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Abstract

Genetic information typically remains constant in all cells throughout the life cycle of most

organisms. However, there are exceptions where DNA elimination is an integral, developmental

program for some organisms, associated with generating distinct germline vs. somatic genomes.

Programmed DNA elimination occurs in unicellular ciliates and diverse metazoa ranging from

nematodes to vertebrates. DNA elimination can occur through chromosome breakage and

selective loss of chromosome regions or the elimination of individual chromosomes. Recent

studies provide compelling evidence that DNA elimination is a novel form of gene silencing,

dosage compensation, and sex determination. Further identification of the eliminated sequences,

genome changes, and in depth characterization of this phenomenon in diverse metazoan is needed

to shed new light on the functions and mechanisms of this regulated process.

Introduction

In multicellular organisms, germ cells maintain the genetic information and ensure its

integrity for the next generation, while somatic cells undergo differentiation and

specialization. The genetic makeup of the germline and somatic cells is typically the same

throughout the organism’s life cycle. However, there are exceptions to the general genome

constancy observed in most organisms. During the development of some organisms, major

genome changes can occur in various cell types [1,2]. One well-known example is the

recombination events in the vertebrate immune system that generates diversity in antibodies

and receptors in B and T cells, respectively [3]. Another major developmental genome

change is programmed DNA elimination where specific DNA sequences, up to ~90% of the

genome in some cases, are eliminated from somatic lineages. Since its discovery in 1887 [4],

programmed DNA elimination in animals has been the subject of much interest and

speculation [5–7]. The best-studied examples of programmed DNA elimination in

eukaryotes are those present in the single-cell ciliates (see recent reviews [8–10]). Recently,

high-throughput sequencing has been used in multicellular organisms to comprehensively
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examine genome changes that occur during programmed DNA elimination. Here, we review

the broad range of organisms that demonstrate this phenomenon, and what is known

regarding the function(s) and molecular mechanism(s) of programmed DNA elimination in

metazoa.

Distribution and identification of programmed DNA elimination

Programmed DNA elimination has been described in single-cell ciliates and a diversity of

multicellular animals including more than 100 species from nine major taxonomic groups

(Fig. 1 and Table 1). In most cases, programmed DNA elimination is associated with either

differentiation of somatic cells or sex determination [1,6]. Two types of programmed DNA

elimination, chromatin diminution and chromosome elimination, have been described (see

Table 1). In chromatin diminution, chromosomes break and regions of the chromosomes are

lost. Diminution occurs in ciliates and some parasitic nematodes, copepods, spotted ratfish,

hagfish, and lampreys. In chromosome elimination, entire chromosomes are lost. This

elimination occurs in some nematodes, insects, mites, finches, and bandicoots, as well as in

some hagfish [11]. Given its wide phylogenetic distribution, programmed DNA elimination

likely has arisen independently in these different lineages [6]. Outstanding questions remain

including what the selective pressure for this process is, whether this pressure is the same in

different organisms, and whether elimination serves the same function in diverse organisms?

Programmed DNA elimination typically has been identified through careful cytological

studies of chromosome behavior during development. Theodor Boveri first discovered the

diminution process by studying the chromosome segregation behavior in the horse parasitic

nematode, Parascaris univalens [4]. Boveri’s analysis contributed to the establishment of

chromosome theory of heredity and the first nematode cell lineages [12,13]. The single,

large germline chromosome pair, a large increase in somatic chromosome number, and

elimination of over 85% of the germline genome in somatic cells enabled Boveri to readily

observe and describe chromatin diminution (Fig. 2). Soon thereafter, DNA elimination was

described in several other nematodes including the related nematode Ascaris suum in 1895

(see Fig. 2), and then in insects and other organisms (Fig. 1 and Table 1, see review [6]). In

the most recent discovery of chromatin diminution, Smith et al. followed a repetitive

germline-specific DNA marker, germ1, in the germline and somatic tissue of lamprey to find

that germ1 is eliminated in somatic tissues [14].

The historical identification of DNA elimination using cytological methods has been

serendipitous, and only large-scale genome changes are likely to be discovered by these

approaches. The current broad use of high-throughput sequencing in diverse organisms, such

as the Genome 10K Project [15], and single-cell sequencing may lead to the identification of

additional examples of DNA elimination. These studies will likely contribute to our

understanding of the breadth and frequency of DNA elimination in different metazoa, as

well as whether genome differences might be present within different cells in mammals.
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Identification of eliminated sequences provides insights into the function

of DNA elimination

A key to understanding DNA elimination is defining the organization of chromosomes and

their eliminated sequences. Early studies using DNA reassociation kinetics demonstrated

that significant amounts of repetitive DNA were eliminated from the parasitic nematode A.

suum; subsequent studies demonstrated that the major eliminated repeat was a 121 bp

tandemly repeated satellite [16]. Later, seminal studies demonstrated that some transposon

elements [17] and three single-copy genes were eliminated in A. suum [18–21]. Furthermore,

by comparing the genomic sequences around chromosomal breakage regions, Muller et al.

demonstrated that new telomeres were added at the DNA breaks and several break sites

were conserved between the nematodes P. univalens and A. suum [22,23].

More recently, a comprehensive genomic approach was used to compare the genome

differences between the germline (spermatids) and somatic cells (intestine) of a single male

A. suum [24]. Wang et al. sequenced, de novo assembled, and compared the germline and

somatic genomes from a male A. suum and found that ~43 Mb (~13%) of DNA was

eliminated from the intestinal genome. Seventy percent of the eliminated DNA was

repetitive sequences consisting predominantly of the previously described 121 bp tandem

repeat. Surprisingly, the other eliminated sequences (~12.7 Mb) were single-copy sequences

corresponding to ~700 protein-coding genes that are exclusively expressed in the germline

and early embryos. A major group of the eliminated genes is associated with translation,

demonstrating that the translation machinery may be very different between the germline

and soma, supporting and extending earlier observations made by Muller et al. [18,19].

Notably, ~50 eliminated genes are orthologs to well-characterized genes in C. elegans

whose loss is associated with clear phenotypes in germline formation, gametogenesis, and

early embryogenesis. This large-scale elimination of germline genes suggests that DNA

elimination may be an extreme and permanent mechanism for germline gene regulation in A.

suum, deleting rather than repressing their expression in somatic cells. Wang et al. also

identified ~50 breakpoints where chromosome regions were lost and telomere addition

occurred on the retained chromosomes in the somatic cells, but no DNA fusions or

rearrangements were observed. This genomic study significantly extends our understanding

of the eliminated sequences and DNA breakpoints in A. suum, however, the current genome

assemblies do not enable large-scale characterization of changes at the chromosomal level.

Improved genome assemblies and additional studies are now needed to provide an overall

view of the organization of the chromosomes and their alterations during diminution. High-

throughput analysis of chromatin diminution in the related nematode P. univalens

demonstrated that many of the break sites are conserved between the two nematodes as

previously suggested [23], and also indicates that the genes eliminated are similar to those

observed in A. suum (Wang, J. and Davis, R.E., unpublished data). This further supports the

idea that diminution is a highly regulated and conserved process in these related parasitic

nematodes.

Recent studies identified chromatin diminution in the sea lamprey and also demonstrated the

elimination of both repetitive and single-copy sequences. Smith et al. used flow cytometry to
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measure the DNA content in lamprey testes and blood and found that ~20% (~500 Mb) of

the lamprey germline genome is eliminated in somatic cells [14]. Further comparisons

between sperm and liver DNA using array comparative genomic hybridization and genome

survey sequences indicated that the eliminated DNA consists not only of repetitive

sequences, but strikingly, also a few thousand genes [25]. The eliminated genes include

homologs of vertebrate genes that function in either the development or maintenance of the

germline. Given that a large number of germline-associated genes are eliminated in these

divergent organisms, nematodes and lampreys, this suggests a possible common function of

chromatin diminution. It will be interesting to see if loss of single-copy germline-associated

genes is a common feature within other metazoa that undergo diminution such as copepods,

where ribosomal RNA gene copy number can be regulated by diminution [26].

Although DNA elimination events are often associated with germ-soma differentiation,

others are associated with sex determination. In sciarid flies, the elimination of one or two

paternal X chromosomes in the pre-somatic cells determines the sex of the embryo (see

reviews [27,28]). In a recent study on chromatin diminution in the parasitic nematode of

sheep, Strongyloides papillosus [29], Nemetschke et al. used genetic crosses to determine

that one of the two copies of a whole section of a chromosome undergoes DNA elimination

by chromatin diminution. The region eliminated corresponds to a sex chromosome that is

entirely eliminated in the closely related parasitic nematode of rats, S. ratti. This

demonstrated that diminution provides a means to restore the sex chromosome ratio in

males, and thus functions in the sex-determination system in this organism. Additional

analyses suggest that chromatin diminution in S. papillosus is a derived state in

Strongyloides species, evolved as a consequence of an X chromosome and autosome fusion

that requires chromatin diminution to generate S. papillosus males [30].

A common theme in organisms that exhibit DNA elimination is the elimination of large

amounts of repetitive sequences (see Table 2). In chromatin diminution, the eliminated

repeats are typically tandem repeats that vary from 2 – 172 bp. Recent observations in zebra

finch show that repetitive sequences are eliminated during chromosome elimination [31].

The conserved elimination of repetitive sequences in somatic cells raises the key question:

why is it that the eliminated sequences are primarily repetitive? Clearly, repetitive sequences

play key roles in genome evolution, recombination, and meiosis. They may also play

additional roles in germline development and maintenance. A recent study in copepods

suggests chromatin diminution in somatic cells may be necessary to reduce the ongoing

repeat expansion and load in the germline [32]. A difficult but important goal will be to

determine the location and organization of the repeats on chromosomes undergoing

diminution. Such studies might provide important insights into the function of simple

repeats in the germline, as well as perhaps their potential role in contributing to the process

of diminution.

A variety of theories/hypotheses have been proposed to explain the biological significance

of programmed DNA elimination [1,6,7,27,33–35] including mechanisms for 1) gene

silencing, 2) dosage compensation, 3) sex determination, 4) position-effects for gene

expression, 5) germline development and meiosis, and 6) germline and soma differentiation.

The recent studies on Ascaris and the lamprey, where significant numbers of germline and
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early embryonic genes are eliminated and thus silenced in the somatic cells, provides strong

support for a role in gene silencing. Recent studies also suggest it is a mechanism for dosage

compensation in Ascaris, where many eliminated genes have undergone duplication, and sex

determination in S. papillosus [29], flies [27], and birds [36]. The association of DNA

elimination with germ-soma differentiation also poses the interesting question of whether

somatic DNA elimination contributes to the differentiation of specific cell lineages. Wang et

al. [24] compared DNA elimination in different cell lineages in A. suum, that exhibit

deterministic cleavage similar to that observed in C. elegans, and found that the overall

genomic content and the breakpoints are the same in all five precursor somatic cells

undergoing diminution. In the sea lamprey, flow cytometry data indicate there might be

subtle variation in the somatic genome size in different cells, although all markers assayed

thus far exhibit uniform loss across different somatic tissues [14,25]. Thus, while current

data suggest that the sequences lost from diminution are overall the same in all cells, it

remains to be determined whether variations in diminution or the resulting chromosomal

position effects might have functional significance that contributes to the differentiation of

various cell lineages.

Molecular mechanisms of DNA elimination

Early mechanistic studies in Parascaris and Ascaris focused on the role of cytoplasmic

determinants and the germ plasm in diminution (see reviews [1,5,6]). Using a variety of

methods including doubly fertilized eggs, centrifugation, ultraviolet irradiation, and

chemical induction [37], these studies suggested that cytoplasmic factors play a key role in

chromatin diminution and may be segregated between the germline and soma. No specific

factors have yet been identified that contribute to diminution [38–40]. Studies in ciliates

have shown that small RNAs (piRNAs) and domesticated transposons are involved in

programmed DNA rearrangement and elimination [10]. The piRNAs target sequences for

retention or elimination in different types of ciliates [8,41] whereas the transposons lead to

DNA breaks [42]. A recent study used high-throughput sequencing to examine total small

RNA profiles during A. suum diminution; however, no correlation between small RNAs and

diminution was observed [24,43]. Additional studies are required to determine whether

specific Argonaute proteins and small RNAs contribute to DNA elimination in metazoa.

How cells define the breakpoints and what cellular machinery acts on them is likely to

provide important insights into the mechanism of chromatin diminution. The sites for

chromosomal breakage are conserved in each generation in parasitic nematodes and the sea

lamprey. In the sea lamprey, distinct short palindromic sequences at three independent

breakpoint regions were observed, suggesting site-specific recombination might facilitate

DNA elimination [25]. Analysis of the 50 breakpoints identified in Ascaris demonstrated

high fidelity of the break sites at the chromosomal level. However, the break sites can be

heterogeneous (ranging over 200–2000 bp at a site) [22,24], and no conserved sequence

motifs or other characteristics were identified 5 kb on either side of the DNA breakpoint

regions [24]. It also remains to be determined whether DNA destined for elimination or

retention in Ascaris and lampreys undergoes large-scale chromatin reorganization that could

be involved in the mechanisms of diminution. In the sea lamprey, recent observations

identified extra-nuclear aggregations of repressive chromatin (Herdy, J.R. III and Smith, J.J.,
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personal communication), similar to those observed during elimination in ciliates and finch

[44–46], suggesting an interrelationship between epigenetic silencing and loss. Studies on

chromosome elimination in insects and finches indicate that a number of epigenetic

modifications are associated with elimination of chromosomes including changes in histone

H3/H4 acetylation, H3S10 phosphorylation, and DNA methylation ([44,46–50] and see

recent review [28]).

A key question in DNA elimination is how chromosomes or portions of chromosomes are

selectively lost and thus not segregated during cell division (Fig. 2). Loss or alterations in

centromeres, kinetochore assembly, microtubule attachment, or chromosome segregation

could lead to DNA elimination. Studies on chromosome elimination in insects suggest that

chromosome loss is most likely a function of a segregation defect in the metaphase/anaphase

transition [48,51]. In sciarid flies, reduction in the dephosphorylation of H3S10P is

associated with a failure or retardation in sister chromatid separation [48]. In contrast,

chromosome elimination in finches may be associated with a defect in kinetochore–

microtubule interactions [47]. In chromatin diminution, once DNA breaks occur in

monocentric chromosomes, regions that retain the centromeres would likely be properly

segregated, whereas those regions that lack them would not and thus be eliminated.

Genomic regions without centromeres could also fuse with other chromosome regions that

retain their centromeres and thus be faithfully segregated as observed in copepods [52].

Nematodes such as Ascaris and Parascaris have holocentric chromosomes; kinetochore

activity and microtubule attachment sites extend along the length of holocentric

chromosomes. The location of centromeres is typically constant on most chromosomes.

However, recent data in C. elegans suggest that centromere deposition can be dynamic [53].

In addition, unpublished studies in Ascaris indicate that the centromeric histone H3 variant

Cenp-A marks chromosomes that will be retained, but is greatly reduced or absent on

chromosomes that will be lost in diminution mitoses (Wang, J. and Davis, R.E., unpublished

data). This is consistent with data from Parascaris that a kinetochore plate is absent in

chromosome regions that will be lost [54] and suggests that centromere deposition may play

an important role in determining chromosomal regions that will be retained or lost.

Perspective

Programmed DNA elimination occurs in ciliates and diverse multicellular organisms.

Recently, chromatin diminution was described in the sea lamprey, a jawless vertebrate,

extending the distribution of diminution into vertebrate lineages. New findings indicate that

in addition to the loss of repetitive sequences, many protein-coding genes are lost in

chromatin diminution, suggesting that diminution serves as a mechanism for gene regulation

and silencing. Programmed DNA elimination is a complex biological process that requires

the identification of sequences to be eliminated and a mechanism for their elimination.

Additional studies are needed to define the mechanism(s) for selective loss of chromosomes

or chromosome regions, breakage of chromosomes, and chromatin organizational changes

associated with DNA elimination. Analysis of DNA elimination in different systems is

likely to give new insight into the permanent gene silencing, the genome dynamics, the

evolution of genomes, the role of repetitive sequences, and perhaps also information on

genome alterations in cancer and other diseases.
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Box

Outstanding questions in programmed DNA elimination

• Does chromatin diminution serve the same function in diverse organisms?

• How are the sites for DNA breaks in chromatin diminution identified, made, and

processed? Is this process the same in the divergent organisms that undergo

diminution?

• What are the molecular mechanisms that alter normal chromosome segregation

leading to the elimination of portions of chromosomes or whole chromosomes?

• Does retained versus eliminated DNA undergo specific chromatin and

chromosomal organization changes that contribute to DNA retention or

elimination?

• Why are the majority of the sequences eliminated in chromatin diminution

repetitive? What is the function of eliminating germline repetitive sequences in

somatic cells? Do repetitive sequences contribute to the elimination process?

• Does chromatin diminution contribute to cell lineage determination or

differentiation?

• Do small RNAs play a role in programmed DNA elimination as observed in

ciliates?

• Does programmed DNA elimination contribute to some genomic mosaicism in

vertebrates?

• Are processes associated with DNA elimination involved in pathological

conditions such as cancer, disease, or other developmental abnormalities?
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Fig. 1. Programmed DNA elimination in multicellular organisms
Organisms known to undergo DNA elimination are illustrated on a phylogenetic tree. The

tree was constructed from 18S ribosomal RNA sequences using MEGA (v5.22) [55].

Common names are used for the groups. The tree is rooted on ciliates. Photo credits:

Antonio Guillen from Water Project, Spain (ciliate S. mytilus), Colin Johnstone (nematode

P. univalens), Entomart (moth P. fuliginosa), wiley library (mite M. occidentalis), James

Haney (copepod M. edax), Jeremiah Smith (Sea lamprey P. marinus), Kinya G. Ota and

Shigeru Kuratani (hagfish E. burgeri), wikipedia.org (Spotted ratfish H. colliei and Zebra

finch T. guttata), and Joseph McKenna (bandicoot I. macrourus). The year that DNA

elimination was discovered in each group of organisms is noted.
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Fig. 2. Chromatin diminution in Parascaris and Ascaris
A and B. P. univalens embryos. A. 1-cell embryo showing the single pair of germline

chromosomes. B. 4-cell embryo with two cells (outlined in red) undergoing diminution. The

retained portions of the germline chromosomes are fragmented into many smaller

chromosomes (small arrows). The heterochromatic arms that will be eliminated (big arrows)

remain visible. C and D. A. suum embryos. C. 4-cell embryo with two cells undergoing

chromatin diminution. D. 6-cell embryo with one cell undergoing chromatin diminution.

Note that DNA to be eliminated is present as fragments (artificially colored red) between

chromosomes segregating in early anaphase (C); DNA fragments (red) derived from a

previous cell diminution can be seen in the cytoplasm of cells to the right (D).
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Table 2

DNA elimination removes primarily repetitive sequences.

Organism % Genome eliminated
% Repeat in eliminated
sequence Eliminated repetitive sequence References

Nematode

Ascaris suum 13 70 121 bp tandem repeats [16,24]

Parascaris univalens 88 98 5- and 10-bp tandem repeats [66,67]

Lamprey and hagfish

Petromyzon marinus 20 ~35% are Germ1 Germ1, 200bp tandem repeats, others. [14,25,68]

Eptatretus cirrhatus 35 Majority* 4 tandem repeats, from 54 to 172 bp [69]

Copepod

Cyclops kolensis 94 Majority* Tandem repeat with 10–30 bp motifs [70]

Mesocyclops edax 90 Majority* 2-, 8-, or 9-bp tandem repeats and other [32,71,72]

*
All known sequences are repeats
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