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ABSTRACT The “LD curve” relates the linkage disequilibrium (LD) between pairs of nucleotide sites to the distance that separates them
along the chromosome. The shape of this curve reflects natural selection, admixture between populations, and the history of
population size. This article derives new results about the last of these effects. When a population expands in size, the LD curve
grows steeper, and this effect is especially pronounced following a bottleneck in population size. When a population shrinks, the LD
curve rises but remains relatively flat. As LD converges toward a new equilibrium, its time path may not be monotonic. Following an
episode of growth, for example, it declines to a low value before rising toward the new equilibrium. These changes happen at different
rates for different LD statistics. They are especially slow for estimates of s2

d, which therefore allow inferences about ancient population
history. For the human population of Europe, these results suggest a history of population growth.

LINKAGE disequilibrium (LD) refers to the statistical as-
sociation between pairs of genetic loci. It is used routinely

in localizing disease genes, in detecting natural selection,
and in studying population history. In all of these contexts,
it is necessary to account for effects of changes in population
size.

These effects arise because inhabitants of small popula-
tions tend to be close relatives. The genealogical paths that
separate them are short, and this reduces the opportunity
for recombination. For this reason, LD rises after a fall in
population size and falls after a rise.

These effects are understood in a general way and are
often studied by computer simulation (Kruglyak 1999;
Pritchard and Przeworski 2001). Although this approach has
led to important insights, our understanding is still rudimen-
tary. This article uses a deterministic algorithm to explore
the effects of growth, of decline, and of temporary reduc-
tions (bottlenecks) in population size. It shows that each
type of history leaves a distinctive signature in the “LD
curve,” which relates the LD between pairs of sites to the
distance that separates them along the chromosome.

The paper uses s2
d (defined below) as a measure of LD.

This choice is unusual, because s2
d has always been of sec-

ondary importance. As we shall see, however, s2
d has dynam-

ical properties that give it deeper time depth than alternative
measures of LD. It is readily estimated from data and can be
predicted by a deterministic theory, which makes it easy to
study the response to changes in population size. This article
shows that s2

d is of more than secondary importance. It is
useful in its own right as a measure of LD.

Materials and Methods

Software

The various methods were evaluated against simulated data
generated by MACS (Chen et al. 2009). Simulation results in
Figure 1 are based on my own coalescent program, hetage,
written in C. All other analyses were done using ldpsiz, a
package of C programs available at github.com/alanrogers/
ldpsiz. This package includes several programs: eld, which
estimates s2

d and r2 from genetic data; preld, which calcu-
lates s2

d from the history of population size; and sald, which
fits history parameters to an observed LD curve, using the
method of simplex-simulated annealing (Press et al. 1992,
pp. 451–455), with modifications described by Gao and
Han (2012).

Measuring LD

Consider a pair of loci (nucleotide sites), A and B. At locus A,
alleles A1 and A0 have frequencies a and 1 2 a. At locus B,
alleles B1 and B0 have frequencies b and 1 2 b. The
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disequilibrium coefficient, D, is defined such that ab + D is
the frequency of gamete type A1B1. The sign of D is arbitrary,
depending on how one labels the alleles, so the magnitude
of LD is often measured by D2.

These measures are sensitive to heterozygosity at the two
loci, so many authors prefer the squared correlation co-
efficient (Hill and Robertson 1968),

r 2 ¼ D2

að12 aÞbð12 bÞ: (1)

Unfortunately, there is no consensus regarding the expected
value of this statistic, even in the simplest case of neutral loci in
a randomly mating population of constant size (compare Sved
2009 with Song and Song 2007 and Durrett 2008, p. 98).

Ohta and Kimura (1969, p. 233) proposed a related mea-
sure of LD, the “squared standard linkage deviation,” which
was also motivated by a desire to minimize the effect of
heterozygosity:

s2
d ¼ E

�
D2

�
E½að12 aÞbð12 bÞ�: (2)

This measure is usually viewed as an approximation to
E[r2]. It is most useful in this role when the population size
is large and constant and both loci have appreciable hetero-
zygosity (Hudson 1985). In other situations, the two param-
eters can differ greatly. But even when s2

d fails as an
approximation, it is still useful as a measure of LD.

This is not to say that s2
d provides a complete descrip-

tion of variation at a pair of loci. That is a problem with
multiple dimensions, which cannot be solved by any scalar-
valued measure of LD (Weir 1996, pp. 125–127). Such mea-
sures are simplifications and are necessarily incomplete
(Schaper et al. 2012). However, as we shall see, s2

d captures
enough to provide an interesting window into the history of
population size.

Estimation of s2
d

One can estimate s2
d from data by replacing the expected

values in Equation 2 with averages across the genome. For
this purpose, I treat each polymorphic site [single-nucleotide
polymorphism (SNP)] as “focal” and compare the focal SNP
with each other SNP within some given range. From each
comparison, I calculate D2 and a(1 2 a)b(1 2 b). These
values are tabulated separately within bins based on the
distance in centimorgans between the SNPs. After all com-
parisons have been tabulated, the estimate ðŝ2

dÞ is calculated
as the sum of D2 within a bin divided by the corresponding
sum of a(1 2 a)b(1 2 b).

In this article, I ignore pairs of SNPs separated by .0.3
cM, because there is little LD at these distances in most parts
of the human genome.

To estimate uncertainties, I use a moving-blocks boot-
strap (Lieu and Singh 1992), with 300 SNPs per block. With
diploid data, some genotypes may be unphased. In such
cases, I use the EM algorithm to estimate D2, as explained
in the Appendix.

Deterministic evolution of s2
d

Under neutral evolution with constant population size, s2
d

converges to an equilibrium value (Ohta and Kimura 1971;
McVean 2002). In addition, several authors have introduced
recurrence equations, which make it possible to study the
transient behavior of s2

d after changes in population size
(Weir and Cockerham 1974; Hill 1975; Strobeck and
Morgan 1978). The model of Strobeck and Morgan (1978)
allows faster calculations but is less numerically stable than
that of Hill (1975). I present some results using the former
model but focus primarily on the latter. In the Appendix, I
summarize Hill’s model and show that it holds not only un-
der the mutational model that he studied, but also under the
model of infinite sites (Kimura 1969). It is thus appropriate
for use with DNA sequence data.

For bootstrap confidence intervals, I accelerate these
calculations by using Equation A2 of the Appendix to approx-
imate a system of ordinary differential equations, which is
then solved using standard software.

Sampling bias

Drawing a sample is equivalent to one generation of evo-
lution with a very small population—one whose size equals
that of the sample. Because drift introduces LD, there is much
more LD in a sample than in the population from which it was
drawn.

Hudson (1985, Equation 6) showed that sampling bias
in r2 equals 1/n, when the sample consists of n gametes.
Sampling bias also inflates the value of ŝ2

d: The program
preld includes this bias in calculations of the expected value,
s2
d: These calculations use the model of Hill (1975) or Strobeck

and Morgan (1978) to project the state vector forward one
generation, with the population size set equal to the sam-
ple size.

Figure 1 The depth, T, of gene genealogy given heterozygosity, H. The
left and right panels show the mean and the 95th percentile in units of
2N generations. Solid line shows expected values, based on the model of
Griffiths and Tavaré (1998, equation 1.5, p. 276). Open circles show
results from coalescent simulations. These results assume a sample of
30 diploid individuals and a mutation rate of 0.02 per 2N generations.
The slope is greater in the right panel than in the left, indicating that
heterozygosity has a stronger effect on the upper tail of the distribution
than on the mean.
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Fitting population history to an observed LD curve

The program eld (a part of ldpsiz) estimates the LD curve
from genetic data. A second program, sald, can then be used
to search for the population history parameters that mini-
mize the sum of squared differences between observed and
predicted LD curves. This minimization problem searches
a complex surface, with many local minima. To search for the
global minimum, sald uses the method of simplex-simulated
annealing. For each data set, sald starts 10 simulated an-
nealing jobs on parallel threads. Typically, several of these
converge to the same global minimum. sald returns the best
of the 10 solutions as fitted parameters.

Results

ŝ2
d is average r2, weighted by heterozygosities

Equation 2 is equivalent to

s2
d ¼ E

�
HAHBr2

�
E½HAHB� ; (3)

where HA = 2a(1 2 a) is the expected heterozygosity at
locus A and HB is that at locus B. This implies that s2

d is
the expectation of r2 weighted by the product of the two
heterozygosities.

This weighting also carries over to the estimate, ŝ2
d; which

is obtained by replacing expectations with averages. Such
estimates will be insensitive to loci with low heterozygosity
and, for this reason, also insensitive to sequencing error. They
should be useful with low-coverage sequence data.

Loci with high heterozygosity have deep gene trees

Weighting by heterozygosity exaggerates the influence of
unusually deep gene trees. At some given nucleotide position,
let T represent the age of the last common ancestor of the
sample. I call this the “depth” of the gene tree for that
nucleotide position. Griffiths and Tavaré (1998, Equation
1.5, p. 276) derive the conditionally expected depth, E[T | x,
n], given that x copies of the derived allele were observed in
a sample of haploid size n. Given the heterozygosity, we can
solve for x, but we cannot tell the derived from the ancestral
allele. It may be present in x copies or in n2 x. At mutation–
drift equilibrium, however, these alternatives have probabil-
ities proportional to 1/x and 1/(n 2 x) (Fu 1995, equation
1). Using these values as weights, I average E[T | x, n] and
E[T | n 2 x, n] to calculate expected tree depth given het-
erozygosity. The results are shown as a solid line in Figure 1.
As Figure 1 shows, tree depth increases with heterozygos-
ity. Simulated values—shown as open circles—agree closely
with the theory.

Simulated values also allow us to examine the upper tail of
the distribution, as seen in Figure 1, right. The 95th percentile
of tree depth increases with heterozygosity even more steeply
than does the mean. Thus, heterozygosity has an exaggerated
effect on the upper tail of the distribution.

Geneticists often study loci selected for their high hetero-
zygosity (Lewontin 1967; Rogers and Jorde 1996; Clark et al.
2005). A sample of loci selected in this fashion will have gene
trees that are unusually deep, especially in the upper tail of
the distribution.

Because s2
d is weighted by heterozygosity, it exaggerates

the influence of these deep gene trees. For this reason, it
should be sensitive to earlier portions of a population’s his-
tory. Following a change in population size, it should con-
verge more slowly to the new equilibrium.

Effect of population growth

LD will decline following an expansion of population size,
because genetic drift is weaker in large populations and
produces less LD. This process is illustrated in Figure 2, which
shows the effect of an expansion from size 2N = 103 to 2N =
105. The LD curve of the initial population (labeled t = 0)
represents an equilibrium between mutation, drift, and re-
combination. After the expansion, the LD curve will eventu-
ally converge to a new equilibrium, which is labeled t = N.
This new equilibrium, however, is reached only gradually.

LD is measured by s2
d in Figure 2, left, and by r2 in Figure

2, right. The dashed lines were calculated using the method
of Hill (1975), and the open circles were estimated from
data simulated using MACS (Chen et al. 2009). Note that
s2
d is still far from equilibrium at generation 500 and does

not approach equilibrium until about generation 1500.
The situation is very different in Figure 2, right, where LD

is measured by r2. By generation 500, r2 is close to equilib-
rium. At the left edge of the graph, it is slightly below the

Figure 2 Effect of population expansion on the LD curve. The population
grew suddenly at time t = 0 from 2N = 103 to 105. Left panel: LD is
measured by s2

d: Solid lines show the predicted values at the initial equi-
librium (t = 0) and at the eventual equilibrium (t = N). Dashed lines show
a series of transient states that occur at various values of t, the number of
generations since the expansion. These lines are all calculated using the
method of Hill (1975). Open circles show values simulated using MACS
for t = 500. Right panel: LD is measured by r2, and points and lines are
based on computer simulation. Calculations assume that u = 1.483 1028

per site per generation, and the haploid sample size is 100.
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equilibrium. We return to this point later, but for the mo-
ment, note simply that r2 converges much faster than s2

d: For
this reason, the two measures are useful for studying differ-
ent timescales. We learn from r2 about the recent past and
from s2

d about more ancient events. Presumably, this differ-
ence arises because s2

d is weighted toward loci with high
heterozygosity. As shown in Figure 1, this weighting makes
it more sensitive to the distant past.

Returning to Figure 2, left, note that the right portion of
the curve converges faster than the left. This is because the
postexpansion population is large, and genetic drift is weak.
The dynamics are therefore dominated by recombination,
which is stronger on the right side of the graph. The result
is that midway through the process—say at generation 500—
the LD curve declines very steeply. Thus, a steeply declin-
ing LD curve is the signature of recent population growth
(Kruglyak 1999; Pritchard and Przeworski 2001).

The method of Hayes et al. (2003)

Figure 2 suggests that s2
d is likely to be of greater use than r2

in inferring the ancient history of population size. Yet the
latter statistic is often used instead (Hayes et al. 2003; McEvoy
et al. 2011; Tenesa et al. 2007), using a method that is based
on the formula E[r2] � r, where

r ¼ 1
1þ 4Nc

: (4)

Here, N is diploid population size, and c is the recombination
rate (Sved 1971; Sved and Feldman 1973). Although this
formula has been criticized (Littler 1973, p. 272; McVean
2002, pp. 987–988; McVean 2007, p. 923; Durrett 2008,
p. 98), it is widely used.

Hayes et al. (2003) study a generalization of r2 and argue
from simulations that the expectation of this statistic is �r.
Furthermore, this approximation even works for populations
that have increased in size at a constant linear rate, provided
that one interprets N as the population size that obtained 1/
2c generations in the past. By inverting Equation 4, they are
able to estimate N over a wide range of values of c, which
correspond under their model to different points in the past.

Tenesa et al. (2007) work directly with r2, but estimate
the history of population size in the same way. They also
employ a modified predictor,

~r ¼ 1
2þ 4Nc

; (5)

which in their view accounts better for the effect of mutation.
This method is also used by McEvoy et al. (2011). There are
two difficulties with this formula. First, Tenesa et al. (2007,
p. 521) derive it from a formula of Hill (1975, p. 124), which
refers not to E[r2] but to s2

d: Thus, it approximates E[r2] only
to the extent that s2

d does. In addition, it uses a fairly crude
standard of approximation, taking 10 as �11.

The arguments justifying both of these methods assume
that population size has increased linearly. Of course, no

population can increase linearly forever, so the period of
linear increase must end at some point in the past. Further-
more, the method’s results are often interpreted in terms of
nonlinear growth trajectories, such as bottlenecks (Hayes
et al. 2003, pp. 639–670; Tenesa et al. 2007, p. 525; McEvoy
et al. 2011, p. 822). Let us consider how the method behaves
in this broader context.

Figure 3 considers a population that expands suddenly in
size and is observed 500 generations later. In both panels of
Figure 3, the solid lines show predicted LD. In Figure 3, left, LD
is measured by ŝ2

d and predicted by s2
d (Hill 1975). In Figure 3,

right, it is measured by r2 and predicted by r and ~r: The open
circles show values simulated using MACS (Chen et al. 2009).
In the context of this population history, s2

d provides excellent
predictions of ŝ2

d; but neither r nor ~r predicts r2.
Presumably, this reflects the nonlinearity of the growth

trajectory assumed in Figure 3. We expect better accuracy in
Figure 4, which evaluates r and ~r against a history involving
300 generations of linear population growth, approximated as
a series of 20 steps. The period of linear growth corresponds to
the region to the right of the dashed line in Figure 4, right. At
least in this region, predicted and simulated values should
match. Yet as before, s2

d predicts well, but r and ~r do not.
Finally, Figure 5 evaluates r, ~r; and s2

d against a history of
constant population size. In this case, we get an accurate
prediction of ŝ2

d from s2
d and a fairly accurate prediction from

~r: This makes sense, because (as mentioned above) ~r is an
approximation to the equilibrium formula for s2

d: On the
other hand, neither r nor ~r provides a useful prediction of r2.

In these analyses, the observed and predicted values of r2

are distressingly far apart. Perhaps this discrepancy reflects
an error in the simulation software (MACS) or in my own

Figure 3 Predicted and simulated LD. Each panel shows the same pop-
ulation 500 generations after expansion from 2N = 103 to 105. Lines
show values predicted by s2

d [left panel (Hill 1975)] and by r (right panel,
solid line) and ~r (right panel, dashed line). Open circles show results
estimated from simulations. Calculations assume that u = 1.48 3 1028

per site per generation, and the haploid sample size is 100. Simulations
involve 109 bp DNA.
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code for estimating r2 from simulated data. To find out, I
used this software to replicate the published results of Hudson
(1985). The results, shown in Figure 6, are reassuring. Given
the same parameter values, the code used here produces
results indistinguishable from those of Hudson.

It seems fair, therefore, to conclude that the problem lies
in the predictors, r and ~r; neither of which is useful in the
cases studied here. It seems unlikely that they will be useful
as a basis for inference in real populations.

Effect of population collapse

A collapse in population size produces an effect on the LD
curve very different from that of population growth. This is
shown in Figure 7, which illustrates two important points.
First, the whole process is over very quickly. Even with s2

d;

we cannot look very far into the past. Second, the transient
curves (the dashed lines) are quite flat. As time passes, the
initial curve (labeled t = 0) is elevated without much
change in shape. Presumably, this is because the effect of
drift is dominant in a small population, so differences in
recombination rate do not matter much. The result is that
the LD curve becomes high but flat after a collapse in pop-
ulation size.

This pattern is superficially similar to that generated by
gene conversion, which reduces LD between closely linked
sites (Ardlie et al. 2001). It seems unlikely, however, that
these effects will be confused. The effect of gene conversion
is probably minor for sites separated by .1 kb (Frisse et al.
2001, p. 838; Chen et al. 2007, p. 764), whereas that of
a population collapse extends much farther.

Effect of a bottleneck

Figure 8 shows the effect of a 100-generation bottleneck in
population size. Population size was 2N = 103 during the
bottleneck but 105 before and after. The bottleneck ended at
time 0, and we observe it in various subsequent generations.
In the graph, the curve labeled t = 0 is at the end of the
bottleneck and exhibits an LD curve that is high but flat, for
reasons just discussed. As time passes, the right portion of

the curve (the portion with high rates of recombination)
falls much faster than the left, so that by generation 1000,
the curve is almost L shaped. This is the signature of a bot-
tleneck in population size.

Note the dramatic difference between Figure 2 and Figure
8—between expansion from equilibrium and from a bottle-
neck. Both curves are declining toward the same equilibrium,
but the left portion of the curve declines much more slowly
after a bottleneck than after expansion from equilibrium. This
can only reflect the state of the population just before the
increase in size. The initial population of Figure 2 had been
small much longer than that of Figure 8. Consequently, it had
less heterozygosity. As we see in the next section, this accel-
erates the rate of decline in LD between closely linked sites.

It is sometimes suggested that bottlenecks inflate long-
range LD, just the opposite of the pattern seen above
(Slatkin 2008, pp. 481–482; Tenaillon et al. 2008). This
discrepancy, however, evaporates on close inspection. When

Figure 4 Linkage disequilibrium (ŝ2
d or r2) after an ep-

isode of linear growth. The population begins at
mutation-drift equilibrium with 2N = 103 and then
grows linearly to 2N = 106 over a period of 300
generations. Linear growth is approximated by 20
epochs of 15 generations, within each of which 2N
is constant. In the right panel, the region to the right
of the vertical line corresponds to the period of linear
growth, according to the model of Hayes et al.
(2003). All calculations assume that u = 1.48 3
1028 and c = 1028 per nucleotide. Simulations in-
volve 109 bp of DNA, which are sequenced in a sam-
ple of 100 homologous chromosomes.

Figure 5 LD curve under constant population size. Simulated values of r2

and ŝ2
d were generated using MACS (Chen et al. 2009). s2

d was calcu-
lated using the method of Hill (1975), r was calculated from Equation 4,
and ~r from Equation 5. All calculations assume that 2N = 1000, u = 1.483
1028, and c = 1028 per nucleotide. Simulations involve 109 bp of DNA,
which are sequenced in a sample of 100 homologous chromosomes.
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Tenaillon et al. (2008, figure 6) discuss “long-range” LD, they
are referring to pairs of nucleotide sites separated by �0.01
cM. In my own analysis, such pairs would be called “tightly
linked” and would fall at the left edge of the LD curve. In this
region of Figure 8, LD is indeed elevated, in agreement with
Tenaillon et al. (2008). In another study, Thornton and
Andolfatto (2006, p. 1611) report elevated LD following
a bottleneck. But as they do not discuss the shape of the
curve, there is no conflict between their results and mine.

The time paths of individual points on the LD curve

Figure 9 shows the time path of s2
d after an expansion in

population size. Because the new population is larger, the
new equilibrium will have less LD. But s2

d does not decline
monotonically toward this new equilibrium. Instead, it falls
rapidly to a smaller value before climbing back slowly to-
ward to the new equilibrium.

The initial decline in s2
d does not result from any decline

in its numerator, E[D2]. Indeed, Figure 10 shows that the
numerator actually grows. The decline in s2

d happens be-
cause growth in its numerator is outstripped by that in its
denominator, E[a(1 2 a)b(1 2 b)], which increases under
the influence of mutation. The proportional increase is large,
because our initial population was small and therefore had
little heterozygosity. For this reason, the denominator was
initially so small that increments caused by mutation had
a large proportional effect.

Two factors account for the postexpansion growth in the
numerator, E[D2], of s2

d: First, D is proportional to hetero-
zygosity (Kaplan and Weir 1992, p. 334), which increases in
response to mutation. Ordinarily, the positive effect on D2

would be offset by the negative effect of recombination. But
in the early generations following our expansion, this nega-
tive effect is very weak. This is because the initial population
had low heterozygosity. Few recombinant gametes are pro-
duced in such a population, because such gametes are pro-
duced only by double heterozygotes.

The nonmonotone time path in Figure 9 refers to s2
d; but

it seems plausible that r2 might obey similar dynamics. This
may explain why, in Figure 2, right, the left end of the curve
for t = 500 is below the equilibrium.

This also explains why the left portion of the LD curve
declines faster after expansion from equilibrium than after

a bottleneck. The left portion of the curve refers to tightly
linked sites, with weak recombination. In the postexpansion
population, genetic drift is also weak because the population
is large. Because recombination and drift are both weak,
mutation dominates the dynamics. The proportional effect
of mutation is large when heterozygosity is low. In the case
of expansion from equilibrium, the population has been
small a long time, so heterozygosity is low, the proportional
effect of mutation is large, and s2

d declines rapidly. Hetero-
zygosity is not so low at the end of a bottleneck, because the
population has been small only briefly. Consequently, the
proportional effect of mutation is smaller, and s2

d declines
more slowly.

LD in the human population of Europe

The methods discussed above generate predictions about LD
from assumptions about the history of population size. It is
also possible, by fitting predicted to observed curves, to
work in the other direction—from data to inferences about

Figure 6 Replication of results of Hudson (1985, table
2). The left panel compares methods for calculating
s2
d; the right panel compares methods for calculating

r2. The programs MACS, eld, and preld are described
in Materials and Methods. Parameter values: u = 0.1,
2N = 50,000, n = 50. MACS simulated chromosomes
2 Mb in length. Following Hudson, I correct ŝ2

d but not
r2 for sampling bias.

Figure 7 Effect of population collapse on the LD curve. At time t = 0, this
population collapsed in size from 2N = 105 to 103. Calculations use the
method of Hill (1975), with u = 1.48 3 1028. No correction for sampling
bias was needed, as these calculations are not compared with simula-
tions.
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population history. This is a problem in statistical inference,
and methods for this purpose will be described elsewhere.

The present methods, however, are useful in exploratory
data analysis, as shown in Figure 11. The open circles show
ŝ2
d; as estimated from chromosome 1 in European data

(1000 Genomes Project Consortium 2012). These are sur-
rounded by dashed lines, which indicate a 95% confidence
region generated by moving-blocks bootstrap. These show
that chromosome 1 provides accurate estimates of s2

d: Hill
(1981) expressed skepticism about the possibility of estimat-
ing population size from data on LD. At that time only lim-
ited data were available, and it was not possible to estimate
LD statistics with great accuracy. This inaccuracy bled into
estimates of population size. The narrow confidence region
in Figure 11 shows that things have changed.

The solid line in Figure 11 shows the equilibrium curve that
fits these data best—the one that minimizes squared errors
between observed and predicted values of ŝ2

d: This is the curve
for a population of constant size, 2N = 8621. In Figure 11,
right, we see the differences between observed and fitted val-
ues. Because these differences are positive on the left but neg-
ative on the right, it is clear that the observed LD curve declines
more steeply than any equilibrium curve. As we have seen, this
suggests a history of population expansion in Europe, in agree-
ment with many other analyses of European data.

Discussion

s2
d has never been valued for its own sake. It is seen instead

as an approximation to the quantity of real interest—the
expected value of r2. Yet it is often a poor approximation,
even in populations of constant size (Maruyama 1982; Hudson
1985, pp. 616–617). It is even worse when population size
varies.

Following a change in population size, the mean of r2

converges toward its new equilibrium far faster than does
s2
d: Presumably, this is because s2

d is sensitive to loci with

high heterozygosity, and the gene trees of such loci are deep.
Whatever the cause, this difference in rates of convergence
has two effects. First, it makes s2

d useless as an approxima-
tion to r2 in populations that have varied in size. On the
other hand, it also means that s2

d itself provides a deep re-
cord of demographic history.

To take advantage of this extended record, one must
estimate s2

d directly from data. This is easy to do, by using
averages in place of the expectations in Equation 2. With
genome-scale data, such estimates are quite accurate. This
provides a measure of LD that is unique in that one can
easily calculate expected LD from the history of population
size. With other measures, such inferences would require
extensive computer simulations.

Following a population expansion, drift is weak and the
dynamics of LD are dominated by recombination. The LD
curve begins to decline, and this decline is fastest in the right-
hand portion of the curve, where recombination rates are
highest. Consequently, the curve will be unusually steep for
hundreds of generations following a population expansion.

Following a population collapse, drift becomes strong
and dominates the dynamics. It pushes LD upward rapidly

Figure 8 Effect of a 100-generation bottleneck in population size. The
curves show s2

d at various points after recovery from a 100-generation
bottleneck, during which the population had size 2N = 103. Before and
after the bottleneck, its size was 105. Other details are as in Figure 7.

Figure 9 The time path of s2
d after a population expansion. The initial

population was small (2N = 103) and at mutation–drift equilibrium. At
time 0 it expands suddenly to a much larger size (2N = 105). Each curve
shows the time path of s2

d for a different rate of recombination, mea-
sured in centimorgans. There is a curve for tight linkage (•, 0.02 cM), one
for somewhat weaker linkage (⋆, 0.3 cM), and one for linkage that it
weaker still (�, 1 cM). Dotted lines connect the final value of each curve to
its ultimate equilibrium, which would be reached if the population stayed
large forever.
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and relatively uniformly throughout the curve. Thus, the LD
curve becomes high and flat. This pattern has been reported
for several human populations, including high-latitude
foragers (Kaessmann et al. 2002) and Ashkenazi Jews (Shifman
and Darvasi 2001). Yet as Pritchard and Przeworski (2001,
p. 7) observe, it has been difficult to explain:

We have several examples in which large regions exhibit
more LD than would be expected under either a model of
constant population size or a model with rapid population
growth. Yet, at the same time studies of polymorphism at
a small scale reveal less LD than would be expected. These
observations at different scales are hard to accommodate
in a single explanation since factors that increase long-
distance LD will tend to have an even larger effect on
closely linked sites.

As we have seen, this pattern arises naturally from a recent
reduction in population size.

A bottleneck in population size begins with an episode of
population collapse. At the end of the bottleneck, the LD curve
is therefore high but flat. As population size rises at the end of
the bottleneck, genetic drift becomes weak and recombination
grows in importance. The right portion of the LD curve falls
faster than the left, so the curve becomes steeper.

In the left portion of the curve, recombination is weak.
Genetic drift is also weak, because of the increase in pop-
ulation size. This allows mutation to play an important role,
and its effect distinguishes the two forms of expansion: from
equilibrium and from a bottleneck. In the former case, the
preexpansion population had little heterozygosity, so each
mutational increment has a large proportional effect on the
denominator of s2

d: After a bottleneck, the opposite is true, so
the left portion of the LD curve declines more slowly. The
curve becomes even steeper after a bottleneck than after an
expansion from equilibrium.

In summary, (1) when recombination is strong relative
to drift, LD declines and the curve becomes steeper; (2)
when drift is strong relative to recombination, LD rises but
the curve stays flat; and (3) where drift and recombination
are both weak, the rate of decline in LD decreases with
heterogyzosity.

In the human population of Europe, the LD curve is steep,
suggesting a history of population expansion. This might
reflect the spread of modern humans into Europe, the spread
of farmers during the Neolithic, or the spread of Indo-
European speakers.
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Appendix

Hill’s model of LD evolution

Hill (1975) incorporates mutation, using the model of infinite alleles. However, most modern work involves either DNA
sequence data or SNPs. In these data, alleles are nucleotide states: A, T, G, or C. Nearly all loci have just two alleles, so it
is not appropriate to assume an infinity of alleles. Yet as we shall see, Hill’s (1975) results also apply to a more
appropriate mutational model—that of “infinite sites” (Kimura 1969), which assumes that mutation never strikes the
same site twice.

Hill begins with a vector of moments:

yhi;jk ¼

0
BB@

E
�
ahaibjbk

�
E
�
ahbjDik þ ahbkDij
þ   aibjDhk þ aibkDhj

�
E
�
DhjDik þ DhkDij

�
1
CCA:

Here ai and bj are the frequencies of allele Ai at locus A and allele Bj at locus B. The disequilibrium coefficients, Dij, are
defined such that aibj + Dij is the frequency of gamete type AiBj. The dynamics of these moments are approximately linear,
after dropping terms in u2, 1/N2, and u/N, where u is the mutation rate and N the diploid population size. Thus, Hill (1975,
equation 1) shows that

yhi;jkðt þ 1Þ � DRMyhi;jkðtÞ;

where D, R, and M are matrices describing the linear effects of drift, recombination, and mutation. So far, the model
describes only the changes in frequency of existing alleles. Thus it applies not only to Hill’s model of infinite alleles, but
also to the model of infinite sites.

To incorporate mutation, Hill defines a new vector,

x ¼
X
h6¼i

X
j6¼k

yhi;jk; (A1)

where the sums run across all pairs of alleles at each locus. The dynamics of this new vector include an additive contribution,
Dxmut, which represents the effect of mutation to new alleles:

xðt þ 1Þ � DRMxðtÞ þ DxmutðtÞ: (A2)

This equation can be iterated across many generations, and it is easy to incorporate changes in population size. At the end of
this process, s2

d is calculated as x3/2x1 (Hill 1975, p. 124).
The first term on the right side of Equation A1 applies equally to both mutational models. Some reinterpretation is

required, however, to relate the second term to the model of infinite sites. In this new context, Dxmut becomes the contri-
bution of mutations at other sites in the genome, rather than that from new alleles at the same pair of sites. The mutational
increments are, however, identical in the two models.

To see that this is so, let us take a close look at the mutational contributions to x, the vector defined above in Equation A1.
Under the model of infinite sites, mutation never strikes the same site twice, so each polymorphic site has exactly two alleles.
In this biallelic context, we can simplify Hill’s vector of moments as

h ¼
0
@ E½að12 aÞbð12 bÞ�

E½ð12 2aÞð122bÞD�
E
�
D2�

1
A: (A3)

Here, a and b are the frequencies of alleles A1 and B1, and D is the coefficient of linkage disequilibrium. It is defined such that
ab + D is the frequency of gamete type A1B1. When each locus is biallelic, Hill’s multiallelic moments reduce to x1 = 4h1,
x2 = 4h2, and x3 = 8h3 (Hill 1975, p. 123).

The mutational increments, Dxmut and Dhmut, both depend on the heterozygosity, H = E[2a(1 2 a)]. The dynamics of
heterozygosity under infinite sites are the same as those under infinite alleles (Hill 1975, p. 120):

Htþ1 � 2uþ
�
12

1
2N

2 2u
�
Ht:
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The hi are nonzero only if both loci are polymorphic. On the other hand, our model assumes that mutation affects only
monomorphic sites. This implies that mutational increments to h occur only at pairs of sites in which one site is polymorphic
and the other monomorphic. Table A1 summarizes the case in which A is initially polymorphic, and a mutation strikes an
initially monomorphic locus, B.

Consider first the increment to h1 = E[a(1 2 a)b(1 2 b)]. Before mutation, h1 = 0 because b = 0. After mutation, b =
1/2N, so h1 becomes E[a(1 2 a)(1/2N 2 1/4N2)] � H/4N. This accounts for only half the effect of mutation, because there
are also pairs at which A is monomorphic and B polymorphic. The expected effect of a single mutation is thus �H/2N.
The expected number of such mutations per generation is 2Nu. In aggregate, therefore, the increment from mutation is
Dmuth1 � uH.

To derive the mutational increment to h2 = E[(12 2a)(12 2b)D], we assume as before that A is polymorphic but B is not.
Because D is zero when either site is monomorphic, h2 = 0 before mutation. After mutation, there are two cases to consider.
With probability a, the mutation falls on an A1-bearing gamete, and h2 becomes (12 2a)(12 2/2N)(12 a)/2N, as shown in
Table A1. On the other hand, with probability 1 2 a the mutation falls on an A0-bearing gamete, and h2 becomes 2(1 2 2a)
(1 2 2/2N)a/2N. In expectation, the new value of h2 is 0. This result is conditional on a mutation at locus B, but an identical
argument applies for mutation at locus A. Thus, Dmuth2 = 0.

The third moment is h3 = E[D2]. Because B is initially monomorphic, D2 = 0 before the mutation. When a mutation occurs
at B, it strikes an A1-bearing gamete with probability a and an A0-bearing gamete with probability 12 a. The resulting values
of D are shown in Table A1. Squaring these and weighting by a and 1 2 a gives

E

"
a

(
ð12aÞ2
4N2

)
þ ð12 aÞ

�
a2

4N2

��
¼ H

8N2:

This is the effect on D2 of a single mutation at B. There are 2Nu such mutations per generation, so the expected increment
from mutation at locus B is 2Nu 3 H/8N2 = uH/4N. Finally, multiply by 2 to account for cases in which A is initially
monomorphic and B polymorphic. This gives Dmuth3 = uH/2N � 0, ignoring terms of order u/N.

In summary,

Dmuth � ½uH; 0; 0�; (A4)

in agreement with Hill (1975, p. 121). This shows that the mutational increment is the same under the models of infinite
sites and infinite alleles. Because of this equivalence, Hill’s results apply equally to both models of mutation.

Estimating Linkage Disequilibrium with Partially Phased Diploid Data

In 1000-genotypes data, not all genotypes are phased. At different loci, the unphased genotypes may correspond to different
individuals. Thus, we need a method that can deal with unphased genotypes scattered throughout the data matrix.

The symbols j, k, l, and m represent alleles and will always equal either 0 or 1. I write phased two-locus genotypes in form
jk
lm ; which says that a diploid individual has genotype jk at locus A and genotype lm at locus B. This represents the union of

gametes
j
l
and

k
m
: This genotype is unordered, in that we cannot distinguish the maternal gamete from the paternal one.

Consequently, there is no distinction between
jk
lm and

kj
ml : When I write genotypes in this form, I imply that linkage phase is

known. In other words, genotypes
jk
lm and

jk
ml are not equivalent.

Consider a tiny two-locus data set, consisting of three diploid individuals:

Table A1 Effect of a single mutation at B, assuming that A is initially polymorphic

Gamete frequencies

Case A1B1 A1B0 A0B1 A0B0 D

General w x y z wz 2 xy
Before mutation 0 a 0 1 2 a 0
A1-linked mutation 1/2N a 2 1/2N 0 1 2 a (1 2 a)/2N
A0-linked mutation 0 a 1/2N 1 2 a 2 1/2N 2 a/2N
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G1;G1;G3 ¼ j1k1
l1m1

;
j2k2
l2m2

;
j3k3
l3m3

:

On the right, each row corresponds to a locus and each column to a gamete. To estimate linkage disequilibrium (D), we
would need to calculate S ¼ P6

i¼1xiyi; where xi is the ith value in the upper row and yi is the corresponding value in the
lower one. This sum can be written as

S ¼ s1 þ s2 þ s3 ¼ ð j1l1 þ k1m1Þ þ ð j2l2 þ k2m2Þ þ ð j3l3 þ k3m3Þ:

Here, si = jili + kimi is the contribution of the ith diploid genotype. This calculation requires phased data, and it is the only
step where such data are required in estimating D. To cope with unphased data, we need a method to estimate si.

Consider the function s
�

jk
lm

�
¼ jlþ km: If at least one genotype is homozygous, then phasing does not matter. For

example, s
�
jk
ll

�
¼ s

�
kj
ll :

�
We can calculate s regardless of phasing. The only genotypes that need concern us are those

in which both loci are heterozygous.
As mentioned above, all genic values (j, k, l, andm) are either 0 or 1. Double heterozygotes will look like either

01
01

or
01
10

:

(I ignore the equivalent representations
10
10

and
10
01

; because genotypes are unordered.) With unphased data, we cannot

distinguish between these two cases. Yet they imply different values: s
�
01
01

�
¼ 1 but s

�
01
10

�
¼ 0: For double heterozygotes,

I replace s with its expected value, which equals the probability, w, that the genotype is of form
01
01

rather than
01
10

:

To calculate this probability, I begin with standard results for the frequencies of the four gamete types, as shown in Table A2.
Following Rogers and Huff (2009), I ignore recombination in the most recent generation. Under random mating, these gametes

form at random to produce two-locus genotypes. The frequency of genotype
01
01

among double heterozygotes is thus

w ¼ 2p0p3
2 p0p3 þ 2 p1p2

¼ Dþ Z
Dþ 2Z

;

(A5)

where

Z ¼ a2bDþ D2;
a ¼ að12 aÞbð12 bÞ;

and

b ¼ aþ b2 2ab:

These results can be used to estimate D using the EM algorithm (Dempster et al. 1977). Let K represent the number of

unphased double heterozygotes. Each of these is of type
01
01

with probability w and of type
01
10

with probability 1 2 w. The

expected log likelihood is

E ln L ¼
X3
i¼0

ni ln pi þ K½wðln p0 þ ln p3Þ þ ð12wÞðln p1 þ ln p2Þ�
¼ ðn0 þ KwÞln p0 þ ðn1 þ Kð12wÞÞln p1 þ ðn2 þ Kð12wÞÞln p2 þ ðn3 þ KwÞln p3:

Note that E ln L depends on p0, p1, p2, and p3, which are themselves functions of D. The maximum-likelihood estimate of D is
the value that maximizes E ln L.

This is a unidimensional maximization problem, because D is the only unknown. D cannot fall outside the range ½D;D�;
where D is the maximum of 2a(1 2 b) and 2b(12 a), and D is the minimum of a(12 b) and b(12 a) (Lewontin 1964, p. 55).
The initial value of D is set assuming that w = 1/2. In each iteration, if d2E ln L/dD2 , 0, then the algorithm tries a Newton step
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(Hamming 1973, p. 68). If the result is within ½D;D�; then the Newton step is accepted. Otherwise, the algorithm uses a modified
version of the bisect algorithm (Hamming 1973, p. 62) to move in the uphill direction, as indicated by the sign of dE ln L/dD.

The modification to bisect allows the algorithm to make large steps when it seems likely that the optimum is at
a boundary. For example, if dE ln L/dD . 0 at the current value of D, then motion is to the right, toward D: Before deciding
how far to move, the algorithm checks the sign of the derivative at D: If both derivatives are positive, then the algorithm
takes a big step, moving 80% of the distance from D to D: But if the two derivatives have opposite sign, then the algorithm
takes a small step, moving only 50% of the way to D: When dE ln L/dD , 0, the algorithm is similar, except that motion is to
the left, toward D :

Table A2 Gamete types and frequencies

Gamete Sample count Population frequency

0
0

n0 p0 = (1 2 a)(1 2 b) + D

0
1

n1 p1 = (1 2 a)b 2 D

1
0

n2 p2 = a(1 2 b) 2 D

1
1

n3 P3 = ab + D

ni is the number of copies of gamete i in the sample, excluding unphased double heterozygotes. pi is the frequency of that gamete type within the
population. a is the frequency of allele 1 at locus A, b is the frequency of allele 1 at locus B, and D is the conventional coefficient of linkage
disequilibrium.
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