the analysis (blue bars).
doi:10.1371/journal.pcbi.1003767.g004

Figure 5. MD simulations initiated from the state S3 that
exhibit spontaneous ligand binding. (a) A representative confor-
mation of S3L (blue) is overlaid with the X-ray bound state (red, PDB ID:
2REG). (b) The same as Fig. 4b except that the distances computed from
7 50-ns ligand binding MD simulations that the ligand binds state S3.
doi:10.1371/journal.pcbi.1003767.g005
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event at the concentration of choline in the lab conditions (mM

scale) [63]. Therefore, we conclude that the binding mechanism of

choline to ChoX is dominated by conformational selection.

Conclusions
In summary, we here propose a novel method that combines

MSMs, MD simulations and flux analysis to quantify the binding

mechanism of conformational selection and induced fit in complex

binding events. In the case study of choline binding to ChoX, we

were able to derive all the necessary parameters using MD

simulations and MSMs. Based on these parameters, the percent-

age of each limiting binding mechanism could be quantitatively

calculated as a function of ligand concentration. It would be

difficult, using common experiments, to obtain these necessary

parameters to elucidate these mechanisms. Finally, once the

mechanism is quantified, one can further apply other techniques

(e.g. in silico design) to the biological system to fine tune the

binding event either to increase the degree of conformational

selection or induced fit, so new properties of macromolecules could

be explored and created to accommodate the needs of protein

engineering and beyond.

Methods

Definition of the opening and twisting angle
We project the free energy landscape of ChoX onto two

dihedral angles: the opening and twisting angles. The opening

angle is defined as the angle between the normal vectors of the two

planes formed by the center of mass of the following groups of Ca
atoms (SI Fig. S9a):

Plane A: residues 31–114 & 234–316; 185–194; 159–166.

Plane B: residues 118–230; 185–194; 159–166.

The twisting angle planes are:

Plane C: residues 31–114 & 234–316; 185–194; 46–55.

Plane D: residues 118–230; 185–194; 46–55 [64].

From Principal Component Analysis (PCA) of the apo MD

simulations, we found strong correlations between the opening

angle and the first eigenvector (R2 = 0.77), as well as between the

twisting angle and the second eigenvector (R2 = 0.53) (SI Fig. S9b).

In this work, the degrees of apo-closed and holo-closed crystal

structures were shifted to the (0u, 0u) point in corresponding

settings.

MD simulations of the apo ChoX protein
The GROMACS 4.5.4 [65] software and Amber99sb force

field [66] were used for all the MD simulations. The procedure

is as follows: the protein (and ligand, when present) was solvated

in a dodecahedron box with 14, 450 SPC water molecules [67]

and enough counter ions to neutralize the system. The system

was first minimized with a steepest descent algorithm, followed

by a 200 ps MD simulation with position restraints for the heavy

atoms. All the simulations were performed at NVT ensemble

with 300K of temperature using V-rescale thermostat [68]. The

cut-offs for both VDW and short-range electrostatic interactions

were set to 10 Å and long-range electrostatic interactions were

treated with the Particle-Mesh Ewald method [69]. The time-

step was 2 fs and the neighbour list was updated every 10 steps.

Water molecules were constrained by the SETTLE algorithm

[70] and all protein bonds were constrained by the LINCS

algorithm [71].

Markov state model construction
Using the MSMBuilder package [33], we first applied the k-

centre algorithm to cluster all the conformations into 500

microstates based on the Ca atoms of residues in proximity to

the binding site (i.e. within 8 Å of the ligand as defined by the

holo crystal structure, PDB ID: 2REG). The generated

microstates were small, with the average RMSD values to its

central conformation in each state of about 1.9 Å. The

transition probability matrix (T) was obtained by counting the

number of transitions observed in the MD trajectories. We then

examined the transition probability matrix, and removed two

disconnected microstates from our model. The implied time-

scales (tk) obtained from the transition probability matrix T
indicates the aggregated timescales for transitions between

groups of microstates.

tk~{
t

ln mk(t)
ð7Þ

where mk is an eigenvalue of the transition matrix with the lag

time t.

We have examined the implied timescale plots for this 500-

microstate model to select a lag time that ensures the model to

be Markovian. As shown in SI Fig. S2, the implied timescale

curves plateau at around 15 ns, indicating the model is

Markovian with this or longer lag times. Thus we chose a

lag time of 20 ns for our final MSM. In order to better

visualize the conformational dynamics of apo ChoX, we have

further lumped all the microstates into 5 metastable macro-

states using the Robust Perron Cluster Analysis (PCCA+)

algorithm [72].

The 500-state microstate-MSM was used to compute all the

quantitative properties we report in this work. To obtain the

populations of metastable states (P1, … P5) from the 500-state

microstate-MSM, we simply sum over the equilibrium populations

of all the microstates that belong to a certain metastable state:

Pi~
X
k [ i

pk . To compute the MFPT between a pair of

metastable state i and j from the microstate-MSM, we first set

MFPTs of all the microstates that belong to the destination

metastable state j to be zero: tk, where k [ j~ 0. We then computed

MFPTs starting from any of the microstate that belong to the

metastable state i: tl, where l [ i. Finally, we obtained the MFPTs

from i to j by performing a weighted average over all the

microstates that belong to i: MFPTij~
X
l [ i

pl tl, where l [ i .

Figure 6. The percentage of conformational selection mecha-
nism as a function of ligand concentration. Conformational
selection is dominant for most of the ligand concentration range for
ChoX.
doi:10.1371/journal.pcbi.1003767.g006
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Mean first passage time calculation
The MFPT, determined by the following formula, calculates the

average transition times between a pair of states [73].

MFPTif ~
X

j
Pij(tzMFPTjf ) ð8Þ

where Pij is the transition probability from state i to state j, t is the

lag time of the transition probability matrix T, and MFPTjf is the

mean first passage time of the state j to final state f. The boundary

condition is MFPTff = 0.

Deriving force field parameters for choline
In order to simulate the process of choline binding to the ChoX

protein, we need to obtain the force field parameters for choline.

We followed the same procedure as we previously published [74]

to derive both bonded and non-bonded force field parameters of

choline. Specifically, we have obtained the stretching, bending and

torsion parameters by fitting against the Quantum Mechanics

(QM) calculations performed using the Density Functional Theory

with B3LYP/6-31G* in the Gaussian software [75]. Similar with

previous studies [76], we have employed the Restrained Electro-

Static Potential (RESP) method to derive the partial charges from

the QM calculations with HF/6-31G*. We have listed all the force

field parameters in the format that is compatible with the

GROMACS 4.5 software package in SI Text S1, S2.

Deriving parameters for flux analysis
The two limiting ligand-binding mechanisms: conformational

selection and induced fit can be described by Eq. (1)–(4). Following

the flux analysis theory developed by Hammes et al. [20], we can

then derive the fractional flux passing through each pathway. We

note that this flux analysis can be considered as a special case of

transition path theory and yields consistent path fluxes for serial

and parallel pathways [55,77]. In particular, if one pathway is

consisted of parallel reaction paths, its flux can be written as:

F~
X

Fi ð9Þ

If one pathway contains serial segments, the flux is:

F~
1X 1

Fi

ð10Þ

Now, let’s consider the conformational selection pathway, which

involves two steps. First, different protein metastable conforma-

tions (Si, i = 2–5) can all interconvert to the closed state (S1) at rates

ki1 (Eq. 2). Therefore, the flux for this segment is:

F1~
P5

i~ 2 ki1½Pi� , where [Pi] is the concentration of the state

Si. Next, the ligand can selectively bind to the closed protein

conformation S1, to reach the bound state. For this part, the flux

is: F2~ k1
on ½P1�½L�f (Eq. 1). Therefore, the flux of conformational

selection FCS can be derived as:

FCS~(
1

F1
z

1

F2
){1 ð11Þ

The detailed expression of FCS can be found in Eq. 5.

Following the similar procedure [20], we can also derive the flux

for the induced fit pathway. In particular, there exist independent

parallel pathways to reach the bound state, where the ligand can

first bind to a certain metastable conformational state (Si, i = 2–5),

and further induced the conformational change to the bound state.

The flux of each of these pathways (Fi) can be written as:

Fi~(
1

ki
on½Pi�½L�f

z
1

kL
i1½Pi

:L� )
{1 ð12Þ

where ki
on and kL

i1 denote to the rate for the ligand binding to

state Si (i = 2–5) and the transition rate from the complex Si?L to

the bound state S1?L respectively; ½L�f & ½L� when [L] exceeds.

When [L] and [P] are comparable, [L]f is given by Eq. 13:

½L�f ~
½L�

1z
X5

i~1

½Pi�
Ki

d

ð13Þ

The overall flux for the induced fit pathway (FIF) can then be

written as:

FIF ~
X5

i~2
Fi ð14Þ

The fractional flux for conformational selection pathway is:

FCS%~
FCS

FCSzFIF

ð15Þ

In order to obtain FCS%, we need to derive a series of parameters:

ki1(i = 2–5), ki
on (i = 1–5), kL

i1 (i = 2–5). ki1 are the transition rate

constants from state i to state 1, which can simply be derived from

MFPT [58]:

ki1~1=MFPTi1 ð16Þ

where MFPTi1 is the mean first passage time of state i to final state

1. The uncertainties of this set of rates are obtained from

bootstrapping the MD dataset (containing N = 138 trajectories)

with replacement for N times.

For ki
on , we use our MD simulations with ligand to derive their

values. Based on Eq. (1) and (3), we can write the rate equation as:

d½Pi�
dt

~{ki
on½Pi�½L�zki

off ½P:L� ð17Þ

In our simulations, the initial ligand concentration [L]0 is twenty

times larger than the initial protein concentration [P]0:

½P�0v v ½L�0, therefore, L½ � & L½ �0. The forward reaction,

which is only dependent on kon, can then be written as:

d½Pi�
dt

~{ki
on½Pi�½L�0zki

off (½P�0{½Pi�) ð18Þ

We can solve Eq. 18 to obtain [Pi]:

½Pi�
½Pi�0

~1{
ki

on½L�0
ki

on½L�0zki
off

(1{e
{(ki

on ½L�0zki
off

)t
) ð19Þ

We can then examine our ligand MD simulations initiated from

different protein metastable conformations to obtain ki
on and

ki
off . For MD simulations starting from state S2, S4 and S5, we

didn’t observe any binding events (for distances between the center

Quantitating Molecular Recognition Mechanisms

PLOS Computational Biology | www.ploscompbiol.org 7 August 2014 | Volume 10 | Issue 8 | e1003767



of mass of ligand and center of mass of four critical residues, W43,

W90, Y119, W205 [29], in the binding site to be less than 12 Å),

therefore k2
on , k4

on , k5
on all equal zero (however we estimated

their upper limits in Table 1). For S3, there exist multiple binding

and unbinding events in our ten 50-ns MD simulations. We have

thus computed the fraction remaining in the unbound state

(
½Pi�
½Pi�0

) as a function of time, and further fit Eq. 19 to it

in order to obtain k3
on ~ 4:19 + 2:06 | 108 M { 1 s { 1 and

k3
off ~ 4:50 + 3:09 | 107 s { 1 (see SI Fig. S8 for the param-

eter fitting). We can then obtain K3
d ~ 0:107M. Thus, [P3?L] can be

calculated by P3 | ½L�f =K3
d . For S1, we have observed multiple

binding events; however none of the unbinding events from our MD

simulations, due to the high stability of the bound state. We can then

simplify Eq. 18 by only considering the forward reaction and

½P1�=½P1�0 can be written as:

½P1�
½P1�0

~e{k1
on½L�0t ð20Þ

We then obtain k1
on ~ 6:33 + 2:53 | 107 M { 1 s { 1 .

To further examine the robustness of the definition of the

successful binding events, we have compared it with a more

specific definition: the heavy atoms of the ligand form contact with

atoms belonging to at least three critical residues (among W43,

W90, Y119, W205 [29]) in the binding pocket. These two sets of

rates only differ slightly (SI Table S2). Furthermore, we have

compared the fraction of conformational selection computed

based on two different definitions of ligand binding. As shown in

SI Fig. S10, the results from two different definitions are also

consistent.

In order to examine whether or not the protein undergoes

any major conformational changes while collecting data for

estimating the binding rates (e.g. k1
on , k3

on , and k3
off ), we have

projected protein conformations in each binding MD simula-

tion onto a pair of reaction coordinates (opening and twisting

angles). As shown in SI Fig. S11, the protein remains in its

initial metastable state during the whole course of all the

binding MD simulations. These results confirm that our

estimations of binding rates are clean.

In order to obtain K1
d , which is the dissociation constant for the

ligand directly binding to S1, we have constructed a thermody-

namic cycle to compute its value (SI Fig. S12):

{DGd~DGpzDG1 ð21Þ

where the free energy D G1 is directly related to K1
d :

D G1~ kT ln K1
d .

D Gd can be computed from the disassociation constant for the

ligand binding Kd by D Gd~ { kT ln Kd , where Kd has been

obtained experimentally as 2.7 mM [63]. D Gp is the free energy

difference associated with the conformational transitions from

different metastable states to the closed state S1:

DGp~
X5

i~2

DGi1|fi ð22Þ

where D Gi1 is the free energy difference between Si and S1, and fi
denotes to the equilibrium population of Si:

DGp~
X5

i~2

{kT ln(f1=fi)|fi ð23Þ

From Eq. 21–23, we can compute the value of K1
d as 4.53 mM.

At last, we need to derive the values for kL
i1 (i = 2–5). As

discussed before, there are no binding/unbinding events for S2, S4

and S5, and these values (kL
21 , kL

41 , kL
51 ) are all set to be zero. For

kL
31 , we can obtain the value from the MD simulations initiated

from the S3 state with ligand.

½P3
:L�

½P3
:L�0

~e
{kL

31
t ð24Þ

Eq. 24, helps us to calculate the forward transition rate

kL
31 ~ 2:60 + 1:60 | 106 s { 1 .

For the ligand binding/unbinding (k1
on , k3

on and k3
off ) and

transition from S3L to S1L (kL
31 ). We have performed the

bootstrapping analysis to obtain the error bars. In particular, we

bootstrapped the MD dataset (containing N MD simulation

trajectories with N = 30, 9 and 20 for k1
on , k3

on /k3
off , and kL

31

respectively) with replacement for N times.

For rates that are estimated to be zero with no observed

transitions (e.g. k2
on , kL

21 ), we have estimated the upper limit of

these rates by assuming one binding/transition event occurs

Table 1. Parameters for the flux analysis.

Parameter Value Parameter Value

P1 0.46760.038 mM k1
on 6.3362.536107 M21 s21

P2 0.31460.034 mM k2
on ,3.066107 M21 s21

P3 0.10160.022 mM k3
on 4.1962.066108 M21 s21

P4 0.08060.019 mM k4
on ,3.066107 M21 s21

P5 0.03960.013 mM k5
on ,3.066107 M21 s21

k21 5.7862.296105 s21 kL
21 ,2.116106 s21

k31 7.1965.406105 s21 kL
31 2.6061.606106 s21

k41 1.8161.006105 s21 kL
41 ,2.116106 s21

k51 2.9763.096106 s21 kL
51 ,2.116106 s21

k3
off 4.5063.096107 s21

doi:10.1371/journal.pcbi.1003767.t001
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during our accumulated 500-ns simulation time. We also show

that applying these upper limits of the rates to our flux analysis

does not change qualitatively the conclusion of this paper: the

fraction of the conformation selection slightly decreases from 93%

to 82% at experimental concentrations (,1 mM) as shown in SI

Fig. S13.

We have listed all the necessary rate constants with uncertain-

ties/upper limits in Table 1.

Supporting Information

Figure S1 A schematic diagram representing the conformational

selection and induced fit models of protein-ligand recognition.

(TIF)

Figure S2 Implied timescales of microstate and macrostate

models. (a). Fifteen slowest implied timescales as a function of lag

time computed from the 500-state microstate-MSM. (b). Implied

timescales as a function of lag time computed from the 5-state

macrostate-MSM.

(TIF)

Figure S3 Crystal contacts experienced by the ChoX in the (a)

apo-closed (PDB ID: 2RF1) and (b) apo-semiclosed (PDB ID:

2REJ) X-ray structures. The central unit cell contains two ChoX

molecules (in ribbon representations). The surrounding unit cells

are shown in surface representations in orange.

(TIF)

Figure S4 MD simulations of two single mutants of apo ChoX,

Asn229Ala and Gly232Tyr, that exhibit an accelerated confor-

mational change from the open to the closed state. We have

performed three 50-ns MD simulations for each mutant. One of

these MD simulations for each mutant is projected onto the

opening and twisting angles with a step size of 5-ns. The

projections of the apo ChoX free energy landscape (the same as

Fig. 3c, and each macrostate is assigned a different color) are also

displayed in the same figure.

(TIF)

Figure S5 Protein conformational changes are displayed for

three MD simulations where transitions from S3L to S1L occur.

The projections of the free energy landscape onto the opening and

twisting angles are shown for state S3 (blue) and S1 (red). Each

arrow corresponds to a 10-ns segment of the MD simulation. The

black cross represents the holo crystal structure. The middle and

right panels correspond to the two additional MD simulations

containing the transitions from S3L to S1L.

(TIF)

Figure S6 Superimposition of representative snapshots from

macrostates S2 (a), S4 (b) and S5 (c) in blue with the X-ray

structure of the ChoX bound state (red, PDB ID: 2REG). Each

protein conformation is displayed in both front and side views. We

did not observe any stable binding events in our MD simulations.

A binding event is defined as when distances between the center of

mass of the ligand and center of mass of four critical residues

(W43, W90, Y119 and W205) in the binding site all to be less than

12 Å. Therefore we consider that the ligands do not bind to these

metastable states (S2, S4 and S5).

(TIF)

Figure S7 The projections of protein conformational change on

the opening and twisting angles during the course of MD

simulations are displayed in black arrowed lines (two trajectories

in one panel). The simulations initiated from S2L, S4L, and S5L

are plotted in (a), (b), and (c) respectively. The projections of the

apo protein free energy landscape are also displayed as the

background. Each arrow corresponds to a 10-ns segment of the

MD simulation. The black cross corresponds to the holo crystal

structure.

(TIF)

Figure S8 Fraction of the unbound state as a function of time for

the ligand binding to metastable state S3. Eq. 19 is fitted (solid line)

to data obtained from MD simulations (points) to derive the kinetic

parameters: k3
on and k3

off .

(TIF)

Figure S9 Definition of the twisting and opening dihedral angle.

(a) The opening (left panel, side view) and twisting (right panel, top

view) angles are defined as angles between pairs of planes. (b) The

opening and twisting angles have a good correlation with the top

two eigenvectors obtained from the Principal Component

Analysis. The correlation coefficients R2 are 0.77 and 0.53

between the first eigenvector and the opening angle, and between

second eigenvector and the twisting angle, respectively. The

protein conformations from all the apo ChoX MD simulations are

included in this analysis.

(TIF)

Figure S10 Fractions of conformational selection computed by

using two sets of kinetic rates obtained by different definitions of

successfully binding events. In the first definition (blue), the

distances between the center of mass (c.o.m) of the ligand and

the c.o.m of the side-chains of four critical residues in the

binding pockets all have to be smaller than 12 Å. In the second

definition (red), heavy atoms of the ligand form contact with

atoms belonging to at least 3 critical residues in the binding

pocket.

(TIF)

Figure S11 Protein conformational changes during the MD

simulations in the presence of the ligand (a) S1+L. In particular,

the ligand binding occurs in the first 5 panels. Only 9 out of 30

MD simulations of S1+L are displayed. (b) S3+L. The projections

of the apo ChoX free energy landscape The projections of the

free energy landscape onto the opening and twisting angles are

shown for state S1 (Red), S2 (Green) and S3 (Cyan) as

background. Each arrow corresponds to a 10-ns segment of the

MD simulation. The black cross corresponds to the holo crystal

structure.

(TIF)

Figure S12 The thermodynamic cycle used for K1
d calculation.

The ligand dissociation constant Kd is measured from experi-

ments. DGd can also be obtained from a two-step process: protein

conformational transition and ligand binding to state S1.

Therefore, we can construct a thermodynamic cycle to obtain

the value of DG1.

(TIF)

Figure S13 Fractions of conformational selection as a function

of ligand concentration obtained from the flux analsyis with

original rates and with the upper limit of certain rates (see Table 1)

are shown in blue and red respectively.

(TIF)

Table S1 Mean first passage times between pairs of macrostates.

(PDF)

Table S2 Rates computed by different definitions of successful

ligand binding events. In the first definition, the distances between

the center of mass (c.o.m) of the ligand and the c.o.m of the side-

chains of four critical residues in the binding pockets all have to be

smaller than 12 Å. In the second definition, heavy atoms of the
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ligand form contact with atoms belonging to at least 3 critical

residues in the binding pocket.

(PDF)

Text S1 Force field parameters for choline (ffbonded_choli-

ne.itp).

(PDF)

Text S2 Force field parameters for choline (choline.rtp).

(PDF)
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(2010) Modeling conformational ensembles of slow functional motions in Pin1-

WW. PLoS computational biology 6: e1001015.
51. Da LT, Avila FP, Wang D, Huang XH (2013) A Two-State Model for the

Dynamics of the Pyrophosphate Ion Release in Bacterial RNA Polymerase. Plos

Comput Biol 9: e1003020.
52. Da LT, Wang D, Huang XH (2012) Dynamics of Pyrophosphate Ion Release

and Its Coupled Trigger Loop Motion from Closed to Open State in RNA
Polymerase II. J Am Chem Soc 134: 2399–2406.

53. Qiao Q, Bowman GR, Huang X (2013) Dynamics of an Intrinsically Disordered

Protein Reveal Metastable Conformations That Potentially Seed Aggregation.
Journal of the American Chemical Society 135: 16092–16101.

54. Bowman GR, Voelz VA, Pande VS (2011) Taming the complexity of protein
folding. Curr Opin Struct Biol 21: 4–11.
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