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Abstract

The objective of this study was to identify the aggregation pheromone of the melon thrips Thrips palmi, a major pest of
vegetable and ornamental plants around the world. The species causes damage both through feeding activities and as a
vector of tospoviruses, and is a threat to world trade and European horticulture. Improved methods of detecting and
controlling this species are needed and the identification of an aggregation pheromone will contribute to this requirement.
Bioassays with a Y-tube olfactometer showed that virgin female T. palmi were attracted to the odour of live males, but not
to that of live females, and that mixed-age adults of both sexes were attracted to the odour of live males, indicating the
presence of a male-produced aggregation pheromone. Examination of the headspace volatiles of adult male T. palmi
revealed only one compound that was not found in adult females. It was identified by comparison of its mass spectrum and
chromatographic details with those of similar compounds. This compound had a structure like that of the previously
identified male-produced aggregation pheromone of the western flower thrips Frankliniella occidentalis. The compound
was synthesised and tested in eggplant crops infested with T. palmi in Japan. Significantly greater numbers of both males
and females were attracted to traps baited with the putative aggregation pheromone compared to unbaited traps. The
aggregation pheromone of T. palmi is thus identified as (R)-lavandulyl 3-methyl-3-butenoate by spectroscopic,
chromatographic and behavioural analysis.
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Introduction

Thrips are small insects, typically only 1–2 mm long, belonging

to the order Thysanoptera. Adults and larvae of many species

cause serious commercial damage to crops grown in protected

environments, such as glasshouses and polytunnels (tunnels

covered with polythene), and also to open-field crops, through

feeding and virus transmission. Most commercially important

thrips pest species are in the genera Thrips and Frankliniella,

which belong to the same sub-family (Thripidae: Thripinae).

The western flower thrips Frankliniella occidentalis (Pergande)

[1,2] and Frankliniella intonsa (Trybom) [3] have male-produced

aggregation pheromones that are attractive to both female and

male conspecifics. F. occidentalis males form lek-like aggregations

within which there are aggressive male–male interactions. Females

arrive continually, mate, and leave immediately, so although both

sexes arrive at the aggregations, they contain predominantly males

[4]. The aggregation pheromone is probably used by males and

females to locate these mating aggregations [2]. In F. occidentalis,
the pheromone has been tested in the field and identified as a

single component, the monoterpene ester neryl (S)-2-methylbu-

tanoate (N(S)2 MB) [2]. In F. intonsa the aggregation pheromone

may be a two-component mix of N(S)2 MB with (R)-lavandulyl

acetate ((R)LA) [3], but the effects of synthetic compounds have

not yet been tested.

These pheromone components probably originate from glan-

dular tissue underlying a series of structures on the underside of

the abdomen of adult males, known as sternal pore plates [5–7].

Species in the genus Thrips also have male pore plates [6] and

aggregations of males have been recorded in some species [8],

leading to speculation that they may also produce an aggregation

pheromone.

The melon thrips Thrips palmi Karny is a global pest of a wide

range of plants, particularly in the Solanaceae and Cucurbitaceae,

including important vegetable and ornamental crops such as

eggplant (brinjal, aubergine), melon, cucumber, sweet pepper and
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chrysanthemum [9], causing significant damage both by feeding

and as a vector of tospoviruses [10]. Since the late 1970s, it has

spread around the world, probably originating from southeast

Asia, and is now a pest across Asia and the Pacific and is also

found in Florida, the Caribbean and parts of South America,

Africa and Australia [9,11]. It has recently been recorded for the

first time in Iran [12]. Although T. palmi is not currently a

problem in Europe, its well documented global dispersal in

association with the international trade in plants or plant products

has added an extra dimension to its pest status, and it is considered

to pose a considerable threat to the European horticulture industry

[13,14]. It is commonly intercepted at points of entry on imports of

cut flowers, fruit and vegetables throughout the world, and such

dispersal pathways result in crop colonisation. Its behaviour results

in it seeking out small enclosed spaces, which can make it difficult

to detect. Short generation times result in rapid population

increases and development of insecticide resistance can result in

control failures. Some incursions into European crops have

occurred, where outbreaks are subject to plant quarantine

legislation, and have been successfully eradicated [9,15], but this

has been more readily achieved if management actions commence

soon after initial infestation when populations are small. Enhanced

methods for early detection and control are thus of central

importance to maintain biosecurity and enhance the effect of

current control methods.

The objectives of this study were to identify any male-produced

volatile compounds of Thrips palmi and test whether they act as an

aggregation pheromone in the field, with a view to providing a tool

for potential use in both commercial and quarantine pest detection

and management.

Materials and Methods

Thrips
Field experiments and some thrips collections were carried out

on private land and we confirm that the owner of the land gave

permission to conduct the study on this site.

The thrips for olfactometer bioassays were reared from T. palmi
collected from an eggplant crop (Solanum melongena L.) in

Hangzhou, Zhejiang Province, China (N 30u 18.3319 E 120u
11.7309). They were reared on bean pods (Phaseolus vulgaris L.)

in 4.5 L glass canning jars at 2761uC, 65–75% r.h., 16:8

light:dark. Mixed-age adult thrips were collected arbitrarily from

the colony. To obtain known-age virgin females, large numbers of

second-instar larvae were collected from the colony and

transferred individually into 0.5 ml microcentrifuge tubes con-

taining a section of bean pod. They were examined daily and

virgin females were used for the experiments 1–3 d after

emergence.

All adult male and female T. palmi used for the collection of

volatile chemicals were obtained from the leaves of commercial

eggplant crops (S. melongena var. Senryo 2) grown in a polytunnel

at Himuro near Utsunomiya, Tochigi Prefecture, Japan (N 36u
30.4839 E 139u 59.5369).

To identify any volatile compounds that might be produced

exclusively by male T. palmi, the headspace volatiles of both adult

males and females with appropriate controls were collected

separately and analysed. T. palmi were transported from

Utsunomiya University, Japan, in small plastic boxes

(12 cm68 cm64 cm) lined with layers of moistened tissue on

fresh sprouting broad bean seeds (Vicia faba L.) to the Central

Science Laboratory (CSL) (now Fera), York, UK. The insects were

held in secure quarantine facilities (license number: PHL 251B/

5328(02/2006) amended (04/2006)) at 23uC, 65% r.h., 16:8

light:dark until required.

Additional collections of adult male and female T. palmi were

made in the field in Japan in August 2011 and again in October

2011 at Himuro for entrainment of headspace volatiles. These

additional entrainments were undertaken on mixed male and

female groups of T. palmi with the aim of allowing us to collect

and store larger quantities of the target compound that was

already identified from our solid phase micro extraction (SPME)

entrainments at CSL. The additional material allowed us to carry

out further comparisons with mass spectrometry (MS) data held in

the coupled gas chromatography/mass spectrometry (GC/MS)

library as well as further chiral and achiral chromatography.

Collections were made between 10:00–16:00 h. Adults were

aspirated from the eggplant leaves and held in clean glass

containers (50 ml round bottomed (r.b.) flasks) and kept cool in

an ice box. Approximately 1 g of eggplant leaves and petals were

added to the r.b. flasks to provide a food source and maintain

humidity levels until the thrips were used for experimentation.

Four separate collections were made with the first containing

approximately 35 males and 400 females, the second 20 males and

365 females, the third 26 males and 415 females and the fourth 18

males and 300 females. The imbalance of the sexes was because

males are found much less frequently than females in the field.

To confirm that the collected thrips were T. palmi, represen-

tative samples were checked under a stereo microscope in the UK

and Japan. The main characteristic features are: body colour

yellow to white, antennae 7-segmented, macropterous with wing-

vein setae interrupted, ocelli red, and ocellar setae III outside the

ocellar triangle [16]. Females are distinguished from males by the

pointed shape of the tip of the abdomen and the presence of an

ovipositor. Males have no ovipositor and the tip of the abdomen is

blunt.

Olfactometer Bioassays
The response of adult thrips to male- or female-produced

volatiles was tested in a glass Y-tube olfactometer. This had a stem

60 mm long, two arms 60 mm long, separated from each other at

an angle of 90u, and an internal diameter of 5 mm. Air, filtered

through activated charcoal, humidified and split into two air

streams, each of which was fed through a 50 ml glass flask and into

one arm of the olfactometer was drawn through at a flow rate of

60 mm/s. The two flasks provided test and control odour (clean

air) sources. The flasks were illuminated from above by four

flourescent tubes and by one arm of a fibre-optic cold-light source

at a distance of 40 mm from the Y-tube (total illumination was

approximately 10,000 lux). Connections between the components

of the olfactometer apparatus were made with Teflon tubes.

Olfactometer experiments were carried out at 2562uC. Forty

mixed-age adult thrips were collected with a small aspirator,

anaesthetized with carbon dioxide, the sex of individuals was

checked under a microscope, and they were then transferred into

the treatment flask as the odour source. Test thrips were

transferred individually to the stem of the Y-tube with a fine

brush. Each thrips was observed for a maximum of 3 min, and its

choice for one of the two odour sources (treatment or control) was

recorded when it crossed a line 20 mm down either arm. ‘No

choice’ was recorded if the line was not crossed after 3 min. After

five thrips were tested, odour sources entering the arms of the Y-

tube were swapped to avoid any potential bias in the apparatus.

Each odour comparison was repeated four or five times on

different days, with a total of 15–20 thrips per day. The apparatus

was cleaned before each test by rinsing with hexane and baking in

an oven (200uC).

Aggregation Pheromone of Thrips palmi
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The data were analysed with IBM SPSS Statistics 19 (IBM

Corp., USA). Responses were tested by a binomial test with exact

two-tailed P values, with the null hypothesis that the two arms

were chosen with equal probability. ‘‘No choices’’ were excluded

from the analysis.

Headspace Volatile Collection
All glassware used in the collection of headspace volatiles was

cleaned by first washing in a 5–10% detergent solution, then

rinsing with distilled water, drying with acetone and finally heating

at 200uC in a clean oven overnight to remove potential

contaminants. Teflon tubing used in the portable entrainment

apparatus was cleaned by first washing in a 5–10% detergent

solution, rinsing with distilled water, drying with acetone and then

leaving in a fume hood at room temperature overnight to allow

solvent to evaporate fully.

Entrainments at CSL
T. palmi (males, females or larvae) were removed from the

sprouting beans with a small aspirator, anaesthetised with carbon

dioxide, and transferred into a clean glass container (volume

1.9 ml) that was then sealed with Teflon tape. The thrips were

illuminated from above with a 60 W tungsten filament lamp to

induce patrolling behaviour [1]. Headspace volatiles were

collected on a divinylbenzene (DVB)/carboxen/polydimethylsi-

loxane (PDMS) SPME fibre assembly (57348-U, Supelco, Poole,

UK) inserted into the glass container containing the thrips through

the Teflon tape at 27uC for 4–18 h [1]. The numbers of males,

females and larvae entrained in this way varied from 30 to 100 per

replicate and in total four entrainments of each sex and stage were

carried out. The following entrainments were carried out, males

by themselves, females by themselves and larvae. As the males,

females or larvae were removed from the bean sprouts and

entrained away from this food source a separate SPME

entrainment of bean sprouts was not done. After each entrainment

the SPME fibre was sealed in a clean glass tube and transferred to

Keele University for GC/MS analysis.

Entrainments in Utsunomiya
Entrainments of headspace volatiles were carried out in

Utsunomiya to provide greater quantities of the male-specific

compound identified by SPME entrainment of T. palmi at CSL

described above. After field collection the 50 ml r.b. flasks

containing the thrips were transferred to the laboratory and the

headspace volatiles collected using a portable entrainment

apparatus (Barry Pye, Kings Walden, Herts. UK). Air, pushed

through the entrainment apparatus by a pump, was first cleaned

by passing it through an activated charcoal filter and then into a

r.b. flask containing the thrips and plant material (for the thrips to

feed on) via a Drechsel head. A control entrainment of eggplant

only was also carried out. The air exiting from the r.b. flask then

passed into a glass column containing an adsorbent polymer

(ORBO 402, Tenax-TA). All tubing and components within the

entrainment apparatus were connected with Swagelok connectors

or Teflon tubing joints and were sealed with Teflon tape (Sigma-

Aldrich Company Ltd., Gillingham, UK) to eliminate leakage of

air. Air flow at the outlet of the Tenax-TA tube was measured with

a bubble flow meter and maintained at 5 ml/s by adjustment of a

rotameter (GPE Ltd., Leighton Buzzard, UK) at the air inlet side

of the apparatus.

The entrainment was run continuously for a period of 4 days.

The Tenax-TA columns were replaced every 24 h with a fresh

adsorbent column when fresh petals were also added to both r.b.

flasks.

Volatiles were eluted from the Tenax-TA tubes using 2 ml of a

95:05 mixture of n-hexane (SupraSolv grade; Merck, Germany)

and ethyl acetate (Chromatography/HPLC grade; Fisher Scien-

tific, Loughborough, UK). The extracts from the four collections

were concentrated under a gentle stream of air to 1 ml and

returned to Keele University where they were combined and the

volume reduced again to 100 ml for GC/MS analysis. The amount

of monoterpene ester present in the T. palmi extracts from Japan

was quantified by comparison of the peak area of the unknown

ester with a known amount of neryl (S)-2-methylbutanoate by

GC/MS analysis.

Coupled Gas Chromatography/Mass Spectrometry
GC/MS analyses were carried out on either a HP 5890 II+ GC

coupled to a HP 5972A MS or an Agilent 7890 GC coupled to an

Agilent 5973 MS (Agilent Technologies, Ipswich, UK). The

5972A was operated in electron impact (EI) (70 eV, 180uC) mode

only. The 5973 instrument was operated in either EI (70 eV,

180uC) or chemical ionization (CI) mode. CI analyses were carried

out using isobutane as the reagent gas.

For the 5890 GC the carrier gas was helium (1 ml/min) and the

injector was a Merlin Microseal (Thames-Restek, High-Wycombe,

UK) septum-less heated injector (180uC) fitted with a SPME glass

injection sleeve (0.75 mm i.d.; Supelco). SPME samples were

injected in the splitless mode and desorbed for 8 min before the

fibre assembly was withdrawn. Non-SPME samples (#1 ml) of T.
palmi extracts were also injected via this injector set in the splitless

mode using a standard 10 ml syringe (Sigma Aldrich, UK) to

maintain sensitivity. An initial temperature of 40uC was held for

2 min, increased (10uC/min) to 120uC, then increased (6uC/min)

to 180uC and then increased (10uC/min) to the final temperature

of 250uC (held for 1 min). The MS transfer line was set at 280uC.

Prior to each SPME thrips entrainment analysis, a blank fibre was

analysed to check system performance for the presence of possible

contamination.

For the 7890 GC the injector was a multimode inlet set in

splitless mode at 180uC and the GC analytical conditions were as

described above for the 5890 GC.

SPME-collected headspace volatiles, hexane:ethyl acetate

extracts of Tenax-TA entrainment tubes and synthetic standards

were analysed on both HP5MS (Supelco), DBWax (Supelco) and

chiral CycloSil-B (Agilent J&W, Agilent, Wokingham, UK) fused

silica analytical columns (30 m60.25 mm i.d., 0.25 mm phase

thickness) as appropriate.

The retention index (RI) of the T. palmi compound was

calculated relative to the retention times of saturated hydrocar-

bons. The RI and mass spectrum of the T. palmi compound were

then compared against the RIs and mass spectra of a library of 200

synthetic monoterpene C5 esters that included pentanoates (72

compounds), pentenoates (83 compounds), pentadienoates (12

compounds) and pentynoates (33 compounds). The library was

prepared by synthesising 200 of the possible combinations of 19

C5 fatty acids and their isomers with 17 commercially available

acyclic, monocyclic and bicyclic monoterpene alcohols and their

isomers. The esters were then analysed individually according to

the general methodology described below and RI and EI/MS data

were collected for each compound and isomer on both DB5 and

DBWax columns. RI and EI/MS data were also collected for

molecules with chiral centres on a CycloSil-B column.

Chiral Chromatography of Monoterpene Esters
Analysis of the enantiomeric composition of synthetic standards

and authentic thrips material was carried out on the Agilent 7890

coupled 5972 GC/MS with a CycloSil-B column. The carrier gas

Aggregation Pheromone of Thrips palmi
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was helium (flow rate 1 ml/min). Samples were introduced via a

heated multimode injector port (180uC) and the GC was

temperature programmed with an initial 2 min at 55uC, an

increase of 5uC/min to 115uC, held for 1 min, then an increase of

0.5uC/min to 165uC.

Chiral Chromatography of the Racemate and R and S
enantiomers of Lavandulol (5-Methyl-2-(1-
methylethenyl)hex-4-en-1-ol)

The GC was temperature programmed with an initial 2 min at

55uC, then an increase of 10uC/min to a temperature of 125uC,

held for 1 min, then an increase of 5uC/min to a temperature of

200uC and then to the final temperature of 250uC (10uC/min). (S)-

lavandulol eluted first at 19.86 min and (R)-lavandulol at

20.29 min.

Synthesis of Racemic Lavandulyl 3-Methyl-3-butenoate
Lavandulol (1 mmol; Sigma-Aldrich), 3-methyl-3-butenoic acid

(1.2 mmol; Sigma-Aldrich), and 4-dimethylaminopyridine

(DMAP) (0.05 mmol; Sigma-Aldrich) were dissolved in dry

dichloromethane (2 ml), and the solution was stirred in an ice

bath. N,N’-Dicyclohexylcarbodiimide (DCC) (1.2 mmol; Sigma-

Aldrich) was added portionwise over 30 min, and stirring was

continued for another 30 min with cooling and then for 3 h at

room temperature. The N,N’-dicyclohexylurea reaction by-prod-

uct was filtered off, and the precipitate was washed with petroleum

ether. The filtrate was washed with saturated aqueous sodium

bicarbonate solution, dilute hydrochloric acid, and water, dried

over magnesium sulphate, and filtered. After concentration, the

residue was purified by column chromatography on silica gel

(40 g, 100–200 mesh) eluted with a mixture (98:2) of petroleum

ether:ethyl acetate. Pure fractions, identified by thin-layer

chromatography, were collected and concentrated giving the ester

in 95.3% yield and 100% purity. The (R) and (S) enantiomers of

lavandulyl 3-methyl-3-butenoate were partially separated by

analysis of the reaction product on a CycloSil-B column (Fig. 1A).
1H NMR (CDCl3, 300 MHz): d 5.05 (t, 1H, J = 6.9 Hz, H-4a

(hydrogen number by position on the structure, see Fig. 2)

CH3C = CH), 4.90 (m, 1H, = CH-CH2), 4.83 (m, 1H, H-4b

CH2C = CH), 4.83 (m, 1H, H-20b CH3C = CH), 4.70 (d, 1H,

J = 0.8 Hz, H-20a CHC = CH), 4.07 (dd, 2H, J = 7.5, 3.0 Hz,

CH2O–COR), 3.02 (s, 2H, CH2C( = CH2)(CH3), 2.36–2.45 (m,

1H, CH-CH2O), 2.00–2.20 (m, 2H, CH2-CH-CH2O), 1.80 (br s,

3H, CH3
_C = ), 1.69 (br s, 3H, CH3

_C = ), 1.68 (br s, 3H,

CH3
_C = ), 1.60 (br s, 3H, CH3

_C = ).13C NMR (CDCl3, 75 MHz)

d 171.45, 144.80, 138.59, 133.00, 121.57, 114.72, 112.52, 66.06,

46.10, 43.52, 26.55, 25.80, 22.50, 19.94, 17.84.

Synthesis of (R)- and (S)-Lavandulyl 3-Methyl-3-
butenoate

The (R) enantiomer of lavandulol was obtained from racemic

lavandulol (97% purity, Fluka) by a lipase-catalysed acylation

using porcine pancreas lipase type ll [17]. Enantiomerically

enriched (R)-lavandulol was obtained (0.68 g) and chiral chroma-

tography on CycloSil-B capillary column showed an enantiomeric

excess of 98%.

The (S) enantiomer was prepared by alkaline hydrolysis of (S)-

lavandulyl acetate [18]. Enantiomerically enriched (S)-lavandulol

was obtained (5 mg) and chiral chromatography on the CycloSil-B

analytical capillary column showed an enantiomeric excess of

98%.

The (R) and (S) lavandulyl 3-methyl-3-butenoate esters were

prepared separately by esterification of the alcohol with 3-methyl-

3-butenoic acid as described for the racemic lavandulol above.

Both esters were then purified by column chromatography. The

formation of both the (R) and (S) enantiomers was shown by

analysis of the products by chiral chromatography on the CycloSil-

B column (Fig. 1B and 1C).

Field Trials
The biological activity of the male-produced compound was

tested in September 2012 in the same greenhouse (a polytunnel

50 m long65 m wide62.5 m high at the apex) near Utsunomiya,

Japan that had been used in August and October 2011 to collect

male and female T. palmi for headspace volatile analysis. The

effect of the chemical was tested by comparing the number of

thrips caught on traps with and without the synthetic aggregation

pheromone in a crop of mature eggplant (Solanum melongena
variety ‘Senryo 2’) with two rows of crop running along the length

of the greenhouse.

Rectangular blue sticky traps, 10 cm625 cm (Takitraps,

Syngenta Bioline, UK), were suspended on wire hangers so that

they were directly above the middle of the row and placed so that

the base of the trap was about 10 cm above the canopy of the

crop, which was at a height of about 1.2 m. Blue traps were used

because they are widely reported as being highly attractive to T.
palmi and thus the additional effect of the putative pheromone

over that of an already very attractive trap would be tested [19].

Pre-sampling of the crop indicated that it was infested with two

species of thrips: T. palmi and, to a lesser extent, F. intonsa. The

paper protecting the north-facing side of each trap was removed to

expose the sticky surface and a rubber septum (diam. 6.3 mm,

length 10.8 mm, pre-cleaned, International Pheromone Systems

Ltd., Deeside, UK) was stuck to the middle of the exposed side.

The test septa were loaded with 30 mg of (R)-lavandulyl 3-methyl-

3-butenoate in 30 ml hexane whereas the control septa were

loaded with 30 ml hexane only. This dose was chosen because an

equivalent dose of the aggregation pheromone of F. occidentalis
had been shown to be biologically active in the field [2,20].

Pairs of test and control traps with the order randomised within

each pair were set out along the length of the rows of eggplants. A

series of four trials with six or seven pairs of traps per trial (25 pairs

in total) was conducted over 8 days with the spacing between traps

within each pair set at either 1.6 m or 4 m and the duration of the

trial lasting either 1 day or 4 days. A similar range of trap spacings

has been used successfully when testing the aggregation phero-

mone of F. occidentalis (unpublished data). New traps were set out

and re-randomised for each of the four trials. The thrips on the

traps were identified and sexed under a stereo microscope; the two

species could be separated easily by colour, position of wing vein

cilia and antennal segment number [16]. The results of the four

trials were combined after confirming the absence of a

treatment6trial interaction. The data were log10(x+1) transformed

to homogenise the variance and analysed by analysis of variance

with trap pairs and trials considered as blocks, using Minitab

version 16 (Minitab Inc., USA).

Results

Olfactometer Bioassays
Virgin females were attracted to the odour of 50 adult males,

but not to the odour of 50 adult females (Table 1). Mixed-age

adult females were also attracted to adult males and their

preference for the odour side (67%) was similar to that of virgin

females (65%). Mixed-age males were also attracted to adult male

odours. The preference of mixed-age adult males for adult males

(68%) was similar to that of females for males (67%). The

Aggregation Pheromone of Thrips palmi
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Figure 1. GC/MS analysis on a chiral column. Confirmation of Thrips palmi aggregation pheromone as the (R) enantiomer by GC/MS analysis on
a CycloSil-B analytical column: (A) section of the TIC chromatogram from 44 to 47 min showing the two partly resolved peaks obtained from racemic
lavandulyl 3-methyl-3-butenoate; (B) the peak obtained on injection of the (R)-lavandulyl 3-methyl-3-butenoate enantiomer; (C) the peak obtained on
injection of the (S)-lavandulyl 3-methyl-3-butenoate enantiomer; (D) the peak obtained on injection of the T. palmi natural compound; (E) the
enhanced peak obtained on co-injection of the T. palmi natural compound and (R)-lavandulyl 3-methyl-3-butenoate.
doi:10.1371/journal.pone.0103315.g001
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proportion of thrips that made no choice within 3 min was low

(5% overall, with a range of 3–8% across the four experiments).

GC/MS of SPME fibres and entrained extracts
Detailed comparison of TIC chromatograms obtained by GC/

MS analysis consistently showed that there was one compound

present in SPME fibre entrainments of T. palmi adult males that

was not present in the females or larvae. Examples of chromato-

grams of extracts from males, females and larvae are shown in

Fig. 3 with the male-specific compound (peak a) present at

17.65 min. The mass spectrum of this compound resembled the

mass spectrum of the aggregation pheromone of F. occidentalis.
Other peaks which were present in males and not in females in the

example were not consistently present and are thus likely to be

contaminants. Comparison of the area of peak a with a

pentadecane standard suggested that it represents approximately

400 pg of material.

In total an estimated 2.2 mg of the male-specific T. palmi
compound was collected by entrainments of headspace volatiles on

Tenax-TA in Japan. A control entrainment in Japan of eggplant

material without thrips confirmed that the compound was not

produced by eggplants. The EI mass spectrum of the T. palmi

Figure 2. EI mass spectra of the major terpenoid component and the synthetic (R)-lavandulyl 3-methyl-3-butenoate. EI mass spectra
(70 eV) of (A) the major terpenoid component (peak a) of the headspace volatiles of male Thrips palmi and (B) the mass spectrum of synthetic (R)-
lavandulyl 3-methyl-3-butenoate. The inset shows the labelled structure of (R)-lavandulyl 3-methyl-3-butenoate.
doi:10.1371/journal.pone.0103315.g002
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compound is given in Fig. 2. It was similar to the mass spectrum of

the F. occidentalis aggregation pheromone, neryl (S)-2-methylbu-

tanoate (MW 238) [2] with characteristic ions at m/z 154 (0.4%),

136 (8%), 121 (18%), 93 (61%) and 69 (100%) suggesting a

monoterpenoid substructure. An ion at m/z 236 (0.1%) suggested

a molecular weight of 236 and ions at m/z 83 (16%) and 55 (75%)

suggested the loss of C4H7CO+ and C4H7
+ fragments respectively

derived from a monounsaturated 5-carbon acid moiety. Isobutane

CI analysis gave a strong ion at m/z 237 ([M + H]+) confirming

the molecular weight as 236. These data suggested that the

compound was a monoterpene pentenoate.

The EI mass spectrum and retention index (RI) of the T. palmi
compound were compared against those of a library of esters of

monoterpene alcohols and pentenoic acids. Examples of RIs of

three other monoterpene pentenoates are compared with the T.
palmi compound and lavandulyl 3-methyl-3-butenoate in Table 2.

The natural T. palmi compound had a retention time identical

with that of lavandulyl 3-methyl-3-butenoate on both non-polar

(HP5MS) and polar (DBWax) GC columns, and the mass spectra

were superimposable. Co-injection of the T. palmi compound with

lavandulyl 3-methyl-3-butenoate gave peak enhancement on both

columns.

Chiral Chromatography
The R and S enantiomers of lavandulyl 3-methyl-3-butenoate

gave two partially separated peaks with retention times (Rt) of

45.20 and 45.35 min respectively (Fig. 1A). (R)-lavandulyl 3-

methyl-3-butenoate gave a single peak with a Rt of 45.19 min

(Fig. 1B) with ions at m/z 154 (0.3%), 136 (8%), 121 (18%), 93

(65%), 83 (20%), 81 (10%), 69 (100%) and 55 (76%) and (S)-

lavandulyl 3-methyl-3-butenoate also gave a single peak at

45.36 min (Fig. 1C). T. palmi pheromone eluted at 45.18 min

(Fig. 1D), which suggested that the T. palmi compound was the R
enantiomer. Co-injection of the T. palmi compound with (R)-

lavandulyl 3-methyl-3-butenoate standard gave a single peak

(Fig. 1E) confirming the R configuration for the T. palmi
compound.

Field Trials
Test traps caught more T. palmi than control traps in all four

trials and the effect was statistically significant across the four trials

(F1,24 = 13.05, P,0.001). The results were also significant for

females (F1,24 = 12.22, P = 0.002) and males (F1,24 = 6.71,

P = 0.016) when analysed separately (Table 3).

There was a trend towards higher numbers of F. intonsa on test

traps than on control traps in all four trials, but this did not reach

statistical significance (F1,24 = 3.95, P = 0.059), and the results were

not significant for females (F1,24 = 3.14, P = 0.089) and males

(F1,24 = 1.97, P = 0.173) when analysed separately (Table 3). Far

fewer thrips of this species were present in the crop and on the

traps.

Discussion

This paper presents the first identification of an aggregation

pheromone in the genus Thrips. A previous study has shown that

an aggregation pheromone was present in another thysanopteran

genus Frankliniella [2]. Thus aggregation pheromones, which

have now been confirmed in two different genera, may be more

widespread in this commercially important group of insects than

was previously recognised.

The olfactometer bioassays conducted in this study gave

behavioural results that were of the same magnitude as those

previously obtained with F. occidentalis, using similar apparatus

[1]. Thus the percentage of T. palmi adult males and females that

responded positively to the olfactometer arm with the male odour

(65–68%) was similar to the percentage recorded in experiments

with F. occidentalis (66–70%).

In this study we identified the aggregation pheromone of T.
palmi as the monoterpene pentenoate ester (R)-lavandulyl 3-

methyl-3-butenoate. The compound was found only in the

headspace volatiles collected from males. Its structure was

confirmed through comparison of its mass spectrum and three

retention indices (RI) (collected on three different GC analytical

columns, two achiral and one chiral) with a library of potential

monoterpene pentenoate ester matches. Only one compound gave

a positive match and this was confirmed by demonstration of peak

enhancement. The absolute configuration was confirmed by RI

matching with authentic R and S enantiomers on a chiral

analytical GC column and by peak enhancement. The compound

was previously obtained serendipitously during the synthesis of the

sex pheromone of the vine mealybug Planococcus ficus [21].

Significant attraction, in the field, of both female and male T.
palmi to sticky traps baited with (R)-lavandulyl 3-methyl-3-

butenoate confirmed the identification of the aggregation phero-

mone. The pheromone increased trap catches on blue traps, which

are already highly visually attractive. The percentage increases

(62% females, 33% males) were similar to those found for F.
occidentalis in experiments in which aggregation pheromone was

added at the same dose rate to blue traps in pepper crops under

Table 1. Responses of adult Thrips palmi to volatiles produced by 50 adult males or females of the same species in a Y-tube
olfactometer.

Number of choices

Test insectsa Odour sourceb
Odour
side Control side

Preference for
odour side (%)c Pd

Virgin females Females 29 43 40 0.12

Virgin females Males 46 25 65 0.017

Females Males 47 23 67 0.006

Males Males 49 23 68 0.003

aAll test and source insects were adults. Virgin females were 1–3 d post-emergence. Other adults were of mixed age.
bAll odour sources consisted of 50 live adults of mixed age.
cThe percentage of individual thrips that chose the odour side out of the total that made a choice.
dExact probability based on null hypothesis of equal preference for the two sides.
doi:10.1371/journal.pone.0103315.t001
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Figure 3. GC/MS traces of SPME-collected headspace volatiles from Thrips palmi. GC/MS total ion current (TIC) traces of SPME fibre
collections of the headspace volatiles from mixed-age adult females (n = 40) (upper trace F), mixed-age adult males (n = 100) (middle trace M) and
larvae (n = 40) (lower trace L) of Thrips palmi on a HP5MS column. The major male-specific compound at Rt = 17.65 min in the middle trace is
indicated as peak a.
doi:10.1371/journal.pone.0103315.g003

Table 2. GC retention indices (RI) of natural compound and examples for comparison of synthetic monoterpene pentenoates.

RI

HP5MS DBWax

natural Thrips palmi compound 1525 1854

lavandulyl 3-methyl-3-butenoate 1525 1854

neryl 3-methyl-3-butenoate 1599 1974

geranyl 3-methyl-3-butenoate 1624 2012

chrysanthemyl 3-methyl-3-butenoate
(cis and trans)

1520 & 1530 1838 & 1844

doi:10.1371/journal.pone.0103315.t002
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plastic (54% females, 38% males) [2]. These percentage increases

in response to pheromone are low compared with those typically

obtained in some other insects, such as moths, which can fly

upwind for long distances, leading to speculation that the low

percentages in thrips could be explained by a missing pheromone

component. However, little is known about the role of thrips

aggregation pheromones and it cannot be assumed that they act as

long-range attractants in the same way as for moths. Higher

percentage increases in thrips trap catches can be obtained when

pheromones are used in conjunction with less visually attractive

traps [22].

The T. palmi aggregation pheromone is structurally similar to

the aggregation pheromone of F. occidentalis. In both cases the

compounds are monoterpene esters; in T. palmi it is a pentenoate

ester i.e. with a double bond in the fatty acid moiety and therefore

with a reduced MW of 236, and in F. occidentalis it is a

pentanoate ester (no extra double bond in the fatty acid moiety)

with a MW of 238. In both cases the monoterpene is non-cyclic.

Both molecules have chiral centres; in the T. palmi molecule the

chiral centre is present in the monoterpene moiety and in the F.
occidentalis molecule the chiral centre is present in the fatty acid

moiety. The overall similarities are surprising because although T.
palmi and F. occidentalis belong to the same sub-family Thripinae

of the family Thripidae, they belong to two major and distinct

groups: the Thrips genus-group and the Frankliniella genus-

group. These are considered to be only distantly related [23],

probably having separated and diversified about 80–120 million

years ago [24].

The source of the aggregation pheromone is unknown for T.
palmi and other species. The sternal glands [6] are a possible

source [5], but this remains to be confirmed. In experiments with

F. occidentalis, the aggregation pheromone and the recently

discovered contact pheromone, 7-methyltricosane (C24H50), were

extracted from the surface over which male F. occidentalis moved

[25]. The sternal glands, on the underside of the abdomen, would

be conveniently positioned for depositing these chemicals.

The proportion of male T. palmi caught on the pheromone

traps or control traps (50–55%) was markedly higher than the

proportion of males found on the crop when collecting manually

(5–8%). This phenomenon has been recorded before in T. palmi
[26], F. intonsa [27] and F. occidentalis [28] and has been

attributed to the greater activity of males [28].

The global trade in plants and plant products increases the risk

of expansion of the range of T. palmi and the frequency of

outbreaks within its current range. Where expansion does occur,

control and eradication has been achieved so far, but it is

recognised that successful management can be greatly facilitated

by early intervention [9,15]. European Plant Health authorities

are seeking improved methods for early detection as part of their

contingency planning and deployment of pheromone-baited traps

has been proposed as a potentially effective technique. Mass

Table 3. Catches of Thrips palmi and Frankliniella intonsa on blue sticky traps with and without the test compound.

Thrips species
No. on control
trapsa No. on test trapsa Increase (%)

P (test vs
control)

Trial 1. Thrips palmi females 24 (0.6260.05) 44 (0.8260.08) 83 -

Trial 2. Thrips palmi females 157 (1.4360.03) 251 (1.6060.08) 60 -

Trial 3. Thrips palmi females 57 (0.9760.09) 68 (1.0660.08) 19 -

Trial 4. Thrips palmi females 150 (1.3760.09) 267 (1.6460.06) 78 -

Thrips palmi females
total

388 (1.0860.07) 630 (1.2660.08) 62 **

Trial 1. Thrips palmi
males

9 (0.2860.11) 33 (0.6260.15) 367 -

Trial 2. Thrips palmi
males

253 (1.6060.08) 342 (1.7160.10) 35 -

Trial 3. Thrips palmi
males

80 (1.1260.07) 112 (1.2560.08) 40 -

Trial 4. Thrips palmi
males

126 (1.2960.10) 135 (1.2960.13) 7 -

Thrips palmi males
total

468 (1.0460.11) 622 (1.2060.10) 33 *

Thrips palmi total 856 (1.3660.09) 1252 (1.5460.09) 46 ***

Frankliniella intonsa females 96 (0.5860.07) 117 (0.6960.05) 22 ns

Frankliniella intonsa
males

15 (0.1260.05) 27 (0.1860.06) 80 ns

Frankliniella intonsa
total

111 (0.6060.07) 144 (0.7560.06) 30 ns

aTotal number of individuals caught followed, in brackets, by the mean catch per trap 6SE for the log-transformed data. Note that these standard errors include the
variance between trap pairs and also between trials for the analysis of totals. They are therefore not appropriate for comparisons between test and control means. These
extra variances are allowed for in the analysis of variance. Response of Thrips palmi and Frankliniella intonsa to blue sticky traps treated with lures loaded with 30 mg (R)-
lavandulyl 3-methyl-3-butenoate in 30 ml hexane (test) or 30 ml hexane (control). Key to results of analysis of variance across trials:
*** = P,0.001;
** = P,0.01;
* = P,0.05;
ns = not significant (P.0.05); - = statistical comparison not carried out because of small number of replicates within the trial.
doi:10.1371/journal.pone.0103315.t003
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trapping experiments have confirmed this potential; field deploy-

ment of the aggregation pheromone of F. occidentalis doubled the

catch on blue attractive traps [29], illustrating the possibility of

using the technique to achieve earlier detection of the small

populations typically present soon after the introduction of

quarantine thrips.

In addition, field use of F. occidentalis aggregation pheromone

in conjunction with the attractive traps, resulted in a combined

reduction of 73% in thrips numbers and 68% in damage to

strawberry crops, showing that in contained environments the

approach can make a cost-effective contribution to population

reduction in high-value crops, although further development work

is required to achieve a more consistent outcome in commercial

production systems [29]. The use of a thrips aggregation

pheromone as part of an IPM programme has the advantages of

removing both females and males, and may reduce both the rate of

development of insecticide resistance and insecticide residues on

crops.

Thus the enhanced trap catch of T. palmi provided by this

aggregation pheromone may be a useful component of future pest

management approaches, supporting improved quarantine detec-

tion, monitoring and control.
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