Skip to main content
. Author manuscript; available in PMC: 2015 Aug 1.
Published in final edited form as: IEEE Trans Med Imaging. 2014 Apr 25;33(8):1614–1626. doi: 10.1109/TMI.2014.2320284

TABLE I.

Ordered-subset pixel-wise separable quadratic surrogate (OS-PWSQS) algorithm outline.

1) Choose πmij factors using (33).
2) Initialize x(0) using the results of the image-domain method [1].
3) For each iteration d = 1, …, Diter
  a) For each subset (subiteration) q = 1, …, Qiter
    i) n = d + q/Qiter
    ii) Compute gradient of the data fidelity term qj.
qj=i𝒮qm=1M0amij∇̵simtim(sim(n)),∇̵simtim(sim(n))=∇̵simȳim(sim(n))Yim∇̵simhim(sim(n)),
      where ∇̵simȳim and ∇̵sim him are given in (50) and (52) respectively, and
sim(n)=(sim1(x(n)),,simL0(x(n))),siml(x(n))=j=1Npamijxl(n),l=1,,L0.
    iii) Compute gradient of penalty term qj.
qj=1Q(β1x1jR1(x1)|x1=x1(n),,βL0xL0jRL(xL0)|xL0=xL0(n))
xljRl(xl)|xl=xl(n)=k𝒩ljκljκlkψ̇l(xlj(n)xlk(n)),l=1,,L0
    iv) Compute L0 × L0 curvature matrices Dqj(n).
Dqj(n)=D,qj(n)+1QDR,j(n),D,qj(n)=i𝒮qm=1M0amij2πmijim(n),
      where im(n) and DR,j(n) are defined in (27) and (40) respectively.
    v) Compute H and p using (47) and (48), i.e.,
H=Dqj(n),p=qj+qj(xj(n))Dqj(n).
    vi) For each tuple ω ∈ Ω
      A) Form xj(n)(ω), H(ω), p(ω) by extracting elements in xj(n), H and p with indexes corresponding to ω respectively.
      B) Obtain minimizer j(ω) of the QP problem in (49) using GSMO.
      C) Compute and store minimal surrogate function value ϕj(n)(j(ω)) using (49).
      End
    vii) Determine optimal ω̂ by comparing all ϕj(n)(j(ω)), i.e.,
ω̂=arg minωΩϕj(n)(j(ω)).
    viii) Obtain jj(ω̂) with padded zeros for l ∉ ω.
    ix) Update all pixels x(n+1/Qiter) = = (1, …, j, …, Np).
    End
  x(n+1) = x(n+Qiter/Qiter).
  End