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ABSTRACT Maize (Zea mays L.) serves as model plant for heterosis research and is the crop where hybrid breeding was pioneered. We
analyzed genomic and phenotypic data of 1254 hybrids of a typical maize hybrid breeding program based on the important Dent 3
Flint heterotic pattern. Our main objectives were to investigate genome properties of the parental lines (e.g., allele frequencies, linkage
disequilibrium, and phases) and examine the prospects of genomic prediction of hybrid performance. We found high consistency of
linkage phases and large differences in allele frequencies between the Dent and Flint heterotic groups in pericentromeric regions.
These results can be explained by the Hill–Robertson effect and support the hypothesis of differential fixation of alleles due to pseudo-
overdominance in these regions. In pericentromeric regions we also found indications for consistent marker–QTL linkage between
heterotic groups. With prediction methods GBLUP and BayesB, the cross-validation prediction accuracy ranged from 0.75 to 0.92 for
grain yield and from 0.59 to 0.95 for grain moisture. The prediction accuracy of untested hybrids was highest, if both parents were
parents of other hybrids in the training set, and lowest, if none of them were involved in any training set hybrid. Optimizing the
composition of the training set in terms of number of lines and hybrids per line could further increase prediction accuracy. We conclude
that genomic prediction facilitates a paradigm shift in hybrid breeding by focusing on the performance of experimental hybrids rather
than the performance of parental lines in testcrosses.

HYBRID breeding was pioneered in maize (Shull 1908)
and plays an ever increasing role in other globally im-

portant field (Duvick 1999) and vegetable crops (Silva Dias
2010). Maize has also served as a model species for research
in heterosis, the phenomenon behind the success of hybrid
varieties, for which the genetic mechanisms have been elusive
(Duvick 1999; Lippman and Zamir 2006). In recent years,
evidence emerged for the importance of (pseudo-)overdomi-
nance in the manifestation of heterosis in maize (Lippman

and Zamir 2006; Schön et al. 2010) and the particular role
of the centromeres in this process (Gore et al. 2009; McMullen
et al. 2009). Today, the availability of high-density marker
data and whole-genome regression methods developed in
the context of genomic prediction (Meuwissen et al. 2001)
allows us to revisit this hypothesis by studying key genome
properties such as allele frequencies and linkage phases.

Consistency of linkage phases between quantitative trait
loci (QTL) and markers is a key prerequisite for pooling of
diverse breeds and germplams to increase sample size for
genetic studies and transferability of their results to different
populations (De Roos et al. 2008). Weber et al. (2012) used
whole-genome estimates of marker effects of several cattle
breeds to investigate across-breed marker–QTL linkage
phase consistency. Such a study is still missing for maize
and other important crops. For optimum exploitation of het-
erosis, the parental inbred lines of maize hybrids are taken
from genetically distant pools of germplasm, called heterotic
groups (Melchinger and Gumber 1998). Comparing the
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profiles of marker effects of both heterotic groups would be
of great interest for better understanding the genetic basis of
heterosis and choice of models for genomic prediction
(Technow et al. 2012).

With the advent of doubled-haploid technology in many
species, fully homozygous inbred lines can be generated
rapidly, at low cost, and in great numbers (Wedzony et al.
2009). This leads to a vast expansion of the number of
potential hybrids. For example, with only 1000 lines gener-
ated in each heterotic group every year, the number of po-
tential hybrids reaches 1 million. Because producing and
testing a substantial fraction of these in field trials is impos-
sible, prediction of hybrid performance is of tremendous
importance for hybrid breeding (Bernardo 1996).

Genomic prediction (Meuwissen et al. 2001), originally
devised for prediction of breeding values, involves a “training
set” of individuals that have been both genotyped and phe-
notyped and a “candidate set” of untested individuals, for
which only genotypic information is available (Jannink et al.
2010). The genotypic values of the candidates are then pre-
dicted either from their genomic relationship to the training
set individuals or from marker effects estimated in the train-
ing set. Genomic prediction of hybrid performance came
into focus recently, with studies exploring its prospects in
maize (Maenhout et al. 2010; Massman et al. 2013), sun-
flower (Reif et al. 2013), and wheat (Zhao et al. 2013).
However, the low number of markers or the low number
of parental lines and phenotyped hybrids used in these stud-
ies allowed only preliminary inferences about the prospects
of genomic prediction in commercial hybrid breeding pro-
grams of ordinary size.

Optimal composition of training sets is crucial for success-
ful application of genomic prediction (Rincent et al. 2012;
Windhausen et al. 2012). For hybrid prediction, a critical
question is how many hybrids per inbred line, i.e., crosses
with lines from the opposite heterotic group, should be in-
cluded in the training set. With a given budget for pheno-
typing of training set hybrids, the number of hybrids per line
limits the total number of inbred lines that can be tested.
The number of hybrids per line and the total number of lines
and hybrids in the training set can affect the prediction
accuracy. These important factors were not investigated in
previous studies.

Technow et al. (2012) showed in a simulation study that
the Bayesian whole-genome regression method BayesB
(Meuwissen et al. 2001) is a powerful alternative to genomic
best linear unbiased prediction (GBLUP), first used by
Maenhout et al. (2010) for genomic prediction of hybrid
performance. Zhao et al. (2013) later compared both meth-
ods, using a wheat data set of very limited size. Thus, con-
clusive results on the comparative performance of GBLUP
and BayesB in real data sets are still missing.

Our objectives were to (i) investigate differences among
chromosomal regions in linkage disequilibrium and linkage
phases, allele frequencies, and marker effects of the parental
heterotic groups; (ii) examine the prospects of genomic

prediction of hybrid performance for an important heterotic
pattern in maize; (iii) investigate the effects of the size of the
training set and of its composition in terms of the number of
lines and the number of hybrids per line on prediction
accuracy; and (iv) compare the prediction accuracy achieved
by prediction methods GBLUP and BayesB. We therefore
analyzed high-density genomic and phenotypic data of 1254
hybrids, collected over the last decade in a typical maize hybrid
breeding program based on the Dent 3 Flint heterotic pattern.

Materials and Methods

Phenotypic data

Our phenotypic database comprised grain yield (GY) (in
quintals per hectare) and grain moisture content (GM) (in
percent) of 1254 maize single-cross hybrids generated and
tested over the last decade within the breeding program of
the University of Hohenheim. The hybrids represent an
incomplete factorial between 123 Dent and 86 Flint inbred
lines, with each Dent line involved in 10 (range 2–56) and
each Flint line in 15 (range 1–102) hybrid combinations, on
average. A schematic view of the factorial is shown in Sup-
porting Information, Figure S1.

The data were collected in 14 years (1999–2012) and
across 20 locations in Southern Germany, providing 131 envi-
ronments. The field design used at each location was an
a-lattice with two to three replications and incomplete block
sizes of five. In total, data of 24,925 field plots were available.

On average, 95 hybrids, produced from 15 Dent and 11
Flint lines, were tested each year. The number of years in
which a hybrid was tested ranged from 1 to 9, with an
average of 1.2. Of all hybrids, 182 were tested in multiple
years. The average number of years a line served as parent
of one or several hybrids was 1.6 (range 1–9) for Dent lines
and 1.8 for Flint lines (range 1–10).

Analysis of genomic data

All parental inbred lines were genotyped with the Illumina
MaizeSNP50 BeadChip (Ganal et al. 2011). We removed all
markers missing or heterozygous in.5% of the inbred lines.
Remaining missing (0.2%) or heterozygous (0.3%) marker
genotypes were replaced with the most frequent allele. A
total of 35,478 markers were subsequently available for fur-
ther analysis. The marker data are provided in File S1, File
S2, and File S3.

Overall pairwise linkage disequilibrium (LD) between
markers on the same chromosome was computed as r2,
separately for the Dent and Flint group, using only markers
with a minor allele frequency (MAF) $ 0.025 in the re-
spective group (24,242 markers for the Dent lines and
23,450 for the Flint lines). To diminish the confounding
effect of varying marker density on regional LD patterns
along the chromosomes, we reduced the marker density
to �4 markers per megabase (Mb), with a spacing of
�0.25 Mb, resulting in 4958 markers available for analysis
within the Dent and 4929 within the Flint heterotic group.
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Nevertheless, some density differences could not be com-
pletely eliminated. This was because in some instances, no
segregating markers could be found in the desired inter-
vals. We then divided all chromosomes into bins of 5Mb
width and computed the average pairwise LD, measured as
r2, between all markers in the bin. For each bin, we also
determined the proportion of marker pairs with the same
linkage phase, i.e., same sign of the r statistic in Dent and
Flint (Technow et al. 2012), and the correlation between
the r values of both groups. For this, 4397 markers with
a MAF $ 0.025 in each group were used.

MAF patterns along the chromosomes were investigated
using a similar approach. Again we used consecutive bins of
5Mb width and computed the average MAF for each bin in
the sets of Dent and Flint lines as well as the average
absolute difference between the reference allele frequencies
in the two groups. These investigations were carried out
using all 35,478 markers. The allele that had highest
frequency across the combined set of Dent and Flint lines
was defined as the reference allele.

Variance components and adjusted means

We used a two-stage analysis for estimation of variance
components and adjusted entry means that closely followed
Bernardo (1996) and Massman et al. (2013). Two-stage
analysis is commonly used for analyzing plant breeding field
trials and delivers in most cases results similar to those of
considerably more complex one-stage approaches (Möhring
and Piepho 2009). Its main advantage is the strongly re-
duced computational burden when numbers of genotypes
and environments are large.

In the first stage, hybrid 3 environment means y were
calculated with a standard a-lattice design analysis to adjust
for the effects of the field design in these environments. In
the second stage, we fitted the model

y ¼ Xbþ ZDgD þ ZFgF þ ZSsþ e; (1)

where vector y contained the phenotypic observations of the
hybrids in the 131 environments obtained in stage one, b
was the vector of fixed effects of environments, and X was
the corresponding design matrix.

The design matrices ZD and ZF associated the random
general combining ability (GCA) effects of the parental Dent
lines (gD) and Flint lines (gF), respectively, to the observa-
tions of the hybrids in y. ZS was the design matrix of the
random specific combining ability (SCA) effects (s) for spe-
cific Dent 3 Flint hybrid combinations in y. The residuals
were represented by vector e. The covariance matrix of gD
was GDs

2
D; that of gF was GFs

2
F; and that of s was Ss2

s ; where
s2
D; s

2
F; and s2

s were the variance components pertaining to
GCA and SCA effects. The covariance matrix of the residuals
was Rs2

R; with s2
R being the residual variance. The diagonal

elements of R were the reciprocals of the number of repli-
cations in the environment of the corresponding data points.
All other elements of R were zero. In the two-stage analysis

applied in our study, the genotype 3 environment variance
cannot be separated from the residual variance associated
with the adjusted means in y (Möhring and Piepho 2009).
Variance component s2

R therefore contained the residual as
well as the genotype 3 environment variance. This enabled
also a direct comparison with the results of Massman et al.
(2013), who used the same approach for computing vari-
ance components and entry means.

The genomic relationship matrix GD was computed
according to VanRaden (2008) as GD ¼ WDW9D=mD; where
mD is the number of markers and wuv ¼ ðxuv 2 2 pvÞ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4 pvð12 pvÞ
p

(u being the index of the inbred line and v
that of the marker), with xuv coding the number of reference
alleles, i.e., 0 or 2, and pv being the allele frequency of the
reference allele in the population of Dent lines. The genomic
relationship matrix GF was computed accordingly. For com-
puting GD and GF, only markers were used that segregated
in the respective heterotic group with MAF $ 0.025.

Let D and D* denote any two Dent lines and F and F* any
two Flint lines. For a given pair of single crosses (D3 F) and
(D* 3 F*), the element of S was the product gDD*gFF* ; where
gDD* and gFF* are the corresponding elements of GD and GF,
pertaining to D and D* and F and F*, respectively (Stuber
and Cockerham 1966).

The variance components were estimated for the whole
data set, using the EM algorithm for restricted maximum
likelihood described by Henderson (1985) and adapted for
variance component estimation in factorials by Bernardo
(1996). The entry-mean heritability was computed as
H2 ¼ ðs2

D þ s2
F þ s2

s Þ=ðs2
D þ s2

F þ s2
s þ s2

R=eHÞ; where eH
was the harmonic mean of the diagonal elements of
Z9sR21Zs; i.e., of the total number of replications per hybrid.
Finally, environment-adjusted entry means of all hybrids
(y*) were computed as y* ¼ ðZ9sR21ZsÞ21Z9sR21ðy2XbÞ;
following Bernardo (1996). The adjusted entry means are
provided in File S4.

GBLUP

The performance of untested hybrids was predicted by
GBLUP with the formula CUT V21

TT y
*
T (Henderson 1973).

Here, CUT is the genetic covariance matrix of untested and
tested hybrids, VTT is the phenotypic covariance matrix of
the tested hybrids, and y*T are the observed phenotypic val-
ues of the tested hybrids (a subset of y*). The elements of
CUT and VTT were computed according to Bernardo (1996),
using our estimates of gDD* and gFF* :

BayesB

Our BayesB-type model for the performance of the ith hy-
brid corresponded to model S2 of Technow et al. (2012):

mi ¼ b0 þMDiuD þMFiuF þ DidDF
y*T � N �

mi;s
2
e
�
:

(2)

Here, the linear predictor of the performance of the ith hy-
brid is denoted as mi and b0 is a common intercept. The row
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vectors MDi ; MFi ; and Di are known marker genotype inci-
dence vectors for the additive marker effects of the Dent
parent lines in uD and Flint parent lines in uF and the dom-
inance effects in dDF. The likelihood of a single data point
was a Gaussian density with mean parameter equal to mi

and variance s2
e :

The elements of the matrices MD and MF code the pres-
ence or absence of the reference allele in the gametes pro-
duced by the parental Dent and Flint lines as 1/2 and 21/2,
respectively. In contrast to MD and MF, which code the ge-
notypes of parental gametes, matrix D directly reflects the
genotypes of the single-cross hybrids, coding heterozygous
genotypes as 1 and homozygous genotypes as 0. For exam-
ple, if the allele contributed by the Dent parent was “C” and
that by the Flint parent “T”, and T had the higher allele
frequency, then the corresponding elements of MD, MF,
and D were 21/2, 1/2, and, 1, respectively.

Additive effects were estimated only for markers with
a MAF$ 0.025 within the set of tested inbred line parents of
the respective heterotic group and dominance effects only
for markers with a MAF $ 0.025 in at least one of the
groups. We reduced the marker density to �10 markers
per megabase to facilitate computations. Using higher
marker densities did not improve prediction accuracies, as
far as we could see. In total, additive effects were estimated
for mD = 7500 markers of the Dent parental lines and for
mF = 6500 markers of Flint parental lines, on average. The
average number of markers for which dominance effects
were estimated was mDF = 8900.

Prior specifications as well as the Gibbs-sampling strategy
were identical to those in Technow et al. (2012). The same
uninformative prior distribution, a Gamma distribution with
a = b = 0.1, was used for the scale parameter S2. However,
the hyperparameters n and p were set to constant values, as
in the original BayesB implementation of Meuwissen et al.
(2001). Parameter n was set to 4.001 for all types of marker
effects, and p was chosen such that the number of markers
fitted was 500, on average; e.g., for dominance effects
(1 2 pDF)mDF = 500.

Three independent Gibbs-sampling chains were run for
75,000 iterations, of which the first 74,000 iterations were
discarded as burn-in. Using a higher number of iterations
and chains did not improve prediction accuracy. The
posterior means of marker effects were used to predict the
performance of untested hybrids according to model (2).

For investigating the genetic architecture, namely the
distribution and properties of marker effects, we fitted
model (2), using all 1254 hybrids. The marker density was
further reduced to �1 marker per megabase, or 1617
markers used in total. This was done mainly to counter
potential problems with likelihood identifiability that can
occur when the number of effects is much larger than the
sample size (Gianola 2013). All markers used segregated in
each set of parental inbred lines with MAF $ 0.025. Thus,
all three types of marker effects (additive effects for Dent
and Flint and dominance effects) were estimated for each

marker. For each trait, we ran 24 independent Gibbs-sampling
chains for 1,000,000 iterations. We discarded the first 990,000
iterations as burn-in and afterward stored only samples from
every 10th iteration. The posterior means of the marker effects
were used as their point estimates.

Evaluation of prediction accuracy

The cross-validation procedure for estimating prediction
accuracy was stratified by the parental lines (Figure 1).
Let D = {1, 2, . . . , 123} and F = {1, 2, . . . , 86} denote the
entire set of Dent and Flint lines, respectively, and let the
entire set of available hybrids be denoted by P = {(i, j) | i 2
D, j 2 F, with hybrid combination i 3 j among the 1254
single-crosses evaluated}. As a first step, we sampled a sub-
set DT of ND Dent lines from D and a subset FT of NF Flint
lines from F. Then we sampled a random subset PT of NH

training set hybrids from all hybrids for which both the Dent
and Flint parents were elements of DT and FT, respectively.
The constraint here was that for all i 2 DT and j 2 FT,
nPTðiÞ$ 1; where nPTðiÞ is the number of hybrids i 3 j 2
PT for the ith Dent line, and likewise nPTðjÞ$ 1 for the jth
Flint line; i.e., we made sure that all lines in DT and FT were
parents of at least one hybrid in the training set. Hybrids in
P, for which both the Dent and the Flint parents were ele-
ments of DT and FT, but were not elements of PT, were
assigned to the T2 candidate group and assumed to be un-
tested. All hybrids, for which the Dent parent was an ele-
ment of DT but the Flint parent was not an element of FT and
vice versa, were assigned to the T1 candidate group. All
hybrids in P, for which neither the Dent parent nor the Flint
parent was an element of DT or FT, respectively, were
assigned to the T0 candidate group.

For investigating the influence of NH, we varied NH be-
tween 150 and 450 in steps of 50 but kept ND constant at 90
and NF at 53. The latter restriction guaranteed that both the
required number of training set hybrids and sufficiently
sized candidate groups were available for all values of NH.
The number of T2 hybrids necessarily decreased with in-
creasing NH; for NH = 450, its average was still 119. The
numbers of T1 and T0 hybrids were on average 557 and
128, respectively. With increasing NH, the average number
of hybrids per Dent line cD and Flint line cF in PT increased
from cD ¼ 1:69 and cF ¼ 2:85 for NH = 150 to cD ¼ 5:06 and
cF ¼ 8:55 for NH = 450.

For investigating the influence of the number of parental
lines used in the training set, we set ND to 70 and 110,
respectively, and NF to 33 and 73, respectively, while keep-
ing NH constant at 200. Here, the value NH = 200 ensured
that the groups of T2, T1, and T0 hybrids had a sample size
of at least 20 hybrids each for all values of ND and NF. When
ND = 70 and NF = 33, the average numbers of hybrids per
line were cD ¼ 3:05 and cF ¼ 6:18 (Table 3) and the average
numbers of the T2, T1, and T0 hybrids were 78, 646, and
328, respectively. When ND = 110 and NF = 73, cD ¼ 1:82
and cF ¼ 2:75 and the average numbers of T2, T1, and T0
hybrids were 747, 286, and 21, respectively.
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The prediction accuracy rA was computed separately for
each group of hybrids by dividing the correlation of pre-
dicted and observed values (“predictive ability”) by

ffiffiffiffiffiffi
H2

p
(Legarra et al. 2008). The cross-validation process was re-
peated 10,000 times for each value of NH, ND, and NF, re-
spectively. Sets DT and FT were randomly sampled each
time. Only 100 repetitions could be performed per scenario
for BayesB because the computational demands of this
method were considerably higher than those of GBLUP.

All analyses were carried out in the R statistical software
environment (R Development Core Team 2012).

Results

Analysis of genomic data

From all 35,478 markers analyzed, 18.0% were mono-
morphic in the set of Dent lines, 20.5% in the set of Flint
lines, and 8.5% in both. Excluding monomorphic markers,
the median MAF in the Dent pool was 0.19 and that in the
Flint pool was 0.12. Marker densities were lowest in
pericentromeric regions, where particularly low MAFs were
found (Figure 2, A and B). The largest absolute differences
between the allele frequencies in the Dent and Flint heter-
otic groups were also found in pericentromeric regions (Fig-
ure 2C), indicating different fixation of alleles in these
regions between the two groups.

The LD in relation to physical distance reached very high
median values �0.33 for markers in close proximity
(,0.125 Mb), with considerable proportions of the marker
pairs exhibiting r2 values.0.8 (Figure 3). It then decayed to
median r2 values �0.10 for marker pairs with distances of
�3 Mb. The decrease in LD then continued, however, less
pronounced, such that even at distances of 15 Mb, the me-
dian r2 was still �0.05 (data not shown).

Pericentromeric regions displayed considerably elevated
levels of regional LD (Figure 4, A and B). In many cases, the
average pairwise r2 values in pericentromeric regions were
more than four times higher than those in distal chromo-
some regions. Also the proportion of markers with the same
sign of the r linkage statistic was higher in pericentromeric
regions (Figure 4C). Here, the proportion could reach 100%,
whereas in distal regions of the chromosomes it was �50%
(the value indicating independence of Dent and Flint link-
age phases). Similar trends were observed for the regional
correlation of r between groups, which was generally posi-
tive and high in pericentromeric regions but around zero
outside of these (Figure S2).

Estimated marker effects: The number of markers with
sizeable estimated additive effects was much larger than the
number of markers with sizeable dominance effects (Figure
S3 and Figure S4). Additive and dominance marker effect
estimates were in equal proportions negative and positive.
We did not observe a strong accumulation of large additive
or dominance marker effects in any particular genomic re-
gion or chromosome.

The additive marker effects estimated for Dent (uD) were
overall not consistent with those for Flint (uF). The rank
correlation between additive marker effects for Dent uD
and Flint uF was close to zero for both traits, but when re-
stricted to markers within 12.5 Mb of the centromeres, the
correlation was 0.385 (P = 0.195 3 1025) and 0.200 (P =
0.015) for GY and GM, respectively (Figure 5).

For GY, markers with strong additive effects for both
Dent and Flint were encountered in the first quarter of
chromosome 1 and in the last quarters of chromosomes 4
and 7 (Figure S3). The squared correlation between the
predicted genotypic values and adjusted entry means was
0.85 and 0.94 within the training set for GY and GM,
respectively.

Variance components and heritabilities: For both traits,
estimates of s2

D and s2
F were of similar magnitude, with s2

D
slightly larger than s2

F for GY (Table 1). The variance com-
ponent s2

S was always considerably smaller than either s2
D or

s2
F: The proportion of s2

S in the total genetic variance was
almost twice as high for GY than for GM. Very high entry-
mean heritabilities were observed for both traits.

Prediction accuracies: Prediction methods GBLUP and
BayesB resulted in very similar prediction accuracies (Table
2 and Table 3). Our presentation of prediction accuracy

Figure 1 Schematic visualization of the strategy for distinguishing the
tested hybrids in the training set and T2, T1, and T0 hybrids in the
validation set.
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results therefore applies to both methods, if not mentioned
otherwise.

For both traits and across all levels of NH, the prediction
accuracy was highest for T2 hybrids, followed by T1 and T0
hybrids (Table 2). Prediction accuracies of GY were higher
than those of GM for T1 and T0 hybrids but the opposite was
true for T2 hybrids.

The prediction accuracy rA increased with increasing NH

similarly for both traits (Table 2). The increase in rA was
strongest for the T2 hybrids, followed by T1 and T0 hybrids.
For example, the average increase in rA from NH = 150 to
NH = 450 was 0.06 for T2 hybrids, 0.04 for T1 hybrids, and
0.025 for T0 hybrids. For the T2 and T1 hybrids the accuracy
still increased in the higher range of NH, while for T0 hybrids
the rA values did not increase further above NH = 300.

Keeping NH constant, but increasing ND and NF, de-
creased the prediction accuracy for T2 hybrids for both traits
(Table 3). The difference in rA between the high ND and NF

scenario and the low ND and NF scenario was 0.02 (GY) and
0.04 (GM). For GM, rA of the T1 and T0 hybrids increased
with increasing ND and NF (difference 0.03). Altering ND and
NF had no effect on rA values of T0 and T1 hybrids for GY.

Discussion

Consistency of linkage phases and marker effects across
heterotic groups

Establishing separate training sets of sufficient size for small
breeds in animal breeding or for different germplasm groups
in plant breeding is generally too expensive. In this situation,
pooling data sets from several germplasm groups can increase
the power of genomic selection, as demonstrated by Technow

et al. (2013) for disease resistance in maize. In cattle breed-
ing, too, augmenting training sets with individuals from other
breeds increased prediction accuracy to some extent (De Roos
et al. 2009; Hayes et al. 2009; Erbe et al. 2012; Weber et al.
2012).

Habier et al. (2007, 2013) showed by simulation and
theory that genomic prediction methods such as GBLUP
and BayesB can exploit information from pedigree relation-
ships, cosegregation, and LD for prediction. Owing to the
long separation of cattle breeds and heterotic groups in
maize, respectively, pedigree relationships and cosegrega-
tion can be ruled out as sources of information shared across
groups, leaving only LD.

For major cattle breeds (De Roos et al. 2008) and for the
Dent and Flint heterotic groups in maize (Technow et al.
2013), linkage phases between SNP markers were indeed
similar across breeds and heterotic groups, respectively. We
confirmed the latter result and could further show that the
consistency of linkage phases is highest in pericentromeric
regions of the maize genome.

However, LD between markers is not necessarily a good
indicator for LD between markers and QTL, especially when
the latter have a much lower minor allele frequency than the
former (Yang et al. 2010). To investigate the consistency of
marker–QTL LD and linkage phases across breeds, Weber
et al. (2012) compared marker effect estimates of several
cattle breeds, because a high similarity of marker effect pro-
files across breeds would reflect consistency in marker–QTL
LD. They found the similarity to be low and concluded that
LD between markers and QTL did not persist across breeds.

Factorial crosses between lines of two heterotic groups
represent an ideal material for comparison of estimated

Figure 2 (A and B) Average minor allele frequency (MAF) of SNP within consecutive bins of 5-Mb width along the chromosomes, for Dent lines (A) and
Flint lines (B). (C) Average absolute difference of reference allele frequency between Dent and Flint lines in the same 5-Mb bins. The different colors of
the points and the heat map in the bottom of each subplot indicate the marker density within the bin (Mb21). The green, dashed vertical bars indicate
the physical positions of the centromeres, and the solid, black bars separate the chromosomes.
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additive marker effects of each group without confounding
by different genetic backgrounds and environments. This is
because each genotype of a single-cross hybrid represents
a perfect combination of the two parental genomes without
recombination.

In our study, additive marker effects estimated simulta-
neously for Dent and Flint were generally not consistent
across these groups. However, we observed that there is
a considerable consistency of marker effects in pericentro-
meric regions, in particular for GY. We therefore hypothe-
size that the increase in prediction accuracy observed by
Technow et al. (2013) when combining Dent and Flint lines
in a training set was mostly attributable to the pericentro-
meric regions of the genome, where linkage phases between
markers and QTL are consistent across Flint and Dent. Re-
gional differences in LD were also observed for cattle breeds
(Sargolzaei et al. 2008). Thus, similar to maize, increases in
prediction accuracy from pooled multibreed training sets
might be driven by particular genomic regions with high
linkage phase consistency across breeds.

An alternative approach to pooling for incorporating
information from different breeds or germplasm groups
was proposed by Brøndum et al. (2012). They described
how genome position-specific priors for estimation of
marker effects in one dairy cattle breed can be derived from
marker effects estimated in a different breed. Using these
genome position-specific priors increased prediction accu-
racy within each breed. The method of Brøndum et al.
(2012) does not require consistent linkage phase between
breeds but only identical QTL positions. However, in this

way priors can be specified only for marker effect shrinkage
parameters. If marker–QTL linkage phases are consistent
across populations, as seems to be the case in pericentro-
meric regions of maize, priors could be derived for the
marker effects themselves, too. This could be achieved, for
example, by changing the prior mean of the marker effect
from zero to the posterior mean of the marker effect esti-
mated in the other breed, population, or heterotic group.

Estimation of population-specific marker effects for
genomic prediction of crossbreds and single-
cross hybrids

There are many parallels between hybrid breeding in crops
like maize and crossbreeding in livestock production. In
simulation studies on genomic prediction with training sets
consisting of crossbred individuals (Ibánez-Escriche et al.
2009; Zeng et al. 2013) or single-cross hybrids (Technow
et al. 2012), it was found that genomic prediction models
that fitted specific marker effects for the parental popula-
tions (i.e., purebred breed or heterotic group) had little or
no advantage over simpler models that assumed marker
effects to be the same across parental populations. One ex-
planation the authors gave for this was that the linkage
phase consistency across populations was sufficiently high
at high marker densities. In addition, the authors argued
that the strongly increased dimensionality of those models
prevented them from efficiently capturing remaining across-
population differences in marker effects. Knowing in which
genomic regions marker–QTL linkage phases are consistent
or not could also be used for developing models that esti-
mate population-specific marker effects only where neces-
sary. This would reduce the dimensionality of these models
and might mitigate some of the problems associated with it.

We also observed that fitting marker effects to be the
same across heterotic groups delivered virtually the same
prediction accuracy as model (2) in which specific marker
effects were estimated for Dent and Flint (results not
shown). This seems to contradict our observation that
marker effects are consistent only in pericentromeric
regions. However, as is discussed later in detail, prediction
of hybrid performance is mostly driven by the presence of
close relatives in the training set, in particular for T2 and T1
hybrids. As shown by Habier et al. (2007), BayesB can cap-
ture such pedigree relationships, particularly when many
markers are fitted. Capturing pedigree relationships with
markers does not require physical linkage between them
and the QTL (Habier et al. 2013). Consistency of marker–
QTL linkage phase might therefore not be mandatory for
accurate predictions when close relatives are present in
the training set.

Hill–Robertson effect and heterosis

It is known that recombination is suppressed in the
pericentromeric regions of maize chromosomes (Gore et al.
2009; Schnable et al. 2009; Ganal et al. 2011; Bauer et al.
2013) and while gene density is comparably low in these

Figure 3 (A and B) Boxplots of pairwise LD, measured as r2, between
markers on the same chromosomes, with distances in megabases (Mb),
for the set of Dent (A) and Flint (B) lines. Marker pairs were binned
according to physical distance, each bin corresponding to an interval of
0.125 Mb.
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regions (Schnable et al. 2009), they still contain a consider-
able portion of genes (Gore et al. 2009). The Hill–Robertson
effect (Hill and Robertson 1966; Felsenstein 1974) describes
the influence of recombination on selection efficiency. This
effect predicts a buildup of repulsion-phase linkage between
QTL alleles when recombination is suppressed (McVean and
Charlesworth 2000). One consequence of repulsion-phase
linkage is pseudo-overdominance, because additive QTL
effects cancel out. Based on the Hill–Robertson effect,
McMullen et al. (2009) hypothesized that the strongly sup-
pressed recombination in pericentromeric regions of maize
results in pseudo-overdominance and is therefore a major
cause of heterosis. Larièpe et al. (2012) mapped dominance
QTL in Dent 3 Flint crosses for important agronomic traits,
using a North Carolina III design, and found a large pro-
portion of QTL with (pseudo-)overdominance in pericentro-
meric regions. Schön et al. (2010) observed the same for
Stiff-Stalk Synthetic 3 Non-Stiff-Stalk crosses. They con-
cluded that pseudo-overdominance in pericentromeric
regions led to differential fixation of QTL alleles in each
heterotic group. We found the largest allele frequency differ-
ences between Dent and Flint in pericentromeric regions
and therefore conclude that also for the Dent 3 Flint heter-
otic pattern differential fixation in pericentromeric regions
takes place.

As allele frequencies in opposite heterotic groups drift
apart during reciprocal recurrent selection (Labate et al.
1999), the ratio of SCA variance to GCA variance decreases
(Reif et al. 2007) and dominance effects are increasingly
absorbed into the population mean or become inseparable

from additive effects (i.e., when QTL are fixed in one group
but still segregate in the other). In particular, QTL with
strongly positive (pseudo-)dominance or (pseudo-)over-
dominance effects are expected to be affected by differential
fixation. The dominance effects of these QTL increase the
“baseline” heterosis of the Dent3 Flint heterotic pattern but
are not detectable with statistical means in our set of Dent3
Flint interpool hybrids. This can explain why dominance
marker effects had positive and negative signs in almost
equal proportions even though dominance effects for grain
yield in maize are expected to be mostly positive (Schön
et al. 2010). It also explains the absence of any noticeable
accumulation of major dominance marker effect estimates in
pericentromeric regions.

Comparison of prediction methods

GBLUP and BayesB achieved nearly identical prediction
accuracies. Both GY and GM are considered to be highly
polygenic traits, based on QTL mapping results (Schön et al.
2004; Huang et al. 2010). Several authors found in simula-
tion studies and for real data sets that GBLUP models were
superior to or equally well performing as Bayesian whole-
genome regression methods for such traits (Zhong et al.
2009; Hayes et al. 2010; Clark et al. 2011; Kärkkäinen and
Sillanpää 2012; Technow and Melchinger 2013; Wimmer
et al. 2013). Daetwyler et al. (2010) arrived at the same
conclusion based on theoretical results. Zhao et al. (2013)
compared several methods for genomic prediction of grain
yield of wheat hybrids and also found that GBLUP delivers
the same or slightly higher prediction accuracy than BayesB.

Figure 4 (A and B) Average pairwise LD (measured as r2) within consecutive bins of 5-Mb width along the chromosomes, for Dent lines (A) and Flint
lines (B). (C) Proportion of marker pairs with equal linkage phase (equal sign of r statistic) between Dent and Flint lines in the same 5-Mb bins. The
different colors of the points and the heat map in the bottom of each subplot indicate the marker density within the bin (Mb21). The green, dashed
vertical bars indicate the physical positions of the centromeres, and the solid, black bars separate the chromosomes. The horizontal line in C indicates the
value of 0.50.
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Thus, no substantial differences between both methods are
expected for prediction of hybrid performance for traits like
GY and GM.

If the effects of single QTL in polygenic traits vary
considerably in size, adaptively shrinking Bayesian whole-
genome regression methods could potentially outperform
GBLUP. Furthermore, we hypothesize that BayesB could
have an advantage for prediction of performance of T0
hybrids from lines distantly related to the parents of the
training set hybrids, because then prediction accuracy would
mainly come from short-range LD, which is not captured
optimally by GBLUP (Habier et al. 2013).

Bayesian whole-genome regression methods can suffer
from a lack of likelihood identifiability, when the number of
markers is much larger than the size of the training set
(Gianola 2013). This can lead to computational and conver-
gence problems in Gibbs sampling (Gelfand and Sahu
1999). As reported by Technow and Melchinger (2013),
nonidentifiability can impair prediction accuracy. Our
BayesB model for prediction of hybrid performance fits up
to three effects per marker, thereby exacerbating the prob-
lem. Consequently, Bayesian whole-genome regression
methods require larger sizes of the training set for realizing
a potential advantage.

Technow et al. (2012) confirmed in a simulation study
that BayesB can achieve slightly higher prediction accuracy
than GBLUP under a polygenic trait architecture, with
a training set comprising 800 hybrids. Assembling large
training sets is possible even for moderately sized breeding
programs, like the one of the University of Hohenheim. With
our data set, for example, a training set of 1254 hybrids
could have been assembled, albeit without the possibility
of performing a thorough cross-validation. Nonetheless,
given the considerably greater computational demands of
Bayesian whole-genome regression methods, GBLUP seems
to be a very pragmatic and robust method for genomic pre-
diction of hybrid performance for polygenic traits.

Prediction accuracy of T2, T1, and T0 hybrids

We confirmed the sizeable differences in prediction accuracy
between T2, T1, and T0 hybrids found in the simulation
study of Technow et al. (2012). The same was observed by

Maenhout et al. (2010) and Schrag et al. (2010), who com-
pared only T1 and T0 hybrids. These differences can be
explained by the different numbers of parents of the hybrids
that are also parents of training set hybrids (i.e., two, one,
and zero for T2, T1, and T0 hybrids, respectively); the more
that are shared, the higher the accuracy that can be
expected (Technow et al. 2012). The paramount importance
of pedigree relationships relative to other potential sources
of accuracy like LD between markers and QTL was convinc-
ingly substantiated by Wientjes et al. (2012). In the human
genetics context, De Los Campos et al. (2013) have derived
an upper limit for the prediction accuracy that is a function
of the accumulated relationship between individuals in the
training and testing sets, respectively. The importance of
close relatives for achieving highly accurate predictions
was also observed in an animal breeding context (Legarra
et al. 2008; Habier et al. 2010).

Because of the rapidly expanding arrays of genotyped
lines, the number of T1 and T0 hybrids will eclipse the
number of T2 hybrids. For example, if 1000 lines are
available per heterotic group, of which 100 are parents of
hybrids in the training set, the number of T1 hybrids reaches
180,000 and the number of T0 hybrids a staggering
810,000, while there are “only” 10,000 T2 hybrids (minus
those in the training set). Thus, by sheer numbers, the best
hybrids are most likely found among T1 and T0 hybrids.
However, owing to the lower prediction accuracies, it will
be more difficult to identify them, compared to identifying
superior T2 hybrids. Breeders are unlikely to rely solely on
genomic predictions when selecting potential hybrids for
commercialization. Rather, genomic prediction will be
employed as an initial stage in a multistage selection
scheme, involving field testing of the most promising exper-
imental hybrids. The number of experimental hybrids that
can be tested in such a manner is limited by budget con-
straints. For practical application of genomic prediction, it is
therefore important to investigate how the preselection of
hybrids should be informed by the different prediction ac-
curacies observed in the three groups.

In an earlier study on genomic prediction of hybrid
performance for GY and GM, Massman et al. (2013) also
found high prediction accuracies with training set sizes

Figure 5 Scatterplot of posterior means of additive effects
of markers located within 12.5 Mb of the centromeres in
the Dent and Flint lines, estimated simultaneously with
BayesB, using a subset of 1617 markers in total and all
1254 hybrids. Marker effects shown are for grain yield (A)
and grain moisture content (B).
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comparable to ours. The most likely explanation for the high
prediction accuracies generally observed is that both H2 and
the realized relationships among parental lines tend to be
very high in commercial maize breeding programs. For ex-
ample, our high estimates of H2 were for both traits in close
agreement to those of Schrag et al. (2006) and Massman
et al. (2013), the latter of which analyzed data from a U.S.
corn-belt breeding program. Massman et al. (2013) also
found similarly high pairwise realized relationships to those
in our study (details not shown). For prediction of breeding
values under an additive genetic model, a trait with high H2

is expected to have higher rA values than a trait with low H2

(Daetwyler et al. 2010). In our study, however, the rA values
observed for GM, which had a considerably higher H2 than
GY, were higher than rA for GY only for T2 hybrids, but
lower for T1 and T0 hybrids. Interestingly, Massman et al.
(2013) reported exactly the same findings, with GM having
higher rA values than GY for T2 hybrids but lower values for
T1 hybrids (there were no T0 hybrids in their study). Re-
gional differences in LD, as found in our study, are a possible
explanation why the relationship between heritability and
prediction accuracy differs strongly among traits (Habier
et al. 2013). We hypothesize that the contribution of infor-
mation from LD to the prediction accuracy differs between

T2, T1, and T0 hybrids. Regional differences in LD, there-
fore, can also explain why the relationship between herita-
bility and prediction accuracy is inconsistent not only among
traits, but also between T2, T1, and T0 hybrids.

Composition of training set

Prediction accuracy increased with increasing training set
size NH, as expected (Table 2). However, the increase was
relatively small, even when NH was tripled. This is in con-
trast to studies on genomic prediction of additive breeding
values in plant breeding, where tripling NH could double the
accuracy (Asoro et al. 2011; Technow et al. 2013). One
explanation for this is the already rather high level of pre-
diction accuracy reached. On the other hand, accuracy in-
creased for T2 hybrids more than for T0 hybrids, even
though their prediction accuracy was already higher for
small NH.

The key point is that increasing NH for constant ND and
NF does not eliminate the weakness of limited sampling of
different GCA effects from each parental germplasm pool. It
only increases the number of crosses cD and cF; in which
a line is tested, i.e., the number of replicates per GCA effect.
Thus, the precision of estimates of GCA effects of tested lines
is increased, but under a high H2, as in our study, this has
only little impact on rA. Another, more important conse-
quence of increasing the number of hybrids per line is that
separation of GCA and SCA effects becomes easier, improv-
ing the predictability of both. However, the contribution of
SCA variance to total genetic variance was comparatively
small in our data, which again limits the benefit of increas-
ing NH under constant ND and NF. Therefore, increasing NH

when ND and NF are constant, i.e., increasing cD and cF;
might have a greater impact on rA under low H2 and in crops
or breeding programs with less defined or no heterotic

Table 1 Variance components of Dent (s2
D) and Flint (s2

F ) GCA
effects and SCA effects (s2

S), residual variance component (s2
R),

proportion of s2
S in the total genetic variance in percent (% s2

S),
and entry mean heritabilities (H2) for grain yield (GY) and grain
moisture content (GM)

s2
D s2

F s2
S s2

R %  s2
S H2

GY (q ha21) 32.79 28.12 8.44 179.00 12.17 0.87
GM (%) 2.58 2.59 0.40 3.70 7.15 0.96

q ha21, quintals per hectare.

Table 2 Prediction accuracy (rA) of T2, T1, and T0 hybrids obtained for different numbers NH of hybrids but a constant number ND = 90 and
NF = 53 of Dent and Flint parental lines in the training set

Method NH cD cF

GY GM

T2 T1 T0 T2 T1 T0

GBLUP 150 1.69 2.85 0.87 (0.03) 0.82 (0.03) 0.75 (0.08) 0.88 (0.02) 0.77 (0.04) 0.63 (0.10)
200 2.25 3.80 0.89 (0.03) 0.84 (0.03) 0.76 (0.08) 0.91 (0.02) 0.79 (0.03) 0.64 (0.10)
250 2.81 4.75 0.90 (0.03) 0.85 (0.03) 0.77 (0.08) 0.92 (0.02) 0.80 (0.03) 0.64 (0.10)
300 3.37 5.71 0.91 (0.03) 0.85 (0.02) 0.78 (0.08) 0.93 (0.02) 0.80 (0.03) 0.65 (0.10)
350 3.93 6.65 0.92 (0.03) 0.86 (0.02) 0.78 (0.07) 0.94 (0.02) 0.81 (0.03) 0.65 (0.09)
400 4.49 7.61 0.92 (0.03) 0.86 (0.02) 0.78 (0.07) 0.94 (0.02) 0.81 (0.03) 0.65 (0.10)
450 5.06 8.55 0.92 (0.04) 0.86 (0.02) 0.78 (0.07) 0.95 (0.02) 0.81 (0.03) 0.65 (0.10)

BayesB 150 1.69 2.85 0.86 (0.03) 0.82 (0.03) 0.76 (0.07) 0.87 (0.03) 0.76 (0.04) 0.62 (0.11)
200 2.25 3.80 0.88 (0.03) 0.83 (0.03) 0.76 (0.09) 0.89 (0.02) 0.78 (0.03) 0.64 (0.10)
250 2.81 4.75 0.90 (0.03) 0.84 (0.02) 0.75 (0.09) 0.91 (0.02) 0.79 (0.03) 0.62 (0.09)
300 3.37 5.71 0.91 (0.03) 0.85 (0.02) 0.77 (0.08) 0.92 (0.02) 0.79 (0.03) 0.63 (0.11)
350 3.93 6.65 0.91 (0.03) 0.85 (0.02) 0.78 (0.07) 0.93 (0.02) 0.80 (0.03) 0.64 (0.10)
400 4.49 7.61 0.92 (0.03) 0.86 (0.02) 0.78 (0.07) 0.93 (0.02) 0.80 (0.03) 0.64 (0.10)
450 5.06 8.55 0.92 (0.04) 0.86 (0.02) 0.78 (0.07) 0.93 (0.02) 0.80 (0.03) 0.64 (0.09)

cD and cF refer to the average number of hybrid combinations in the training set PT for the Dent and Flint lines in the training set. The values refer to the mean (standard
deviation) over 10,000 and 100 cross-validation runs with the prediction methods GBLUP and BayesB, respectively, for grain yield (GY) and grain moisture (GM). For T2, T1,
and T0 group hybrids, two, one, and zero parents, respectively, were tested in other combinations in the training set.
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groups, where the relative contribution of SCA variance is
expected to be larger (Reif et al. 2007).

Nonetheless, increasing the number of hybrids cD and cF for
lines serving as parents of hybrids in the training set will in-
crease the prediction accuracy for GCA effects of these lines,
which is especially beneficial under low contribution of SCA
variance, because then the performance of a hybrid can be
approximated by the sum of the parental GCA effects. This
explains why prediction accuracy of untested hybrids profits
most from increasing NH if both parents were parents of other
hybrids in the training set (T2 hybrids) and least if none of
them were involved in any training set hybrid (T0 hybrids). As
expected under this rationale, the rA increase for T1 hybrids,
of which only one parental line is a parent of hybrids in the
training set, was between that of the T2 and T0 hybrids.

Increasing the number of tested lines ND and NF while
keeping NH constant decreased the number of hybrids per
line cD and cF in the same manner as decreasing NH while
keeping ND and NF constant. The same reasoning therefore
applies here, which explains why the prediction accuracy of
T2 hybrids decreased when ND and NF were increased. In
contrast to the scenario of constant ND and NF and varying
NH, the decrease in cD and cF did not lead to decreasing
prediction accuracy for GY of T1 and T0 hybrids and for
GM, the rA values even increased. The reason is that increas-
ing ND and NF not only decreased cD and cF but also at the
same time widened the array of germplasm covered in the
training set. Thus, untested parent lines of T1 and T0
hybrids are represented better, which improved prediction
accuracy of their GCA effects. Not all allele combinations
encountered in T1 and T0 hybrids are present in narrow
training sets and, consequently, their effects are not predict-
able. More diverse and larger training sets, therefore, might
also improve predictability of SCA effects.

An increase of 40 lines and a 34% and 53% decrease in cD
and cF; respectively, between the high and low ND and NF

scenarios might have been too small to observe major effects.
Further research is warranted to design the training set in an
optimum manner so that the prediction accuracies of T2, T1,
and T0 hybrids are balanced in a way that achieves maximum
selection gain across all three groups. In the short term, this is
possible only with simulations, because the resources re-
quired for phenotyping larger factorials are prohibitive.

Habier et al. (2010) studied the role of pedigree relation-
ships on accuracy of genomic prediction in German Holstein
cattle. They found that prediction accuracy decreased only
slightly when the training set size was halved as long as the
number of close relatives per validation set individual
remained constant. In a study on genomic prediction in
maize, Albrecht et al. (2011) also observed that the drop in
prediction accuracy was small when the training set size was
halved. This was most likely a consequence of the presence of
close relatives, too, because in their cross-validation scheme,
an individual in the validation set had in most cases several
full sibs in the training set. These studies demonstrate the
disproportional importance of the closest relatives for predic-
tion accuracy. Per definition, hybrids from the T2 and T1
groups always have very close relatives in the training set
that share 50% of their genome. However, for hybrids from
the T0 group, too, the maximum genomic relationships (i.e.,
estimated from marker data) to hybrids in the training set
remained virtually unchanged by varying NH or ND and NF

(results not shown). This is a consequence of the high degree
of relationship between the inbred lines in a closed, medium-
sized breeding program. The rather small differences in pre-
diction accuracy between the various scenarios investigated
reflect the presence of close relatives that determined predic-
tion accuracy. A comparison of the prediction accuracies of
our genomic methods with those of pedigree-based methods
(Bernardo 1996) could be used to quantify the contribution
of pedigree relationships to the prediction accuracy. However,
different from the situation in animal breeding, pedigrees of
our lines were often incomplete and rarely extended more
than two generations. A simulation study, in which pedigree
relationships are known without error and maximum rela-
tionships can be varied, might help to clarify the role that
close relatives have in determining the accuracy with which
hybrid performance can be predicted.

Estimates of rA showed a larger variation for the T0 group
compared to the T2 and T1 groups. The lower variability for
the T1 and T2 groups can be explained by the guaranteed
presence of close relatives in the training set. The maximum
relationship of T0 group hybrids with hybrids in the training
set fluctuates between replications (even though it is high
and similar between scenarios, on average). However, tech-
nical limitations, such as sampling constraints and different

Table 3 Prediction accuracy (rA) of T2, T1, and T0 hybrids obtained for different numbers of Dent (ND) and Flint (NF) parental lines in the
training set PT and average number of hybrid combinations per Dent line (cD) and Flint line (cF) in PT

Method cD (ND) cF (NF)

GY GM

T2 T1 T0 T2 T1 T0

GBLUP 3.05 (70) 6.18 (33) 0.90 (0.05) 0.83 (0.02) 0.75 (0.06) 0.93 (0.03) 0.77 (0.03) 0.61 (0.07)
1.82 (110) 2.75 (73) 0.88 (0.02) 0.83 (0.05) 0.75 (0.17) 0.89 (0.02) 0.79 (0.05) 0.64 (0.21)

BayesB 3.05 (70) 6.18 (33) 0.90 (0.05) 0.83 (0.02) 0.75 (0.06) 0.92 (0.03) 0.77 (0.03) 0.59 (0.09)
1.82 (110) 2.75 (73) 0.88 (0.02) 0.83 (0.04) 0.75 (0.18) 0.87 (0.02) 0.78 (0.05) 0.63 (0.23)

The size of the training set was held constant at NH = 200. The values refer to the mean (standard deviation) over 10,000 and 100 cross-validation runs with the prediction
methods GBLUP and BayesB, respectively, for grain yield (GY) and grain moisture (GM). For T2, T1, and T0 group hybrids, two, one, and zero parents, respectively, were
tested in other combinations in the training set.
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sizes of validation groups, most likely also contributed to the
observed differences.

Back to the basics: a paradigm shift

Shull (1908), the inventor of hybrid breeding, recognized
that a field (i.e., population) of maize is a mixture of many
unique hybrids. Based on this, he defined the tasks of a maize
breeder as (a) identifying the best hybrid and (b) reproduc-
ing it on a large scale. However, the classical approach of
hybrid breeding with recurrent selfing has put great weight
on the identification of inbred line parents with superior per
se and testcross performance. Testing of experimental
hybrids was carried out only in the very last stage of each
breeding cycle, when the genetic variability was already
largely exhausted. Genomic prediction of hybrid perfor-
mance allows focusing on single-cross hybrids from the very
beginning. At the same time, doubled-haploid technology
and high-throughput genotyping facilitate direct capturing
and genetic characterization of vast arrays of lines from each
heterotic group. Together, these technologies enable a para-
digm shift in hybrid breeding and direct implementation of
Shull’s groundbreaking ideas for the first time.
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Figure S1   Schematic illustration of factorial. Schematic view of factorial of 123 Dent and 86 Flint  
lines for illustration purposes. The lines appear in approximately chronological order. Produced and
tested hybrids are indicated by orange squares.
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Figure S2
Regional correlation of r linkage statistic
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Figure S2 Correlation of r linkage statistic between Dent and Flint lines in consecutive bins of 5 megabase (Mb) width. The different colors of the points
and the heatmap in the bottom of each sub-plot indicate the marker density within the bin (Mb-1). The green, dashed vertical bars indicate the physical
positions of the centromeres, the solid, black bars separate the chromosomes
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Figure S3   Marker effect estimates for grain yield. Posterior means of marker effect estimates for grain yield   
obtained by BayesB, using a subset of 1617 markers, and all 1254 hybrids. (A) additive marker effects for Dent,  
(B) additive marker effects for Flint, (C) dominance marker effects. The green, dashed vertical bars indicate the 
physical positions of the centromeres, the solid, black bars separate the chromosomes
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Figure S4   Marker effect estimates for grain moisture. Posterior means of marker effect estimates for grain    
moisture obtained by BayesB, using a subset of 1617 markers, and all 1254 hybrids. (A) additive marker effects  
for Dent, (B) additive marker effects for Flint, (C) dominance marker effects. The green, dashed vertical bars 
indicate the physical positions of the centromeres, the solid, black bars separate the chromosomes
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