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Abstract

Molecular pathological epidemiology (MPE) is integrative molecular and population health

science to address molecular pathogenesis and heterogeneity of disease processes. MPE of colon

and rectal premalignant lesions (including hyperplastic polyps, tubular adenomas, tubulovillous

adenomas, villous adenomas, traditional serrated adenomas, sessile serrated adenomas / sessile

serrated polyps, and hamartomatous polyps) can provide unique opportunities to examine the

influence of diet, lifestyle and environmental exposures on specific pathways of carcinogenesis.

Colorectal neoplasia can provide a practical model where both malignant epithelial tumor

(carcinoma), and its precursor, are subjected to molecular pathology analyses. KRAS, BRAF, and

PIK3CA oncogene mutations, microsatellite instability, CpG island methylator phenotype, and

LINE-1 methylation are commonly-examined tumor biomarkers. Future opportunities include

comprehensive interrogation of genomics, epigenomics and pan-omics, as well as in vivo

pathology analyses of tissue microenvironment, molecular networks and interactome by
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endomicroscopy. Considering the colorectal continuum hypothesis and emerging roles of gut

microbiota and host immunity in tumorigenesis, detailed tumor location is important information.

There are unique strengths and caveats, especially with regard to case ascertainment by

colonoscopy. MPE of colorectal premalignant lesions can identify etiologic exposures associated

with neoplastic initiation and progression, help us better understand colorectal carcinogenesis, and

facilitate personalized prevention, screening, and therapy.
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Introduction – The Evolving MPE Paradigm

Colorectal tumors represent a heterogenous group of diseases that arise and evolve through

the stepwise accumulation of differing sets of genetic and epigenetic alterations (1). In

addition to tumor factors, host components, consisting of extracellular matrix and non-

transformed cells, interact with tumor cells and play major roles in regulating tumor growth

and behavior (2, 3). The molecular complexity of colorectal neoplasia poses challenges to

conventional epidemiologic research, where disease heterogeneity is not often taken into

consideration in analyses. Molecular pathological epidemiology (MPE), the integration of

molecular pathology and epidemiology (4, 5), was conceived to address disease

heterogeneity by examining the association between etiologic factors and specific molecular

signatures generated during disease processes (4–9). MPE differs from conventional

molecular epidemiology, where patients with a disease of interest are typically lumped

together into a single disease entity, in that MPE embraces the inherent molecular

heterogeneity of disease and the uniqueness of each patient (10) (Figure 1). MPE can

therefore be defined as the “epidemiology of molecular pathology and heterogeneity of

disease” (11). The MPE paradigm offers several advantages over conventional

epidemiologic approaches. By helping decipher relationships between specific etiologic

exposures and molecular disease subtypes, MPE studies can provide evidence to support the

causality of associations (4, 5). Moreover, MPE can help refine risk estimates for disease

occurrence, recurrence, or progression in particular patient subgroups, which can contribute

to personalized prevention and treatment strategies(12–14). Indeed, the utility of the MPE

concept has been widely acknowledged (6–9, 15–38), and has resulted in a number of

important insights into the pathogenesis of colorectal cancer, including associations between

obesity, physical activity, and aspirin use, and risks of disease occurrence or survival for

molecularly-defined colorectal cancer subgroups (12–14, 39).

MPE constitutes a logical strategy for post-genome-wide association study (GWAS)

research (“GWAS-MPE approach” (5)), in which a candidate susceptibility variant may be

linked to a specific disease subtype (40–42). Interaction analyses between exposures and

tumor biomarkers are relatively understudied areas in MPE research, but can demonstrate

the capacity of a biomarker to predict response or resistance to lifestyle, dietary or

pharmacological interventions (4, 12, 13, 39, 43, 44).
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Through an appreciation of disease heterogeneity and analyses of molecular alterations that

accrue during carcinogenesis, MPE can provide new insights into the mechanisms through

which exposures influence tumorigenic processes in the colorectum.

The colorectum as a resource for MPE research

As a result of the widespread application of colonoscopy in symptomatic investigation and

screening, the colorectum has become an unparalleled resource for the study of neoplastic

initiation and progression. In many other organs, access to premalignant lesions can be

difficult, especially in the epidemiologic research setting (45). The colorectum represents an

organ where both cancer tissue and premalignant tissue are readily accessible for molecular

analyses, and can provide a model for research on neoplastic evolution in other organs. The

colorectum is by far the most microorganism-rich organ in the human body, and colonic

luminal contents are believed to play an important role in carcinogenesis (46, 47).

Furthermore, as a contiguous hollow organ, and extension of the external environment, the

influence of exposure to dietary, microbial, and metabolic constituents of the gut contents

can be studied in relation to host factors, including anatomic subsite. These unique features

of the colorectum, and neoplasms arising within it, provide substantial opportunities for

research; however, MPE of colorectal premalignant lesions also poses important challenges.

The challenge of the unique tumor principle

In the MPE paradigm, genomic and epigenomic variants interact with non-genetic

exposures, including dietary, lifestyle, environmental, and hormonal influences, to

determine disease occurrence and progression differently in each patient, through changes in

cellular and extracellular interactomes (48). Since the resulting changes in the tissue

microenvironment in one individual will never be exactly the same as those in another, a

specific disease process in a given individual can be considered unique. This concept is

embodied in “the unique disease principle” (10) [or “the unique tumor principle” (49, 50)].

The unique tumor principle gains support from recent genomic and epigenomic projects

demonstrating enormous tumor heterogeneity in several cancer types (51–53), from

differential effects of diverse somatic aberrations (54, 55), and from the influence of host

factors on tumor behavior (2, 43, 56, 57).

Epidemiology is based on the fundamental premise that we can predict disease occurrence

and evolution by inference from other cases of what is nominally the same disease. The

unique tumor principle therefore poses significant challenges. Nonetheless, the seemingly

insurmountable problem of disease heterogeneity can be, at least partly, overcome by

molecular tools capable of classifying cases into disease subtypes, which share molecular

mechanisms and biologic phenotypes (58–68). Through molecular classification, we can

subtype tumors to predict their evolution and response to interventions with greater

accuracy.

Molecular classification of colorectal cancer

Commonly used molecular classifiers in colorectal cancer include mutations in KRAS, BRAF

and PIK3CA (69–75), and global molecular features such as microsatellite instability (MSI)
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(76–78), the CpG island methylator phenotype (CIMP) (15, 16, 79–89), chromosomal

instability (CIN) (90) and LINE-1 methylation level (10, 91–93). CIMP status may be

divided into CIMP-high, CIMP-low and CIMP-negative (80, 94–99). LINE-1 methylation

level can be a continuous classifier (100–102). These tumor molecular features have been

widely investigated in relation to exposures (including diet, smoking, aspirin use, body mass

index, physical activity, screening behavior, family history, and heritable genetic variants),

immune reaction, colorectal cancer incidence, and outcomes (5, 12, 13, 103, 104).

Pathologic and molecular classification of colorectal premalignant lesions

Phenotypic heterogeneity has long been recognized in colorectal premalignant lesions.

Historically, we have used lesion size and histopathological classification in an attempt to

better predict malignant potential. Well-established pathologic entities include, tubular

adenoma, tubulovillous adenoma, villous adenoma, hyperplastic polyp, sessile serrated

adenoma (SSA) / sessile serrated polyp (SSP), and traditional serrated adenoma (TSA)

(Figure 2). In addition, some hamartomatous polyps are considered to be premalignant

lesions (105). The terms SSA and SSP can be used interchangeably, and there is no

guideline to enforce one terminology over the other (21). In addition to molecular

associations of well-established histopathological subtypes, gross morphology of polyps has

been associated with tumor molecular features (106).

The conventional adenoma-carcinoma sequence encompasses three related histological

entities, tubular, tubulovillous and villous adenomas, which exhibit multiple molecular

pathway variations and account for the majority of colorectal cancers. In this sequence, APC

mutation is a common early event (1); the ensuing disruption of WNT signaling results in a

transformed clone of colonocytes that exhibits a dysplastic phenotype and may grow to form

a tubular adenoma. In its earliest stage, represented by one or a small number of tubule-

shaped crypts, the adenoma is termed an aberrant crypt focus or microadenoma. KRAS

mutation is found in up to 50% of large (>1.0 cm) adenomas, and frequently associated with

alteration of the polyp architecture from tubular to tubulovillous or villous (107–109).

By definition, all adenomas of this conventional sequence show at least low-grade dysplasia

– the adenomatous phenotype. Only a small proportion progress to the next level, high grade

dysplasia (HGD); this is defined by nuclear atypia and architectural disorder of the

component glands, leading to cribriform structures. HGD is associated with larger size,

villous morphology (110), TP53 mutation (111), and deletion of a region of chromosome

18q (111). Chromosomal instability (CIN) can be demonstrated in late precursor adenomas

(112), and can be morphologically apparent as anaplasia and abnormal mitoses as HGD

evolves. Potential causes of CIN may include APC, TP53 and FBXW7 mutations (113),

AURKA overexpression (114, 115), JC virus (116, 117), and loss of PIGN, MEX3C and

ZNF516 (109).

The serrated pathway is an alternative cancer progression sequence that accounts for the

development of a minority of colorectal adenocarcinomas (21, 118). It comprises a series of

polyps that have glands or crypts with a characteristic saw-toothed (serrated) outline, giving

the pathway its histological signature and name. The serrated lesions commonly have BRAF
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or KRAS mutation. As a result of BRAF or KRAS mutation, adaptive changes, termed

senescence (119), occur in the crypt cells, which are designed to forestall transformation

(120). Early lesional crypts containing senescent cells are enlarged to accommodate

colonocytes that have normal-appearing nuclei but increased cytoplasmic volume and

reduced tendency to slough into the lumen. Those abnormal crypts with BRAF mutation

commonly show marked serration of the crypts, and the cytoplasm of the cells is filled with

small mucin vacuoles (microvesicular). The KRAS-mutated variant tends to show less

prominent serration but marked tufting of the surface, and increased numbers of large goblet

cells (121). Both variants are precursors of hyperplastic polyps that show these respective

phenotypes, “microvesicular hyperplastic polyp” and “goblet cell hyperplastic polyp” (122).

Hyperplastic polyps are small (usually less than 5 mm) sessile or flat polyps. These polyps

arise predominantly in the distal colorectum, where they are felt to have limited malignant

potential, as reflected by current surveillance guidelines (123). Serrated polyps with

disordered growth represent an atypical hyperplastic polyp variant called sessile serrated

adenoma or sessile serrated polyp, “SSA / SSP” (122). SSAs / SSPs can progress to develop

dysplasia (Figure 2), and ultimately evolve into carcinoma (21). The progression from SSA /

SSP to SSA / SSP with dysplasia may be associated with increasing promoter methylation of

genes, including MLH1, CDX2, and TLR2 (124). The origins of SSAs / SSPs remain

uncertain. It is not currently known whether these polyps develop from a single precursor

lesion, or arise de novo. In common with microvesicular hyperplastic polyps, SSAs / SSPs

are frequently characterized by mutated BRAF. It has therefore been suggested that

microvesicular hyperplastic polyps, SSAs / SSPs, and SSAs / SSPs with dysplasia represent

parts of a biologic spectrum, and this is supported by an apparent continuum of histological

and DNA methylation changes (124–126). The endpoint carcinomas of the BRAF-mutated

serrated pathway tend to arise in proximal colon and show CIMP-high and MSI-high due to

MLH1 methylation, which leads to numerous somatic mutations (127). were previously

thought to play no role in cancer evolution, but there is now compelling evidence that some

of these lesions, particularly BRAF-mutated hyperplastic polyps in the proximal colon, are

susceptible to further molecular changes, including epigenetic inactivation of tumor

suppressor genes (128).

End-point KRAS-mutated serrated pathway carcinomas tend to occur distally, and show

mismatch repair proficiency (or microsatellite stability) and CIMP-low, sometimes in

association with MGMT epigenetic inactivation (129, 130). However, it is likely that not all

CIMP-low cancers arise through the serrated pathway. One of the precursors of these

carcinomas is considered to be Traditional Serrated Adenoma (TSA), a serrated polyp

characterized by exophytic tubulovillous growth and distal location in the colorectum (21).

KRAS-mutated Goblet Cell Hyperplastic Polyp may be a precursor of TSA (131). TSA may

have heterogeneous pathogenesis; some TSA lesions harbor BRAF mutation, or wild-type

BRAF and KRAS (21).

MPE of colorectal premalignant lesions

A typical study design for MPE of colorectal premalignant lesions, where an exposure of

interest can be examined in relation to molecular subtypes of colorectal neoplasia, is
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illustrated in Figure 1. Compared to studies on colorectal cancer (4, 5), data on MPE of

colorectal premalignant lesions remain relatively sparse (30, 132–137).

The definitive study design for investigating the initiation and progression of colorectal

premalignant lesions would be to study the molecular and biologic evolution of the lesions

in situ, in conjunction with comprehensive data on host exposures. Unfortunately, ethical

considerations dictate that this study will never be performed in humans. We therefore

require methods that can establish causal relationships between exposures (e.g., dietary,

microbiologic, and host genetic factors) and specific tumor subtypes, while piecing together

the biology of colorectal tumorigenesis from snapshots of the disease at different stages in

its natural history.

MPE of colorectal premalignant lesions, in synergism with MPE of colorectal cancer, can

fulfill this role. By way of example, if smoking is shown to be associated with premalignant

lesions displaying CIMP-high (or BRAF mutation), it can provide additional evidence for a

causal association between smoking and CIMP-high (or MSI-high/BRAF-mutated)

colorectal cancer (138–142). An MPE approach can also provide clues to the timing of the

carcinogenic effect of a given exposure. Considering the above example, if smoking is

associated with an increased risk of premalignant lesions with CIMP-high or BRAF

mutation, it can provide evidence for an effect of smoking on specific molecular events at an

early phase in carcinogenesis. In contrast, if smoking is associated with CIMP-high or

BRAF-mutated colorectal cancer, but not with the risk of premalignant lesions

demonstrating these features, it would suggest that smoking facilitates the later progression,

rather than initiation, of certain premalignant lesions via specific pathways.

Certain caveats are associated with MPE research on colorectal premalignant lesions. One

major issue is case ascertainment. Although colorectal cancers may remain asymptomatic

over lengthy periods of time, they usually declare themselves eventually, for example, when

they bleed, become large enough to obstruct the lumen, or cause systemic symptoms through

metastases. Therefore, in population-based studies, ascertainment of colorectal cancer cases

is considered reasonably good; most individuals with colorectal cancer seek medical

attention at some point.

In contrast, ascertainment of colorectal premalignant lesions (some of which may never

progress to cancer) depends largely on endoscopic screening. In addition to the shift in

clinical practice from screening sigmoidoscopy to colonoscopy in the U.S., endoscopic and

adjunctive screening technologies, as well as the quality of lower endoscopic examinations,

have substantially improved over the past decade. Changing endoscopic practice is therefore

a potential source of bias and confounding.

Tissue availability represents a further potential source of bias. The size and morphology of

colorectal premalignant lesions varies enormously. Diminutive lesions may yield only tiny

fragments of tissue, or may remain undetected, whereas larger specimens provide abundant

material for analysis. Furthermore, the size of a premalignant lesion correlates with its

malignant potential, as well as feasibility of tumor tissue analyses. With advances in

molecular methodologies, smaller quantities of biologic material are required for
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downstream analyses. Indeed, single cell whole genome sequencing is feasible from fresh

specimens (143). While fresh tissue yields optimal quality material for molecular analyses,

the practicalities of collecting and storing fresh clinical tissue samples often prohibit its use

on a large scale. Archival formalin-fixed, paraffin-embedded (FFPE) tissues, along with

their clinical and pathological annotation, represent an immensely valuable resource for

MPE research, and most MPE studies to date utilize archival specimens from participants of

prospective cohort studies (30, 132–137). Although FFPE tissues provides good

preservation of microarchitechture for in situ analytic approaches, including

immunohistochemical analyses, cross-linking and fragmentation of biomolecules by

formalin fixation impacts on the quality of nucleic acid recovered (144). Nonetheless, FFPE

tissues have been successfully used for genomic, eigenomic, transcriptomic, and proteomic

analyses (145). In addition, laser capture microdissection (LCM) has proved invaluable in

addressing tissue and cellular heterogeneity in molecular analyses of FFPE tissues. LCM

comes with its own specific challenges, including contamination and low tissue quantities

(146). The minimum amount of tissue required for molecular analyses is determined by

many factors, including tissue fixation, storage, and age, tissue cellularity, cell ploidy,

neoplastic cell abundance, and frequency of the molecular target (e.g., mutation/allele

frequency). As little as 10 ng of FFPE-derived DNA may be required for techniques such as

comparative genomic hybridization and certain targeted next generation sequencing

approaches (147, 148). Furthermore, multiplex transcriptional analyses can be performed in

situ, at single cell level (149). In contrast to the use of fresh frozen specimens in molecular

research, where informed consent by the donor is usually the rule, the use of archival FFPE

tissues, obtained for diagnostic purposes, raises a variety of bioethical considerations,

including consent, sample ownership and custodianship, generation of data on germline

genetic variants, and confidentiality of personally identifiable information (150, 151).

The anatomic location and morphology of lesions can also influence the likelihood of their

being detected endoscopically. The detection of SSAs, for example, is highly variable

between endoscopists (152–154). Thus, serrated neoplastic lesions, particularly those in the

proximal colon, may easily be missed at colonoscopy, and it is interesting that molecular

markers of the serrated pathway are frequently observed post-colonoscopy cancers (155,

156).

Pathological heterogeneity also poses considerable challenges to the MPE of premalignant

lesions. As discussed in the preceding section, colorectal premalignant lesions are inherently

heterogenous in terms of biology, morphology, and clinical behavior. In addition,

nomenclature and diagnostic criteria for premalignant lesions, especially serrated lesions,

has changed considerably over time, and may result in inter observer variation among

pathologists (21, 152). Thus, a cross comparison of MPE studies on premalignant lesions is

challenging. Distinct polyp types likely reflect different etiologies, and histopathological

classification can serve as a surrogate in MPE-type analyses (157). Thus, the expertise for

accurate pathological classification of premalignant lesions is essential to epidemiologic

research.
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Colorectal continuum

The colorectum has traditionally been regarded as a single organ, or, as colon and rectum.

However, it has long been recognized that clinical and pathological differences exist

between proximal and distal colon cancers, and a number of influential review articles have

expounded a dichotomous concept of proximal vs. distal colorectum (158–160). Numerous

clinical, pathological, and epidemiologic investigations have adopted this model, and

differences in key molecular features between proximal and distal colonic tumors are well

described (15, 16, 59, 84, 131).

Recently, Yamauchi et al. (54) broke with the prevailing two-colon model and examined

molecular features of cancers occurring in 9 colorectal subsites. This study demonstrated

that the frequencies of CIMP-high, MSI-high, and BRAF and PIK3CA mutations in

colorectal cancer increase gradually from rectum to ascending colon, challenging the notion

of an acute transition at the splenic flexure (131). Independent studies have confirmed

similar distributions in molecular features of colorectal cancers (34, 161–163). Furthermore,

in synchronous colorectal cancers, molecular similarities are proportional to the physical

proximity of the two cancers (164). A “continuum” hypothesis has therefore been proposed

(165), which embodies the role of luminal contents, microbiota, and host responses in the

pathogenesis of colorectal cancer. In support of the continuum model of gut biogeography,

the colorectal microbiota, and lymphocytic and macrophage infiltrates appear to transition

gradually along colorectal subsites (54, 56, 165, 166).

If we continue to use a dichotomous colorectal research model, we will predictably generate

data that support the existence of such a model, provided markers of interest vary to some

extent along the proximal-distal axis of the colorectum. Investigations on colorectal tumors

should attempt to couple molecular classifiers with detailed subsite location in order to

address potential heterogeneity by anatomic location.

Implications in cancer prevention

MPE of colorectal premalignant lesions can provide scientific evidence for cancer etiologies

and enable us to develop and optimize cancer prevention strategies. First, by providing

additional evidence for causality, MPE of colorectal premalignant lesions can help establish

colorectal neoplasia risk factors, some of which may be modifiable.

Second, MPE of colorectal premalignant lesions can provide additional evidence for a

mechanistic link between a risk factor and a particular carcinogenic pathway, characterized

by a specific molecular alteration (such as MSI). Using MSI as an example, if we are

ultimately able to identify those individuals with increased susceptibility to the development

of cancers demonstrating MSI, we can recommend avoidance of the associated risk factor as

a primary preventive measure.

Third, in analyses using recurrent premalignant lesions or metachronous cancer as

endpoints, we can assess for interactive effects between tumor molecular markers and

exposures, on the risk of developing subsequent neoplasia. If an interaction can be identified

between a tumor molecular feature and an exposure (which may be a modifiable component
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of diet, lifestyle, or pharmacologic regimen), the molecular feature may serve as a predictive

biomarker of response to intervention, warranting further assessment by clinical trials.

Conclusions

Molecular pathological epidemiology (MPE) has emerged as an integrative field that

addresses molecular heterogeneity of diseases as well as disease distribution and occurrence

in large human populations (4, 5). MPE of colorectal premalignant lesions can provide

unique opportunities to examine the influence of an exposure on a specific carcinogenic

process, and can be synergistic with the MPE of colorectal cancer. The recent emergence of

the colorectal continuum hypothesis (54, 165) has added further complexity to the role of

gut biogeography in cancer predisposition, and pathological and epidemiologic studies of

premalignant lesions must strive to examine detailed colorectal subsites.

Considering future directions in MPE research, the rapidly-developing omics disciplines,

and other emerging technologies (such as endomicroscopy, in vivo pathology, interactome,

and molecular network analyses) can be applied to tissue repository resources in existing

population-based cohort studies, which are unparalleled resources in terms of their large

amassed quantities of exposure data. This represents a very cost-effective approach to

advancing integrative MPE science and improving the health of human populations (19, 50,

167). Ultimately, as molecular pathological testing becomes routine in clinical practice,

molecular classification data should be entered and accumulate within population disease

registries throughout the world. This will facilitate the adoption of MPE research into

standard epidemiologic practice. Since epidemiology ultimately attempts to advance our

understanding of human disease, epidemiology in this 21st century must take into account

advances in the molecular biology and pathophysiology of disease processes. One of the

most profound challenges in MPE is the paucity of integrative expertise (in molecular

pathology and epidemiology), and future educational reform, involving academic

institutions that deliver teaching in medicine and public health, will be required to tackle this

problem (168–170).

There are caveats associated with the MPE of premalignant lesions, especially with regard to

case ascertainment, and we need to be aware of these potential sources of bias. Nonetheless,

by careful study design and analyses, MPE can promote unprecedented discoveries that can

contribute to better understanding of the development and progression colorectal neoplasia.

Ultimately, MPE of colorectal premalignant lesions can help us achieve our goals of

personalized medicine and effectively targeted public health interventions, leading to

reductions in colorectal cancer incidence and mortality.
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Abbreviations

APC adenomatous polyposis coli

AURKA aurora kinase A

BRAF v-raf murine sarcoma viral oncogene homolog B

CIMP CpG island methylator phenotype

CDX 2 caudal type homeobox 2

CIN chromosomal instability

FBXW7 F-box and WD repeat domain containing 7, E3 ubiquitin protein ligase

FFPE formalin-fixed, paraffin-embedded

GWAS genome-wide association study

HGD high-grade dysplasia

KRAS Kirsten rat sarcoma viral oncogene homolog

LCM laser capture microdissection

LINE-1 long interspersed nucleotide element-1

MEX3C mex-3 RNA binding family member C

MGMT O-6-methylguanine-DNA methyltransferase

MLH1 mutL homolog

MPE molecular pathological epidemiology

MSI microsatellite instability

PIGN phosphatidylinositol glycan anchor biosynthesis, class N

PIK3CA phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha

SSA sessile serrated adenoma

SSP sessile serrated polyp

TLR2 toll-like receptor 2

TP53 tumor protein p53

TSA traditional serrated adenoma

WNT member of wingless-type mouse mammary tumor virus integration site protein

family

ZNF516 zinc finger protein 516
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What is current knowledge?

• Molecular pathological epidemiology (MPE) represents an integrative research

paradigm.

• MPE can 1) link a risk factor to specific molecular alterations, 2) refine a risk

estimate for a specific molecular subtype of disease, 3) support a causal

relationship, and 4) help to identify a potential tumor biomarker for clinical use.

• MPE has been applied to colorectal cancer research.

• Only a limited number of studies have conducted MPE research to examine

colorectal premalignant lesions.

What is new?

• By bridging the gap between normal tissue and malignancy, colorectal

premalignant lesions are a unique resource for MPE research

• MPE of premalignant lesions can help elucidate etiologies, mechanisms and

heterogeneity of disease evolution

• Opportunities in MPE of premalignant lesions are accompanied by challenges

and caveats
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Figure 1.
A. A conventional epidemiologic approach assesses the association between an exposure

(smoking) and disease occurrence as a single outcome (colorectal cancer). In this example,

colorectal cancer is heterogeneous. Using a binary biomarker, MSI status, colorectal cancer

comprises a majority of microsatellite stable tumors (MSS, dark fill on diagram) and a

minority of tumors with high levels of microsatellite instability (MSI-High, white fill on

diagram). A weak or modest association is observed between smoking and overall colorectal

cancer risk. B. An MPE approach assesses associations between an exposure and

molecularly-defined tumor subtypes. Here, the association between smoking and

microsatellite stable tumor risk is null, whereas the magnitude of risk for MSI-H tumors is

much greater than that for colorectal cancers overall.
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Figure 2. Histopathologic features of selected colorectal premalignant lesions
A. KRAS-mutated villous adenoma [hematoxylin and eosin (H&E), original magnification

x40] (left). Immunohistochemistry for MKI67 (Ki-67) shows brown nuclei indicating

proliferative activity extending from crypts to villous tips (original magnification x40)

(right). B. BRAF-mutated sessile serrated adenoma / sessile serrated polyp (SSA / SSP)

showing characteristic irregular shapes of basal crypts (H&E, original magnification x100).

C. BRAF-mutated SSA / SSP with cytological dysplasia (blue arrow) (H&E, original

magnification x100). Insets show immunohistochemistry analysis with loss of MLH1

expression (top) and preservation of MSH2 expression (below) (original magnification

x200). D. KRAS-mutated traditional serrated adenoma showing a tubulovillous architecture,

serrated eosinophilic atypia (green arrow) and characteristic ectopic crypt formation (blue

arrows) (H&E, original magnification, x100).
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