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To the editor

GATA2 encodes a transcription factor that regulates stem cell homeostasis. Mutations in

GATA2 result in a diverse clinical phenotype that includes myelodysplastic syndrome/acute

myeloid leukemia (MDS/AML), decreased monocytes, B cells, and NK cells, opportunistic

infections, and lymphedema.2 Previous studies have noted normal immunoglobulin levels

and detectable bone marrow plasma cells in patients with GATA2 mutations.1,3–6 We report

2 patients with hypogammaglobulinemia and defective antibody responses associated with

an autosomal dominant mutation in GATA2.

Patient 1 presented at 3 years of age with recurrent otitis media and sinusitis. He had a

normal lymphocyte and monocyte counts, platelet number, and hematocrit. He had IgG2 and

IgA deficiency, absent tetanus and low PRP (52 ng/mL, protective >1000 ng/ml) antibody

titers. Tetanus and Hib vaccine boosters resulted in protective tetanus (0.4 IU/mL) and PRP

(>1200 ng/mL) titers. Two years later, his tetanus titer was undetectable, his PRP decreased

to 185 ng/mL, and his IgG level was decreased at 444 mg/dL (normal 600 – 1500 ng/mL),

prompting IVIG initiation. At 10 years of age, IVIG was discontinued to reassess his

antibody response. His tetanus titer increased from 0.14 to 0.27 IU/mL after a booster, but
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waned within one year to 0.03 IU/mL. At 14 years of age, his PRP titer increased

significantly after the Hib vaccine, but he failed to respond to repeated vaccinations of

tetanus, Prevnar, and Pneumovax; additionally, his IgG was low and IgA was undetectable

(Table 1). He developed pneumonia and pan-sinusitis in the setting of absent B cells and

CD4+ T cell lymphopenia (Table I); therefore, IVIG was restarted. He had absent tonsils,

which had been barely visible on previous exams. No mutations were found in TACI, PNP,

ADA, BTK, or SH2D1A. At 16 years of age, he developed persistent warts on his hands and

severe bronchiectasis. Sputum cultures were positive for Mycobacterium kansasii.

Lymphocyte proliferation to mitogens and antigens was normal, but the counts of NK cells,

monocytes, and platelets were low (Table I). Progressive respiratory decline led to his death

at 22 years of age.

Patient 2, the mother of Patient 1, was well until 48 years of age, when her son was 18 years

old. She developed diarrhea, anemia, and leukopenia, attributed to a viral illness causing

bone marrow suppression. Although the anemia resolved, she had persistent neutropenia,

monocytopenia, and thrombocytopenia. Immune evaluation revealed CD4+ T and B cell

lymphopenia, nearly absent NK cells, and monocytopenia (Table I). She had low IgG,

normal IgA and IgM, low pneumococcal and PRP titers, and a normal tetanus titer (Table I).

Pneumovax and Hib vaccinations caused no significant increase in pneumococcal titers, but

her PRP titer normalized to >9000 ng/mL. IVIG was started; since then, she has had no

significant infections. Lymphocyte proliferation two years later was normal to mitogens and

present to antigens (Table I). Analysis of B cells revealed a deficiency of IgD+CD27− naïve

B cells, markedly increased IgD+CD27+ marginal zone (MZ)-like B cells, and a normal

percentage of switched IgD−CD27+ memory B cells (Fig. 1A), suggesting skewed

differentiation of transitional B cells toward MZ-like B cells or/and impairment of naïve B

cell survival. Stimulation of sorted CD19+ B cells with anti-CD40+IL-21 resulted in IgM

and IgG secretion comparable to a control (Fig. 1B), indicating that class-switching

downstream of CD40 was intact.

Whole exome sequencing on both patients identified a heterozygous mutation in GATA2 (c.

C1061T) that was confirmed by Sanger sequencing. The mutation results in a.a. change

from threonine to methionine at position 354 (T354M) in the second zinc finger domain7

and is predicted to be damaging to protein function by both Polyphen (score 0.997) and

SIFT (score 0). The T354M mutation does not affect GATA2 expression or nuclear

localization, but significantly impairs GATA2 binding to DNA and to the transcription

factor PU.1, resulting in a dominant negative effect on transcriptional activation.7 The

phenotypes associated with the T354M mutation include autosomal dominant MDS/AML,

MDS with pancytopenia, multilineage cytopenias, and opportunistic infections.2, 7–9 One

patient with this mutation had one episode of parainfluenza and mycoplasma with normal

immunoglobulins,6 another had pneumonias limited to childhood 6, and three others had

mycobacterial and viral infections.2, 3, 8 Four individuals were healthy into adulthood.7

Patient 1 presented with IgG2 and IgA deficiency and an abnormal vaccine response, which

has not been previously reported in patients with GATA2 mutations.

No additional mutations were found through whole exome sequencing that would account

for the hypogammaglobulinemia seen in both patients. The normal immunoglobulin levels
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in patients with GATA2 mutations have been attributed to the presence of plasma cells.

However, atypical plasma cell morphology has been reported in patients with different

mutations in GATA2.2, 5, 8 GATA2 may therefore be important for a normal plasma cell

population. Our patients illustrate the broad spectrum of clinical presentation inherent in this

disease. Patient 1 had an initially mild clinical presentation, with recurrent otitis media and

sinusitis, but eventually developed warts and mycobacterial infections despite normal

proliferation to mitogens and antigens (Table I). Patient 2 had no history of recurrent

infections despite her impaired lymphocyte proliferation to antigens. Thus in our patients, as

in others,6 the same GATA2 mutation can result in different phenotypes. This may be due to

differences in modifier genes, environmental exposures, and epigenetic factors.

This report highlights the importance of considering mutations in GATA2 in patients with

hypogammaglobulinemia particularly in the setting of abnormal lymphocyte subsets and

monocyte counts.
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Figure 1.
(A) B cell subpopulations in Patient 2 and a control. (B) IgM and IgG production from

sorted CD19+ B cells isolated from Patient 2 and a control stimulated with anti-CD40+IL21.
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Table I

Immune profiles

Patient 1 Patient 2

14 years 17 years 48 years 50 years

Immunoglobulins (mg/dL)1

  IgG (639 – 1344) 260 886 560 1122 on IVIG

  IgG1 (240 – 1118) ND ND 329 ND

  IgG2 (124 – 549) ND ND 82 ND

  IgG3 (21 – 134) ND ND 64 ND

  IgG4 (7 – 89) ND ND <1 ND

  IgA (70 – 312) <7 <5 104 89

  IgM (34 – 210) 12 <4 220 195

Vaccine titers (normal range)

  Pneumococcal IgG (Positive: > 1µg/mL, normal > +7/14
serotypes)

Absent; +1/14 after
booster

ND +3/14 ND

  Tetanus IgG, IU/ml (0.15 – 7.0 IU/mL) 0.03; 0.02 after booster ND 2.75 ND

  Polysaccharide ribose phosphate, ng/mL (>1000 ng/mL) 131; >9000 after booster ND 460 ND

Lymphocytes, cells/mL (normal range)2

  CD3+ (1000 –2600) 770 871 1139 1257

  CD3+CD4+ (530 – 1500) 237 299 330 428

  CD3+CD8+ (330 – 1100) 494 547 742 801

  CD4+/CD8+ ratio (0.9 – 3.7) 0.48 0.52 0.44 0.53

  CD19+ (110 – 570) 0 0 39 59

    IgD−CD27+ (5 – 21%) ND ND 9.7 ND

    IgD+CD27+ (8.7 – 18.7%) ND ND 81 ND

    IgD+CD27− (57.7 – 79.7 %) ND ND 4.6 ND

  CD16+/CD56+ (90 – 600) 104 20 2 2

Hemogram

  Monocytes, cells/mL (200 – 900) 252 41 90 75

  Neutrophils, cells/mL (2,730 – 6,680) 10,970 3,050 1,470 1,110

  Platelets, cells/mL (168,000 – 339,000) 256,000 162,000 144,000 141,000

Proliferation, cpm (normal control on test day)

  Phytohemagglutinin ND 255,173 (227,256) ND 174,994 (112,915)

  Concanavalin A ND 127,955 (127,472) ND 127,538 (57,266)

  Pokeweed mitogen ND 66,517 (112,473) ND 35,255 (77,049)

  Background ND 462 (1,430) ND 342 (231)

  Tetanus ND 37,464 (71,042) ND 5,285 (90,686)

  Diptheria ND 5,769 (6,687) ND 2446 (68,326)
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Patient 1 Patient 2

14 years 17 years 48 years 50 years

  Background ND 166 (2,594) ND 561 (647)
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ND: Not done
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