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Abstract

Combining information from multiple data sources can enhance estimates of health-related

measures by using one source to supply information that is lacking in another, assuming the

former has accurate and complete data. However, there is little research conducted on combining

methods when each source might be imperfect, for example, subject to measurement errors and/or

missing data. In a multisite study of hospice-use by late-stage cancer patients, this variable was

available from patients’ abstracted medical records, which may be considerably underreported

because of incomplete acquisition of these records. Therefore, data for Medicare-eligible patients

were supplemented with their Medicare claims that contained information on hospice-use, which

may also be subject to underreporting yet to a lesser degree. In addition, both sources suffered

from missing data because of unit nonresponse from medical record abstraction and sample

undercoverage for Medicare claims. We treat the true hospice-use status from these patients as a

latent variable and propose to multiply impute it using information from both data sources,

borrowing the strength from each. We characterize the complete-data model as a product of an

‘outcome’ model for the probability of hospice-use and a ‘reporting’ model for the probability of

underreporting from both sources, adjusting for other covariates. Assuming the reports of hospice-

use from both sources are missing at random and the underreporting are conditionally

independent, we develop a Bayesian multiple imputation algorithm and conduct multiple

imputation analyses of patient hospice-use in demographic and clinical subgroups. The proposed

approach yields more sensible results than alternative methods in our example. Our model is also

related to dual system estimation in population censuses and dual exposure assessment in

epidemiology.
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1. Introduction

Combining information from multiple data sources (e.g., surveys, health claims, medical

records, and registries) can enhance estimates of health-related measures by using one

source to supply information that is lacking in another. For example, health services

researchers frequently use health claims data to supplement information available from

disease registries such as the linked Surveillance, Epidemiology, and End Results (SEER)-

Medicare data. Furthermore, data sources are typically subject to nonsampling errors

including missing data due to nonresponse, noncoverage, measurement and/or response

errors. If different sources have different limitations, combining information for the same set

of variables reported from multiple sources might alleviate these errors and produce

improved estimates of these variables.

Schenker and Raghunathan [1] described several examples of combining information from

multiple surveys, including the race bridging project that predicted single-race report for

census data using multiple race reports from a national survey [2]. In health services

research, Yucel and Zaslavsky [3] corrected underreporting of cancer patients’ receipt of

adjuvant chemotherapy in a statewide registry, using a validation sample from medical

records data. He and Zaslavsky [4] extended this approach to multivariate outcomes. A

common theme of these research is to combine information on key variable(s) from two

sources, one of which is assumed to be accurate and complete (without reporting errors or

missing data) for the variable(s) of interest in a validation sub-sample of the population;

errors in the other source are corrected using multiple imputation approach [5].

However, there is a lack of methods for studies in which both (or multiple) sources are (all)

subject to error. Our research is motivated from a multisite cohort study of care patterns for

colorectal and lung cancer patients diagnosed between 2003 and 2005, the Cancer Care

Outcomes Research and Surveillance Consortium (CanCORS) sponsored by National

Cancer Institute [6]. Patient data were collected from surveys, medical records, Medicare

claims, and cancer registries, to provide a rich set of information on a wide variety of topics

and issues in the care process. The availability of multiple data sources in CanCORS also

allows combining information when necessary.

National guidelines recommend that physicians discuss end-of-life (EOL) care planning

with patients who have incurable cancer and a life expectancy of less than 1 year. Benefited

from the uniqueness of the CanCORS data, several CanCORS studies describe patterns and

quality of EOL care for patients diagnosed in late stages of lung and colorectal cancer (e.g.,

[7, 8]) including patients’ enrollment for hospice services prior to death, a key measure

assessed and validated by previous literature (e.g., [9]). For Can- CORS participants, this

information was obtained from their medical records, which were abstracted at hospitals and

physicians’ offices within 15 months of cancer diagnosis. However, because some medical

records were not abstracted because of patient nonconsent or provider noncooperation or

inaccessibility, hospice-use might be underreported or missing. In addition, medical records

from some physicians providing cancer care (e.g., oncologists or radiologists) may miss

hospice-use because hospice enrollment involves a change of providers responsible for care.
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The misreporting or missingness might also be correlated with the quality of the abstraction

process. To address such concerns, Medicare enrollment and claims data for Medicare-

eligible enrollees (typically of age ≥ 65 years) within a similar time frame, which is

generally recognized as a reliable data source by health services researchers, were obtained

as a supplement for analyses.

Table I crosstabulates hospice-use reports from the two data sources for patients who died

within 15 months of diagnosis in the analytic sample. The off-diagonal counts (445 for

Medicare claims YES/medical records NO and 54 for Medicare claims NO /medical records

YES) show considerable inconsistency of reports from the two sources. We conjecture that

both sources are subject to underreporting, but overreporting might be relatively unusual and

could be neglected. Furthermore, the much larger number for the cell ‘Medicare claims

YES /medical records NO’ than the cell ‘medical records YES /Medicare claims NO’ (i.e.,

445 vs. 54) is consistent with a priori expectation that both sources might underreport, but

Medicare claims might be more reliable because they are required for payment, not

abstracted for specific research purposes such as in CanCORS. Finally, missing data occur

for both sources: unit nonresponses from medical records because the abstraction was not

implemented for all CanCORS participants and noncoverage from Medicare claims for

patients under 65 years old.

A natural analytic strategy is to treat hospice-use as a missing variable (Table II) and impute

it, using information from both sources. Some ad hoc imputation procedures might include

the ‘OR’ algorithm, which assigns a ‘YES’ for an individual if either source reports ‘YES’,

and the ‘AND’ algorithm, which assigns a ‘YES’ only if both sources are ‘YES’. These

procedures, however, lack rigorous statistical justifications and offer no method for imputing

missing reports. They also ignore the possible associations between hospice-use and other

covariates in the study.

In this paper, we aim to develop a more principled imputation approach. However, missing

data methods that handle partially classified contingency tables in the form of Table I

(Chapter 13 of [10]) assume no misreports from the two sources. More related research on

combining information from two sources assume that one of them can be treated as a gold

standard, while the other might be subject to misreporting or missing data [1, 3, 4]. Here, we

extend previous research to account for misreports and missing data in both sources. In

Section 2, we introduce the notation and modeling strategy. Section 3 presents the analysis

of CanCORS data. Section 4 points out connections with related methods and discusses

future research topics.

2. Method

Let YO be true hospice-use status (1, yes/0, no) and YR1 and YR2 be its reports from medical

records and Medicare claims, respectively. As shown in Table II, YO is a latent variable

(100% missing), and missing values (due to nonresponses for the data sources) can also

occur for YRl = (YRl,obs, YRl,mis), (l = 1, 2). We assume that the mechanisms leading to

misreporting and missing responses from each source can be related to some covariates X.

For simplicity, we assume that X has no measurement errors and is fully observed. We also
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treat the linked cases from both sources as a simple random sample from the combined

population.

We further assume that missing YRl’s are at random (MAR), meaning that the probability of

missing reports can only depend on X but not YO. Let θ indicate some parameters governing

the process of misreporting and nonresponse. In our context, around 90% of the missing

Medicare claims data are due to noncoverage from patients younger than 65 years old. This

is largely ‘missing by design’ that satisfies MAR if we include age as a predictor X in the

imputation model for hospice-use. On the other hand, the missing cases from the medical

records are mainly caused by subject nonconsent and inaccessibility of some records. The

rest of missing data resulted from nonmatches in the data linking process (Section 3.1). If

the probability of unit nonresponses in medical records and nonmatches in Medicare claims

are largely associated with demographic and clinical variables, which are included in X in

the modeling process, then the MAR assumption is more plausible.

Under MAR, valid inferences about θ can be made using the observed-data likelihood

P(YR1,obs, YR2,obs|X, θ) = ∫ P(YR1, YR2, YO|X, θ)dYR1,misdYR2,misdYO, where P(YR1, YR2, YO|

X, θ) is the complete-data model.

We further consider the following decomposition of the complete-data model

Following [3], we refer to PO(YO|X, θO) as the ‘outcome’ model. It relates hospice-use to

covariate X, with regression parameters θO that might be of subject-matter interest.

The reporting model (or the measurement error model), PR(YR1, YR2|YO, X, θR),

characterizes reporting in the two sources given true hospice-use status, covariates, and

parameters θR. Our reporting model rests on two assumptions:

Assumption 1

Reporting in the two sources is independent conditional on true status and observed

covariates:

Assumption 2

Both sources may be subject to underreporting but not overreporting: PRl(YRl = 1|YO = 0, X,

θRl) = 0.

Assumption 1 is justified if X contains all factors that are predictive of misreporting.

However, with enough scientifically relevant covariates, the residual correlation between

two reporting systems might be minimal. Section 1 presents arguments for plausibility of

Assumption 2 in our application. Generalizations of these assumptions are considered in

Section 4.
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We propose to multiply impute YO to facilitate statistical analyses involving the hospice-use

variable. Although originally proposed as a tool that can be used by statistical agencies to

handle nonresponse in large-sample public-use household surveys, the multiple imputation

framework has been adapted for other statistical contexts over the past 30 years [11].

Relevant examples include latent variables [12] and measurement error problems [13]. See

Section 3.3. for more details related to our example.

3. Application

3.1. Data background

The CanCORS Consortium is a collaboration of seven teams of investigators across the

nation to evaluate prospectively the quality of cancer care for patients with lung or

colorectal cancer. Approximately 10,000 patients newly diagnosed during 2003–2005 were

identified from five geographic sites (Northern California, Los Angeles County, central and

eastern North Carolina, Iowa, and Alabama), five large health management organizations

(Group Health Cooperative, Harvard Pilgrim Healthcare, Henry Ford Health System, Kaiser

Permanente Health Insurance, and Kaiser Permanente North West), and 10 Veterans Health

Administration hospitals, capturing variation in cancer care across geographical regions and

health care systems.

The CanCORS investigators abstracted detailed clinical data from medical records,

including cancer-related diagnostic and staging procedures, surgery, chemotherapy,

radiation therapy, and EOL care measures [6]. Additional predictors of clinical outcomes

included tumor stage, comorbid illnesses, and relevant test results. Medical records for some

patients were unavailable because of nonconsent or inaccessibility. As an additional data

source, Medicare enrollment and claims data for Medicare enrollees among CanCORS

participants (excluding Veterans Health Administration patients) were linked for 89% of

CanCORS enrollees aged 65 years and older within the study period. We used inpatient,

outpatient, provider, and hospice files to code the EOL care quality indicators including

hospice-use.

The analytic sample for the pattern of hospice-use includes 3027 CanCORS patients who

died within 15 months of diagnosis (Table I). Among them, 358 patients missed hospice

reports from both sources. Under the MAR assumption for reported data, these cases contain

no information on the parameters of the outcome and reporting models proposed in Section

2. Thus, the analysis focuses on the remaining 2669 cases with observed data from at least

one source. Table III describes patient demographic and clinical characteristics, which might

have been associated with the use of EOL care among terminally ill patients as suggested by

previous literature [9]. These variables constitute the covariates X in both the outcome and

reporting models. They were fully observed and assumed to be without measurement errors.

Note that in the reporting model for Medicare claims PR2(YR2|YO, X, θR2), there exists no

less-than-65 age group due to noncoverage, and therefore we could only use the remaining

age groups in the covariates.
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3.2. Exploratory analyses

We conduct some exploratory analyses initially to establish the basis for model-based

imputation. Under our assumptions, hospice-use status might be 1 even if reports from both

sources are 0. This phenomenon can be connected with the dual system estimation (DSE)

[14] of population counts and other capture–recapture problems. The classical DSE

approach conceptualizes that each person in a population is either in or not in the two lists.

Analogously in our context, a patient’s hospice-use status is either reported or not in the two

data sources, medical records, and Medicare claims data.

We first treat Table I as a simple DSE example, ignoring the cells containing missing values.

Note that the cell with ‘NO’ from both sources (617) can be viewed as the count of cases

excluded from both lists in the DSE framework. The reporting completeness (inclusion

probability or capturing rate) for data source 1 (2) can be simply calculated as E(YR1|YR2 =

1) (E(YR2|YR1 = 1)). For example in Table I, note that the 449(= 395+54) cases who were

reported as ‘YES’ from the medical records data are true positives. Yet only 395 of them

were reported as ‘YES’ from the Medicare claims data. This suggests that the reporting

completeness rate for the Medicare claims data is 395/(395 + 54) ≈ 88%. Similarly, the

capturing rate for medical records is estimated as 395/(395 + 445) ≈ 44%. In addition, the

total number of ‘YES’ on hospice-use in the sample is estimated as (395+54)(395+445)/395

≈ 955. That is, among the 617 cases with ‘NO’ reports from both sources, 445 × 54/395 ≈

61 cases should be imputed as ‘YES’ in hospice-use. If we further consider cases with

missing reports from either source, an expectation–maximization (EM) algorithm (details

not shown) can be developed to fit a model with three parameters including P(YO = 1),

P(YR1 = 1|YO = 1), and P(YR2 = 1|YO = 1), the simplest form of Model (1) (Section 3.3.1).

The classic DSE assumes independent reporting between two data sources, homogenous

across individuals. A nonhomogeneous population may be divided into several

homogeneous post-strata based on demographical variables, or the heterogeneous inclusion

probability might be related to covariates using logistic regression models [15]. Our

modeling approach (Section 2) is consistent with the latter strategy. However, because some

sites have perfect reporting completeness or sparse data, directly including study sites as a

fixed-effect covariate for the reporting models would entail the data separation issue: a

linear combination of the predictors perfectly predicts the binary outcome, making estimates

for the associated parameters unidentifiable [16]. Table AI (Appendix) describes hospice

reports stratified by site, showing 100% sample reporting completeness for Medicare claims

data from sites HPHC, KPHI, UAB, and UNC and for medical records from site HPHC. On

the other hand, removing site as a predictor is not desirable because the heterogeneity of

reporting completeness across sites might not be fully attributable to other patient-level

characteristics. Use of hospice (the outcome) may also vary across sites, possibly revealing

interesting geographical and organizational variations among health care providers. We

instead treat site as a random effects covariate, making site effects estimable. At sites with a

perfect unadjusted reporting rate, the model-based estimate would be shrunken toward the

population average adjusted for other covariates. In addition, the random effects model

treats the included sites as a random sample from a population of potential data collection

sites, making the inferences more generalizable.
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3.3. Model-based imputation

3.3.1. Model specification—We consider Bayesian random effects probit models [17]

for both the outcome and reporting processes. Let i index site i = 1,…, 10 and j = 1,…ni

index patients. The complete-data model (1) is

(1.1)

(1.2)

(1.3)

(1.4)

where ZOij, ZR1ij, and ZR2ij are the normal latent variables, βO, βR1, and βR2 are the fixed-

effects parameters, γOi, γR1i, and γR2i are the random site effects for the outcome and

reporting processes, respectively with , and 

independently across sites. Following our reasoning in Section 2, Equation (1.1) specifies

the outcome model, Equation (1.2) imposes the underreporting assumption, and Equations

(1.3) and (1.4) specify the reporting model for the medical records data and Medicare claims

data, respectively.

We consider vague priors for parameters given that little is known about the mechanism

governing the outcome and reporting processes. We impose flat priors for β’s (p(β) ∝ 1). For

the between-site variance  and , we lacked solid information and field expertise on

how study sites might vary on the hospice-use and reporting completeness and therefore

used noninformative or weakly informative priors [18]. Despite the popular use of inverse

gamma priors (IG(a, a)) for σ2 because of its conjugacy [19], recent literature (e.g., [18, 20])

has shown the sensitivity of the corresponding posterior inferences to the choices of a,

especially with a small number of clusters. We confirmed this in our own application: under

inverse gamma priors with a = 0.001, 0.01, 0.1, 1, the posterior estimate of σ2 increases

considerably as a increases. Gelman [18] recommended using a noninformative uniform

prior density for σ, that is, p(σ) ∝ 1, which also implies p(σ2) ∝ (σ2)1/2. If the number of

clusters is small, say below five, a weakly informative half-t prior can be used to prevent

from obtaining extremely large posterior estimate. Note that our data had 10 sites, offering a

reasonable number of clusters for applying the uniform prior. Table V lists posterior

estimates of , and . We also implemented the half−t priors, and results were

similar.

3.3.2. Imputation algorithm—We implemented a data augmentation (DA) algorithm

[21] to draw model parameters and impute missing values. The main steps are sketched

here, and details on the conditional distributions appear in the Appendix. Some sample R

(http://www.r-project.org) code is also attached.
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a. Draw latent variables (ZOij, ZR1ij, ZR2ij) of Model (1) from truncated normal

distributions.

b. Draw fixed-effects coefficients βO and βR from multivariate normal distributions.

c. Draw random effects {γOi, γRi} from independent normal distributions for each i.

d. Draw missing values of YO from multiple Bernoulli distributions where the

probabilities are estimated from the functions of cumulative distributions of the

standard normal distribution. Note that ∫ PRl(YRl|YO = 1, X, θRl)dYRl,mis = Π

P(YRl,obs|YO = 1, X, θRl), l = 1, 2. The latter suggests that conditional on YO = 1 and

MAR for missing YRl, the likelihood inference on θRl does not involve the missing

reports. Therefore, it is unnecessary to impute missing YRl in the algorithm.

We diagnosed the convergence of the DA algorithm using statistics developed by Gelman

and Rubin [22] and concluded that the Gibbs chain converged after 105 iterations. The

posterior inferences and multiple imputation analyses are based on running the chain for

another 105 iterations.

3.3.3. Model diagnostics—We used the posterior predictive checking method [23] for

the model diagnostics, comparing the observed reports YRl,obs with distributions of their

replicates  under Model (1). If Q is a diagnostic statistic (or the discrepancy function

as defined in [23]), then the posterior predictive p-value for assessing the model fit in terms

of Q is calculated as . An extreme p-value (close to 0 or 1)

would imply some model misfit.

A natural choice of Q is the average of reports, Q(YRl) = ȲRl, the mean rate of hospice-use

estimated from each data source or within certain strata defined by covariates (e.g., for all

female patients or patients in certain study sites). These diagnostics (not shown) do not

reveal any apparent misfit. We also check the model fit for the joint distribution of YR1 and

YR2. Going back to the DSE framework (Section 3.2), we use some unadjusted estimates of

capturing rate for both sources as the discrepancy function (i.e., Q(YR1, YR2) = E(YR1|YR2 =

1) and E(YR2|YR1 = 1)). Here, the term ‘unadjusted’ merely means that they are assessed in a

straightforward way as opposed to fitting Model (1) with a extensive set of covariates. These

rates can be calculated across the whole sample (e.g., Section 3.2) or within covariate groups

(e.g., for each site). In addition, we used the sample variance of these capturing rates as a

discrepancy measure for heterogeneity.

Table IV shows the observed capturing rates, medians from their posterior predictions, and

posterior predictive p-values for each study site. For example in the GHC site, the capturing

rate estimate is 23/(23 + 38) ≈ .38 for Medical records and 23/(23 + 2) ≈ .92 for Medicare

claims. The corresponding numerators and denominators can be found in Table 7. The

posterior predictive p-values are mostly between 0.1 and 0.9, showing a good fit for the

model. Correspondingly, the (medians of) predictions are in general not far different from

the observed statistics. For the sites with perfect observed capturing rates (e.g., UAB and

UNC from Medicare claims data), their predictions tend to be slightly lower, as expected

from shrinkage-to-the-mean effect under the random site effects model. The sample variance
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of the site-specific capturing rates (shown for the line ‘Var’ in Table IV) is also well

predicted by the model.

3.4. Analytic results

3.4.1. Model estimates—Table V shows the parameter estimates (posterior medians) of

βO and βR from the outcome and reporting models (Equations (1.1)–(1.4)). Estimates with

95% CIs (not shown) excluding 0 are highlighted with *. Results from the outcome model

(βO from Equation (1.1)) suggest that hospice was used less often by CRC patients than lung

cancer patients, more often in the older groups (65–69 years old or >80 years old), more

often among late (stage 3 or 4) or missing stage patients, and more often among patients

with depression symptoms. Patients who lived longer after diagnosis were more likely to use

hospice services. Results from reporting models (βR1 and βR2 from Equations (1.3) and

(1.4)) suggest that medical record data were less complete for hospice-use among patients

aged between 65 and 69 years and much less complete among patients with stage missing

information. Medicare claims data were less complete for hospice-use among Hispanic

patients and more complete among patients with heart failure or diabetes or those who lived

longer.

As can be seen from the ‘Site random effects variance’ in Table V, there was considerable

between-site variation for hospice-use and reporting from medical records data but less so

for the reporting from Medicare claims. Under Model (1), the posterior median rates for

hospice-use range from around 43% to 100% across sites. Those for the reporting

completeness range from around 21% to 78% for medical records and from around 77% to

100% for Medicare claims. The much smaller between-site heterogeneity for coverage of

Medicare claims than medical records abstraction is well predictable given that the former is

collected by the nationally uniform system that pays for the services, while the latter is

collected by separate staff groups within each CanCORS site.

The posterior median number of imputed ‘YES’ case when both sources have negative

reports is around 88, substantially more than the estimate (61, Section 3.2) from the simple

DSE approach. In addition, the corresponding posterior medians when the reports from

medical records (Medicare claims) are negative and Medicare claims (medical records) are

missing is around 272 (21). Neither quantity, however, can be estimated using the simple

DSE approach that does not account for the missing reports. Therefore, methods that do not

capture the heterogeneous reporting probabilities associated with covariates or do not

account for missing reports might underestimate the number of false negatives. On the other

hand, the posterior medians of the average reporting completeness rate for the medical

records and Medicare claims are 46.8% and 85.6%, respectively. They are close to the

simple DSE estimates (44.0% and 88.0%). Therefore, simple and model-based approaches

agree on the much lower the reporting completeness for medical records than for Medicare

claims.

Although the primary analytic goal is to impute the hospice-use status for substantive

analyses (Section 3.4.2), the model outputs in Table V might inform us about certain factors

correlated with misreporting. Therefore, targeted efforts might be planned in the process of
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data collection and dissemination to improve the accuracy and reliability of large data

systems (e.g., reducing the variation across multiple sites with good coordination).

3.4.2. Post-imputation analyses—We can use the multiply imputed data for

substantive analyses involving the hospice-use variable. Because of the 100% missingess

rate, we use 50 imputed datasets, selected from every 2000 iterations of the Gibbs chain, to

minimize potential autocorrelations and ensure a high relative efficiency [5] for multiple

imputation inferences. Model coefficients are estimated from each of the 50 imputed

datasets and combined using rules for multiple imputation inference for scalar estimands [5].

Thus, point estimates are means of the estimates from the 50 imputations, and the standard

errors combine between-imputation variance because of missing data with sampling (within-

imputation) variability conditional on imputed data.

We consider two analyses. One is to describe the hospice-use rate for the analytic sample.

The other is a logistic regression model predicting hospice-use for lung cancer patients.

These patients are more likely to be diagnosed at late stage and to die more quickly after

diagnosis. Therefore, hospice-use might be a more relevant issue for them and their family

members. We exclude from the predictors the time from diagnosis till death and study sites

to make the inferences more predictive for patients seeking EOL care and therefore more

generalizable.

For comparative purposes, we consider several alternative missing data strategies. The ‘OR’

algorithm assigns true status ‘YES’ if either source reports ‘YES’, ‘NO’ if both sources

report ‘NO’, and ‘MISSING’ if one source reports ‘NO’ and the other reports ‘MISSING’.

The ‘AND’ algorithm assigns true status ‘YES’ if both sources report ‘YES’, ‘NO’ if neither

source reports ‘MISSING’ and at least one source reports ‘NO’, and ‘MISSING’ if at least

one source reports ‘MISSING’.We also analyze the data using either source alone.

Table VI shows estimates from the two aforementioned post-imputation analyses. The first

row lists marginal estimates of the hospice-use rate, and other rows list the logistic

regression coefficients. Except for the analysis using ‘OR’ algorithm, all other methods

yield substantially lower estimates for the rate of hospice-use than that from multiple

imputation. This is because these methods treat reported ‘NO’ as true negatives and

therefore tend to underestimate the rate under the assumption of independent underreporting.

The rate estimate from the ‘OR’ algorithm is higher because it removes cases with missing

reports from either source and therefore deflates the denominator. The logistic regression

analysis results from the multiply imputed data suggest that older patients (60–65 or 80

years or older), patients in late stage (III/IV) or with stages missing, and patients with

depression are more likely to use hospice. The directions and magnitudes of these

coefficients from other missing data methods can be considerably different. For example,

the analysis using the ‘OR’ algorithm shows patients older than 65 years old are less likely

to use hospice than those younger than 65 years old. This less obvious result might be

caused by solely using the misreported medical records data for patients younger than 65

years old. In addition, as opposed to the multiple imputation approach, the other missing

data methods rarely show strong associations between late stage and hospice-use, which is

He et al. Page 10

Stat Med. Author manuscript; available in PMC 2015 September 20.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



less plausible because we might expect more use of hospice by patients with more

predictable mortality.

Because the alternative methods do not appropriately account for measurement errors in the

response variable, the resulting coefficients are susceptible to bias [24], which might lead to

misleading scientific conclusions. For example, using medical records only, which contain

substantial measurement errors, might be less capable of detecting true effects. On the other

hand, using Medicare claims only, which might be more accurate yet are limited to the

sample older than 65 years old, might produce association estimates that cannot be

generalizable to younger patients. The multiple imputation analysis overcomes the weakness

of the two data sources. It yields overall larger standard errors than the alternative

approaches that overstate the precision of the coefficients because they fail to account for

the misclassification of the outcome (hospice-use) in an appropriate way.

In multiple imputation analysis, an important statistic is the rate of missing information,

which is approximately the ratio of between-imputation to total variance and shows the

increase of variance associated with missing data under the model. In the logistic regression

analysis, the estimated rate of missing information is substantial, ranging largely between

40% and 70% for various estimates (results not shown). But they are still considerably lower

than the rate of imputation (100%). This range suggests that using mismeasured reports and

covariates is as informative as having observed around 30–60% (=(1–70%, 1–40%)) of the

true hospice-use data for the analyses, supporting the utility of Model (1) for imputation

[25].

4. Discussion

In our application, a binary measure of hospice-use is available from two data sources, yet it

is subject to misclassification and missing data in both datasets, errors commonly

encountered in population research. We multiply impute the true status of this measure,

using models that capture both the outcome and reporting processes (Equations (1.1)–(1.4)).

The subjective-matter analyses yield conclusions more sensible than those of ad hoc

approaches that fail to account for these errors. Although Medicare claims data are shown to

be more accurate than medical records in our case, the former is limited to patients older

than 65 years old. Therefore, a major advantage of the proposed approach is to analyze

hospice-use across the entire age spectrum in a more reliable way.

Some major limitations of the proposed approach stem from the assumptions (Section 2.1),

including MAR for the reported data, conditional independence of reporting, and

underreporting for both sources. We discuss possible generalizations that can lead to future

research topics. First, we might generalize the missingness mechanism to not MAR [5] by

assuming that, for example, the medical records for patients who did not use hospice were

more likely to be missing. However, not MAR models are usually weakly identifiable [26]

and are especially likely to be so in our application because true hospice-use is 100%

missing. A more feasible strategy might be to perform sensitivity analysis under possible

specifications of models for missingness mechanisms that rely on strong subject-matter

expertise on how medical records data might be missing during the abstracting process.
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Our topic is related to dual exposure assessment in the measurement error problems

literature [27]. There, two assessments are used to determine whether subjects were exposed

to putative binary risk factors in case-control studies. For example, Drews et al. [28] used

patient interviews and medical records to provide two assessments of a variety of exposures

(e.g., maternal anemia during pregnancy) for a case-control study on sudden infant death

syndrome. The objective is to estimate exposure-outcome associations (Section 5.3–5.4 of

[29]). In our context, the analog to exposure is hospice-use status, reported by two data

sources. Unlike typical case-control studies, there is no analog to the disease outcome

measure in our setting, although hospice-use could be either the exposure (predictor) or

outcome (response) in post-imputation analyses. Our model factorization corresponds to the

‘exposure given outcome model’ in Equation (5.14) of [29].

Gustafson’s [29] variations on dual exposure assessment models include relaxing the

conditional independence assumption and allowing both overreporting and underreporting.

For example, we might consider a more general specification of the reporting model PR(YR1,

YR2|YO, X, θR) relaxing both assumptions, with complete-data model

(2)

where g is a link function for the binary outcome YO, X is the vector of covariates including

the intercept term, and β’s are the coefficients. Thus, the misreporting of two data sources

can go either direction, and they can still be correlated after controlling for covariates.

However, Model (2) might be weakly identified. Although with an increasing number of

covariates X included in the data, there seem to be enough degrees of freedom for estimating

the associated parameters, practical experience with such estimation has been largely

negative (Section 5.4.2 of [29]). See also comments from Section 15.3.2.1 of [27] in a

similar context with unknown response misclassifications in logistic regression models.

They argued that the practical nonidentifiability of these models might be due to the fact that

the misclassification probabilities are only weakly identified by the data if both

overreporting and underreporting are allowed. Our own application of Model (2) to the

hospice-use data show similar lack of identifiability (results not shown). Further

methodological investigations on the issues of model nonidentifiability is beyond the scope

of this paper.

On the other hand, identifiability of more general misreporting models might be improved if

data are available from more than two sources. With L > 2 sources, the complete-data model

can be factorized as

The main challenge is to model the multivariate reported outcomes PR(YR1, YR2,…, YRL|YO,

X, θR) (i.e., the reporting model). With L increasing, the data might contain more flexibility

for allowing both overreporting and underreporting, as well as residual correlations among

reporting sources after adjusting for covariates. Intuitively, binary data YRl’s constitute a 2L

table, which opens more degrees of freedom for model parameters. With L = 3, the modeling
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framework resembles triple system estimation, which augments census and post-

enumeration survey data (both of which are included in DSE) with administrative-list data to

improve estimates of population count [30]. Similarly, CanCORS patients or their surrogates

were also surveyed on whether they received hospice care. Patient survey data can be treated

as the third source for this measure, which might include both overreporting and

underreporting due to recall bias. Further, modeling efforts to impute hospice-use will be

necessary in such a complicated data structure. Extensions can also be considered for

mismeasured variables with distributions other than binary (e.g., ordinal, nominal, or

continuous).

Increased efforts on data collection and assembly offer great opportunities to use

information from multiple data sources for scientific investigations. The imputation strategy

provides an effective means to synthesize information, closely related to advances in survey

sampling and measurement error problems. Methods under more general modeling

assumptions or for more complicated data structures deserve further research.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

Let . The imputation step of the DA

algorithm:

• Set YO = 1 if YR1 = 1 or YR2 = 1 by the assumption of underreporting

• When YR1 = 0 and YR2 = 0, by the Bayes theorem,

draw YO from a Bernoulli distribution with this probability.
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• When YR1 = 0 and YR2 is missing, draw YO from a Bernoulli distribution with the

following probability

• Similarly when YR1 is missing and YR2 is 0, draw YO from a Bernoulli distribution

with the following probability

The posterior step of the DA algorithm draws a new value of θ conditional on imputed YO

via the auxiliary variable Gibbs sampling algorithm for probit models [31]. To describe the

algorithm in a general way, suppose data contains m sites and, in site i, there are ni patients.

The observed data consist of {YR1ij} and {YR2ij}, and patient-level covariates Xij. Unless

denoted specifically (e.g., for ), the posterior distributions are standard, and we omit the

details. The Gibbs sampler is as follows:

Step 1. Draw latent variables {ZOij} from truncated univariate standard normal

distributions with mean XijβO + γOi with the signs of latents depending on YOij, that is,

ZOij > 0 iff YOij = 1.

Step 2. For the cases with YOij = 1, draw latent variables {ZRlij} from truncated

univariate standard normal distributions with mean XijβRl + γRli with the signs of latents

depending on YRlij, that is, ZRlij > 0 iff YRlij = 1 (l = 1, 2).

Step 3. Draw

Step 4. Draw

Step 5. Let S be the design matrix for random effects γOi. Draw random effects {γOi}

from a multivariate normal with covariance matrix
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 and mean vector μγO = ΩγO (ST (ZO − XβO)), where Im is

the identity matrix with dimension m and diag{ni} is a m × m diagonal matrix with the

i-th element as ni.

Step 5. Let SYO = 1 be the submatrix of S for the cases with YO = 1. Draw random

effects γ(Rl) from a multivariate normal with covariance matrix

Table AI

Frequency tables of hospice-use reports from medical records and medicare claims, by

study sites.

GHC
Medicare claims yes Medicare claims no

Medical records yes 23 2

Medical records no 38 22

HPHC
Medicare claims yes Medicare claims no

Medical records yes 2 0

Medical records no 0 0

HFHS
Medicare claims yes Medicare claims no

Medical records yes 7 3

Medical records no 2 11

KPHI
Medicare claims yes Medicare claims no

Medical records yes 1 0

Medical records no 4 8

KPNW
Medicare claims yes Medicare claims no

Medical records yes 41 7

Medical records no 20 23

NCCC
Medicare claims yes Medicare claims no

Medical records yes 43 12

Medical records no 130 179

UAB
Medicare claims yes Medicare claims no

Medical records yes 20 0

Medical records no 82 101

UCLA
Medicare claims yes Medicare claims no

Medical records yes 62 9

Medical records no 78 122

IOWA
Medicare claims yes Medicare claims no

Medical records yes 190 21

Medical records no 70 112

UNC
Medicare claims yes Medicare claims no
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Medical records yes 6 0

Medical records no 21 39

Note: The subsample consists of 2669 CanCORS patients who died within 15 months of diagnosis and had at least
one observed hospice-use record from two sources. An example for calculating unadjusted site-specific capturing rate
for two data sources: For GHC, the estimate of Medicare Claims is 23/(23 + 2) ≈ 92%; the estimate of medical
records is 23/(23 + 38) ≈ 38% (see also the footnote of Table IV).

 and mean vector

.

Step 6. Draw  from . Note that the conditional

distribution of . As in [18], a uniform prior on

σO implies that . Therefore,

. On the other hand, for a random variable X ~ IG(a, b), p(X|a, b) ∝ X−(a+1)exp(−b/X).

Therefore, . In addition, note that

 by the connection of the

inverse gamma between scaled inverse chi-square distribution with DOF ν and scale s

[19].

Step 7. Draw  from , where the conditional

distributions can be derived similarly as in Step 6.
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Table I

Hospice-use reports from medical records and medicare claims, a subsample of CanCORS data.

Medicare claims

Yes No Missing

Yes 395 54 260

Medical No 445 617 646

Records Missing 136 116 358

Note: The subsample consists of 3027 CanCORS patients who died within 15 months of diagnosis (Section 3.1).
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Table II

Combining information from two data sources in a missing-data analysis framework.

True hospice-use status, YO Medical records report, YR1 Medicare claims report, YR2 Covariates, X

? 1 1 …

? 1 0 …

? 0 ? …

? 0 0 …

? 0 1 …

? ? 1 …

? ? 0 …

? … … …

Note: 1, yes (patient had hospice-use); 0, no; ‘?’, missing.
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Table III

Distribution of covariates from medical records and medicare claims, a subsample of CanCORS data.

Variables Levels (%)

Cancer type Lung (78%), CRC (22%)

Gender Male (56%), Female (44%)

Marital status Married (56%), Unmarried (44%)

Age <65 (20%), 65–69 (22%), 70–74 (18%), 75–79 (16%), 80+(24%)

Education <High school (25%), high school (57%), college (18%)

Income <20K (34%), 20–39K (36%), 40–59K (17%), >60K (13%)

Race NH-White (74%), NH-Black (11%), Hispanic (6%), NH-Asian (4%), Others (5%)

Cancer stage I (9%), II (12%), III (28%), IV (46%), unknown (5%)

Comorbidity Myocardial infarction (21%)

Chronic heart failure (15%)

Stroke (18%)

Lung disease (35%)

Diabetes (25%)

Depression (23%)

Time between diagnosis
and death

Mean = 123 days, standard deviation = 132 days

Study site GHC (5.1%), HPHC (.4%), HFHS (2.0%), KPHI (1.6%), KPNW (5.8%), NCCC (22%), UAB (13%), UCLA
(22%), IOWA (23%), UNC (5.2%)

Note: The subsample consists of 2669 CanCORS patients who died within 15 months of diagnosis and had at least one observed hospice-use record
from two sources (Section 3.1).

CRC, colorectal cancer; GHC, Group Health Cooperative; HPHC, Harvard Pilgrim Healthcare; HFHS, Henry Ford Health System; KPHI, Kaiser
Permanente Health Insurance; KPNW, Kaiser Permanente North West; NCCC, Northern California Cancer Center; UAB, University of Alabama;
UCLA, University of California at Los Angeles; IOWA, University of Iowa; UNC, University of North Carolina.
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Table V

Coefficient estimates from outcome and reporting models using the medical records and medicare claims, a

subsample of CanCORS data.

Covariates Outcome model Reporting model
for medical records

Reporting model
for Medicare claims

Colorectal cancer −.58* .16 −.41

65–69 years .45* −.39* NA

70–74 years .31 −.23 .00

75–79 years .35 −.25 −.11

80 years or older .54* −.29 .10

Female .09 −.09 .31

Black −.08 −.18 −.01

Hispanic .30 .03 −.70*

Asian .01 .03 −.23

Other race −.28 .19 −.40

Less than high school .17 .11 −.08

High school .04 .22 −.23

Less than 20k .08 −.21 −.02

20–39k .09 −.28 −.01

40–59k .19 −.18 .16

Married −.10 .03 .15

Stage 2 .12 −.43 −.42

Stage 3 .40* −.36 −.07

Stage 4 .81* −.36 −.31

Stage missing .49* −.61* .03

MI −.05 −.07 −.18

CHF −.07 .09 .54*

Stroke .09 .03 −.23

Lung disease −.09 −.09 .16

Diabetes −.02 .06 .37*

Depression .22* −.12 −.11

Days till death .30* −.06 .24*

Site random effects variance .10 .48 .05

Note The subsample consists of 2669 CanCORS patients who died within 15 months of diagnosis and had at least one hospice-use record from two
sources. Outcome model: Equation (1.1), reporting model for medical records: Equation (1.2), and reporting model for Medicare claims: Equation

(1.3). Posterior medians for βO and βR’s are based from 105 iterations of the Gibbs chain. Estimates with 95% CIs (not shown) excluding 0 are

highlighted with *. The reference categories are lung cancer, younger than 65 years old for the outcome model and reporting model for medical
records/younger than 70 years old for the reporting model for Medicare claims, White, college, more than 60K, stage I. The variable ‘Days till
death’ is included in the model using a standardized Z-score.
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