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ABSTRACT

Motivation: RNA folding is a complicated kinetic process. The min-

imum free energy structure provides only a static view of the most

stable conformational state of the system. It is insufficient to give de-

tailed insights into the dynamic behavior of RNAs. A sufficiently

sophisticated analysis of the folding free energy landscape, however,

can provide the relevant information.

Results: We introduce the Basin Hopping Graph (BHG) as a novel

coarse-grained model of folding landscapes. Each vertex of the

BHG is a local minimum, which represents the corresponding basin

in the landscape. Its edges connect basins when the direct transitions

between them are ‘energetically favorable’. Edge weights endcode the

corresponding saddle heights and thus measure the difficulties of

these favorable transitions. BHGs can be approximated accurately

and efficiently for RNA molecules well beyond the length range ac-

cessible to enumerative algorithms.

Availability and implementation: The algorithms described here are

implemented in Cþþ as standalone programs. Its source code and

supplemental material can be freely downloaded from http://www.tbi.

univie.ac.at/bhg.html.
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Supplementary information: Supplementary data are available at
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Received on October 14, 2013; revised on February 24, 2014;

accepted on March 15, 2014

1 INTRODUCTION

Much of RNA’s functional complexity is rooted not only in the

details of its intricate 3D structure but also in its ability to adap-

tively acquire distinct conformations on its own or in response to

specific cellular signals including the recognition of proteins, nu-

cleic acids, metal ions, metabolites, vitamins, changes in tempera-

ture and even RNA biosynthesis itself. These conformational

transitions are spatially and temporally tuned to achieve a variety

of functions. The most obvious examples are riboswitches

(Baumstark et al., 1997; Perrotta and Been, 1998; Schultes and

Bartel, 2000) and RNA thermometers (Klinkert and

Narberhaus, 2009; Narberhaus et al., 2006).
The intricate structures of RNAs are typically modeled to a

reasonable approximation in terms of secondary structures

(Thirumalai et al., 2001). This is because the thermal melting

data (thermodynamic free energy model) of secondary structures

have been interpreted by a nearest-neighbor model (Mathews

et al., 1999, 2004) and form the basis for widely used structure

prediction algorithms that predict secondary structure with rea-

sonable accuracy (Hofacker, 2003; Zuker, 2003; Zuker and

Sankoff, 1984). In particular, the partition function of the

Boltzmann ensemble of secondary structures for a given RNA

sequence can be computed in cubic time using a well-known

dynamic programming approach (McCaskill, 1990). Thus, a sto-

chastic backtracking algorithm (Ding and Lawrence, 2003) can

be used to produce representative structures and to generate

Boltzmann-weighted samples to assess complex structural fea-

tures like base pair probabilities.
The inclusion of pseudoknots and other tertiary contacts into

RNA structure prediction remains time-consuming and technic-

ally challenging (Das and Baker, 2007; Rivas and Eddy, 1999;

Rother et al., 2011; Smit et al., 2009). In its most general form,

the problem is NP-complete (Maňuch et al., 2011). Furthermore,

free energy models for pseudoknots are based on sparse experi-

mental data and hence are crude at best. Nevertheless, secondary

structures with pseudoknots can be important for the dynamics

of folding (Isambert and Siggia, 2000). Owing to the journal’s

length restrictions, we focus on the Boltzmann ensemble of sec-

ondary structures in the main text and relegate the extension to

structures with pseudoknots to Supplementary Material Part H.

For brevity, we will speak of the ‘energy’ instead of ‘free energy’

of a secondary structure.
The kinetic process of RNA folding can be described as a

dynamic process in the molecule’s energy landscape (Flamm

et al., 2002). The energy landscape is a particular network

whose vertices represent all the possible structures and whose

edges connect structures that can be interconverted by elemen-

tary rearrangements, typically the opening or closing of individ-

ual base pairs. For each structure as a vertex in the landscape, its

energy is evaluated based on the thermodynamic energy model

(Mathews et al., 1999) for characterizing its dynamical state.*To whom correspondence should be addressed.
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Thus, the transition rates between adjacent secondary structures

can be estimated by the Metropolis rule (Flamm et al., 2000;

Xayaphoummine et al., 2007). In this setting, the RNA folding

process is viewed as a Markov chain, and the transition rates

between two adjacent structures in the landscape are related with

their energy differences. Typically, different structural transitions

are of different rates as observed by Smit et al. (2007), which is

consistent with the thermodynamic picture: the equilibrium dis-

tribution of this Markov process coincides with the Boltzmann

distribution of the secondary structures.
The number of different secondary structures, however, makes

it impossible to enumerate the entire landscape except for short

sequences, so that one has to resort to coarse-grained approxi-

mations. The barrier tree of the landscape, Figure 1B, encodes

the local minima and their connecting energy barriers. The idea

to elucidate the basin structure of a landscape by means of a

barrier tree has been developed independently in different con-

texts, including potential energy surfaces for protein folding

(Garstecki et al., 1999; Wales, 2011), spin glasses (Klotz and

Kobe, 1994) and molecular clusters (Doye et al., 1999). The

exact computation of barrier trees in general requires the enu-

meration of the landscape. For RNA secondary structures, a

modification of the backtracking step in the dynamic program-

ming folding algorithm can be used to enumerate only the

lowest-lying fraction of the landscapes (Wuchty et al., 1999).

However, even within this favorable setting, barrier trees are ac-

cessible only for RNA molecules with up to �100nt.

An alternative to the exact construction of barrier trees is the

use of heuristic approaches. For example, Tang et al. (2008)

adopted computational techniques for motion planning in ro-

botics to obtain an approximated representation of the RNA

folding landscape. A different type of coarse graining can be

obtained by conditioning the folding algorithms on the distances

from two reference points, resulting in a kind of 2D ‘projection’

of the landscape (Lorenz et al., 2009). Heuristic methods are also

used to (locally) navigate the optimal folding path between two

given structures. For instance, findpath (Flamm et al., 2000) is

a fast algorithm that produces excellent quality direct pathways

based on the Morgan–Higgs algorithm (Morgan and Higgs,

1998). Furthermore, RNAtabupath (Dotu et al., 2010) and its

related web server, RNApathfinder, used a tabu semi-greedy

heuristic to determine nearly optimal folding pathways between

two given secondary structures. Lorenz et al. (2009) developed a

heuristic algorithm PathFinder based on their 2D ‘projection’

of the landscape.
The difficult part in computing coarse graining models such as

barrier trees is to determine the saddle points. The local minima,

on the other hand, can be obtained efficiently by means of mod-

ified dynamic programming algorithms. This was demonstrated

first by Clote (2005) with respect to the Nussinov–Jacobson

energy model and later extended to the Turner energy model

by Lorenz and Clote (2011). Their extension of McCaskill’s al-

gorithm can be used to generate Boltzmann-weighted samples of

local minima. Empirically, they find that the number of local

optima is roughly the square root of the number of secondary

structures, i.e. it grows exponentially with chain length. Exact

combinatorial results have been derived by Fusy and Clote

(2012) for the base stacking energy model, which is a variant

of the Nussinov model, where each stacked base pair contributes

�1 toward the energy of the structure.
Hence, for large RNAs, one still has to resort to sampling.

Boltzmann-weighted samples are not necessarily the most effi-

cient way to explore the basin structure of the landscape because

they are strongly biased toward usually small fraction of low

energy structures. Sahoo and Albrecht (2012) thus considered a

stochastic sampling method to obtain local minima within a

prescribed distance of a reference structure: random structures

are iteratively improved by gradient (down-hill) walks until local

minima are reached. Such samples can be used to estimate the

total number of local minima following the arguments of

Garnier and Kallel (2000).
The remainder of this contribution is organized as follows. In

Sections 2.1 and 2.2, we first introduce the basic concepts and

existing results in the field of RNA folding landscapes. In Section

2.3, we introduce the ‘Basin Hopping Graph’ (BHG) as a new

coarse graining model of the energy landscape and then describe

algorithms for its construction. In Section 3, we present and

discuss our experimental results. Section 4 summarizes the article

and suggests directions for future work.

2 THEORY

2.1 RNA folding landscapes

Given an RNA sequence �, let X ¼ X� denote the set of all

secondary structures that can be formed by � assuming that (i)

only canonical (GC, AU and GU) base pairs are formed, (ii) base

pairs do not cross, i.e. pseudoknots are not formed, and (iii)

hairpin loops have a minimum length of 3. These conditions

define the ensemble of structures implemented in the most com-

monly used RNA folding tools including mfold (Zuker and

Sankoff, 1984) and the ViennaRNA Package (Hofacker

et al., 1994; Lorenz et al., 2011). It is well known that the car-

dinality jX�j grows exponentially with the length of � [(Hofacker

et al., 1996) and the references therein] provided the stickiness of

�, i.e. the probability that two arbitrarily chosen nucleotides in �
can form a base pair, is relatively large. This is true for most

biological RNA sequences, as the values of stickiness for RNAs

are around 0.375 (Hofacker et al., 1994).
This set of discrete conformations is arranged as a graph by

defining a ‘move set’, i.e. by specifying which pairs of secondary

structures can be interconverted in a single step [(Reidys and

A B

Fig. 1. (A) Adjacency in an RNA folding landscape is encoded by inser-

tion or deletion of a single base pair. The underlying graph of an RNA

folding landscape is connected owing to the existence of the particular

valid secondary structure that contains no base pair (open structure). (B)

Schematics representation of an energy landscape and its associated bar-

rier tree. Local minima are labeled with numbers (1–5), saddle points with

lowercase letters (a–d). The global minimum is marked with an asterisk
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Stadler, 2002) and the references therein]. Figure 1A gives a

simple example. Each vertex of the RNA folding landscape,

i.e. each RNA secondary structure x, is associated with an

energy f(x). A well-established energy model allows us to expli-

citly compute f(x) for every structure x in terms of additive con-

tributions for base pair stacking as well as hairpin loops, interior

loops, bulges and multiloops (Mathews et al., 1999).

2.2 Local minima, saddles and basins

A secondary structure x 2 X is a local minimum (LM) of the

landscape if it does not have neighbors with lower energy. In

particular, x is a global minimum or a minimum free energy struc-

ture (MFE) if its energy is minimal within X. For each LM x, we

define its gradient basin GðxÞ � X as the set of structures z 2 X so

that the unique gradient walk with starting point in z ends in x.

We note for later reference that the gradient basins of all the

LMs in the RNA folding landscape forms a partition of its con-

figuration space X. This partitioning forms an intuitive coarse-

grained model of the landscape.
An important concept for our own approach is the direct

saddle. A direct saddle between two LMs x and y is a structure

s 2 X with minimal energy so that both x and y are reachable

from s by means of an adaptive walk. We call DSðx, yÞ ¼ fðsÞ the

direct saddle height between x and y. Not every pair of LMs is

connected by direct saddles. However, the graph consisting of

LMs and their connections by direct saddles is always connected

(Supplementary Material Part A; Klemm et al., 2014).
The cycle BhðxÞ of x at energy level h can be defined as a

maximal connected subset of fz 2 XjfðzÞ � hg that contains x.

In other words, BhðxÞ is the set of structures found by a flooding

algorithm starting at x (Flamm et al., 2000, 2002; Sibani et al.,

1999). In particular, the basin BðsÞ ¼ BfðsÞðsÞ of s (Flamm et al.,

2002) is the set of all points in X that can be reached from s by a

path whose elevation never exceeds f(s).
The saddle height Sðx, yÞ between any two vertices x and y is

the minimal value h for which y 2 BhðxÞ. In other words, Sðx, yÞ

is the level at which two cycles BhðxÞ and BhðyÞ ‘merge’. If x and

y are LMs connected by a direct saddle point, then

Sðx, yÞ � DSðx, yÞ. A structure s 2 X is called a saddle between

x, y 2 X if (i) fðsÞ ¼ Sðx, yÞ and (ii) there is a path P connecting x

and y so that fðsÞ � fðzÞ for all z 2 P. A path P� connecting x

and y in the landscape is energetically optimal if

maxz2P� fðzÞ ¼ Sðx, yÞ. Energetically optimal paths are not neces-

sarily unique (Supplementary Material Part C). For RNA fold-

ing landscapes, the problems of computing saddle heights, saddle

points and the energetically optimal path are NP-hard (Maňuch

et al., 2011).
It has been proven in (Flamm et al., 2002) that for any two

saddles s0 and s00, Bðs0Þ � Bðs00Þ, Bðs00Þ � Bðs0Þ or Bðs00Þ \ Bðs0Þ ¼ ;

is satisfied, i.e. the basins below saddles of a landscape form a

hierarchy with respect to set inclusion order (Supplementary

Material Part B). Because the landscape is connected, this hier-

archical structure is naturally represented by a tree called barrier

tree (Flamm et al., 2002; Wolfinger et al., 2004). The leaves and

interior nodes of this tree correspond to the LMs and their saddle

points, respectively.
The barrier tree can be computed using a flooding algorithm

(Flamm et al., 2000; Sibani et al., 1999) implemented, e.g. in the

program barriers (Flamm et al., 2002). It takes an energy

sorted list of structures as input. This list may contain either

all structures or only the structures below some threshold

energy. The only part of barriers that relies on the geometric

properties of the configuration space is the routine that generates

all neighbors of each structure in the list. Therefore, barriers

has a time complexity of Oð�	 KÞ, where � denotes the max-

imum number of neighbors for a structure in the landscape, and

K denotes the number of structures in the input list. For the

technical complications arising from degeneracy in the land-

scape, see Flamm et al. (2002).
The barrier tree abstraction has two major disadvantages: (i) It

neglects much of the geometric information of the folding land-

scape because the neighborhood relation between basins is

ignored as illustrated in Figure 2. (ii) The high computational

cost makes it unfeasible in practice for RNA molecules with a

length4100 nt.

2.3 The Basin Hopping Graph

2.3.1 Definition The BHG has been devised to overcome these

shortcomings. The basic idea is to incorporate additional neigh-

borhood information by considering LMs as adjacent if the tran-

sition between their corresponding basins is ‘energetically

optimal’. For two given LMs x and y, the condition energetically

optimal requires that their direct saddle height is equal to their

saddle height, i.e. DSðx, yÞ ¼ Sðx, yÞ. A schematic diagram of the

BHG for a toy landscape is illustrated in Figure 2, in which, the

transition from A to B on Figure 2 is energetically optimal, as

SðA,BÞ ¼ DSðA,BÞ ¼ 0, but the transition from A to D is not, as

0:5 ¼ DSðA,DÞ4SðA,DÞ ¼ 0.
We focus on the energetically optimal transitions because, on

one hand as proven in Supplementary Material Lemma S1, the

energetically optimal paths connecting two local minima x and y

can be represented as a concatenation of energetically optimal

transitions between neighboring basins. In Figure 2, for example,

there are two energetically optimal paths between A and D:

A! B! D and A! C! D. Both paths are composed of

Fig. 2. A landscape with four local minima (A, B, C, and D) is illustrated

in the left hand side. Its corresponding barrier tree (top) and BHG

(bottom) are shown on the right hand side with saddle heights annotated

inside. For any pair of local minima, their corresponding saddle heights

are all equal to 0 kcal/mol. Regarding direct saddle heights, except

DSðA,DÞ ¼ DSðB,CÞ ¼ 0:5kcal=mol, the rest are all of value 0 kcal/mol.

One key difference is that the energetically favorable neighborhood rela-

tion between the basins can be displayed in the BHG but not in the

barrier tree
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optimal transitions between neighbored basins ðA,BÞ, ðB,DÞ,

ðA,CÞ and ðC,DÞ.
On the other hand, a key observation is that the ‘energetically

optimal’ transitions are usually rare and hence the BHG is a

fairly sparse graph. Therefore, the BHG may be the minimal

‘information container’ that is able to track the energetically op-

timal paths between any two local minima in the RNA land-

scape. We have shown in Figure 2 that the barrier tree fails to

track the optimal path between A and D. In Supplementary

Material Part C, we further prove inductively that the barrier

tree is equivalent to the dendrogram obtained from the BHG by

single linkage clustering.
The BHG could be constructed by enumeration and flooding

in a manner similar to the barrier tree. Instead, we describe an

efficient heuristic that allows us to overcome the stringent length

restrictions imposed by enumerative approaches. The procedure

consists of two largely independent components: (i) The

RNAlocmin program generates a sample set of LMs within a

user-defined energy range above the MFE. This component re-

places the exhaustive enumeration of all low energy states. (ii)

The BHGbuilder algorithm is then used to estimate direct

saddle points and to determine the BHG adjacency on the

input set of LMs. As we show below, the vertex and edge weights

can be estimated along the way.

2.3.2 RNAlocmin The basic idea of RNAlocmin is straightfor-
ward: it samples a start structure and then uses a gradient walk to

determine the corresponding LM. The main technical difficulty is

to make the sampling part efficient. Boltzmann sampling, as im-

plemented in RNAsubopt -p or sfold (Ding and Lawrence,

2003; Ding et al., 2004), predominantly yields structures close to

the MFE, which are frequently transported to the global min-

imum or one of the other local optima with low energy.
To avoid this kind of oversampling, we resort to the idea

underlying Simulated Annealing and modify the Boltzmann

weights by an extra scaling factor � that artificially increases

the sample temperature:

P�ðsÞ ¼ e
�fðsÞ
�RT=Q� ð1Þ

where Q� the correspondingly modified partition function and �
serves as a normalization factor. A change of the thermodynamic

temperature T also affects the RNA energy parameters, which

are free energy contributions (Mathews et al., 1999), and hence

affects f(s) in a biased manner. It is necessary, therefore, to be

able to vary the thermodynamic temperature and the sample

temperature � independently. For � ¼ 1 we obtain regular

Boltzmann ensembles, for �!1 we approach uniform sam-

pling of X. The implementations of the partition function algo-

rithms of the ViennaRNA Package have been modified to

provide this option from version 2.0.3 on.

Because we are interested in the LMs within a prescribed

energy increment above the MFE, it pays to adjust � accordingly.
Instead of a fixed optimal �, we use an adaptive �-schedule,
which prefers LMs with relatively low energies. As the thermo-

dynamic energy model of RNAs is strongly dependent on the

input sequence, we first estimate the expected energies as a func-

tion of �. To this end, we obtain a set of LMs from 1000 sampled

structures and tabulate the average energy of the LMs for each

� ¼ 0:4þ k	 0:1 in which an integer k ranges over the interval

[0, 21], Figure 3 (top). From these values we obtain an estimate

eð�Þ for the expected free energy by linear interpolation. In prin-

ciple, one could precompute these tables for various sequence

compositions. We found, however, that the computational over-

head to estimate these values for each input is tolerable in prac-

tice. Alternatively, one could also estimate the eð�Þ ‘on the fly’

from the already sampled LMs.
From each sampled structure s, we obtain the corresponding

LM x via a gradient walk starting from s. In practice, the imple-

mentation does not completely evaluate candidate structures but

considers the energy increments for opening and closing individ-

ual base pairs, each of which can be obtained by three lookups

from the tabulated energy model. For each LM x, the number

q(x) of gradient walks terminating in x is recorded to keep track

of sampling efficiency. Sahoo and Albrecht (2012) introduced a

heuristic criterion designed to avoid reaching the same LM too

many times from different initial random starting points. They

propose that the sampling is sufficient when most of the minima

have been seen at least twice. We modify this rule and stipulate

that sampling is sufficient up to energy level e if ‘e1 
 ‘e1, where

‘ek denotes the number of minima with an energy less than e that

have been detected at least once and at most k times

(‘ek ¼ jfxj1 � qðxÞ � k;EðxÞ5egj). The rule of (Sahoo and

Albrecht, 2012) and its energy-dependent variants are empirically

well supported (see also Section 3) but so far lack a good theor-

etical justification.
To turn the rule into an operational criterion, we determine, at

a given step of the sample procedure, the smallest energy cutoff e

so that ‘e1 � �‘
e
1, where the so-called convergence parameter �

is a user-defined threshold, set to � ¼ 0:1 by default. The energy

e is then interpreted as the desired expected energy for the next

sampling epoch. The corresponding value of � is obtained from

the precomputed table mentioned above. RNAlocmin continues

until the energy e exceeds the user-defined upper bound or if the

requested number of iterations have been done.
The time complexity of RNAlocmin is composed of two parts.

First, samples have to be gathered by RNAsubopt, and then

Fig. 3. Computation of LMs for Melitaea cinxia U6 snRNA JX878560.1

(107nt) with RNAlocmin. (Left) Adaptive � schedule as a function of run

time. For each sampling epoch we show the values of e and � as �ðeÞ. The

precomputed e� table is shown at the top. (Right) Size-weighted fraction

of undiscovered LMs compared with exhaustive enumeration with

RNAsubopt and barriers. Basin sizes are estimated from the 106

structures with the lowest energies
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gradient walks have to be constructed for each sample. The time

complexity of an average gradient walk is Oðn2Þ, where n is the
length of the sequence. We are dealing mainly with highly folded

structures and they tend to only have small number of insertions

possible, and therefore, these structures have O(n) neighbors.

Recomputing their energy is in O(1) steps as mentioned earlier,
and the gradient walk has at most O(n) steps on RNA land-

scapes. For each value of �, we have a setup cost of Oðn3Þ for

the forward recursion of McCaskill’s algorithms and Oðn2Þ to
generate a sample. The complexity of the latter step could be

reduced to Oðn log nÞ using the Boustrophedon method (Ponty,

2008). As the sampling step is already dominated by the effort

for the gradient walk, we retained the simpler implementation.
The total time complexity is then OðI � n3 þN � n2Þ, where I is the

number of �-sampling epochs and N is the total number of

sampled structures.
For performance evaluation, we generated samples of 10 ran-

domly generated RNA sequences with uniform nucleotide com-

position for each length from 60 to 500 (Supplementary Material
Part D Fig. S2). For each sequence, LMs are generated from at

most 105 start structures for each value of �. Computations were

performed on an Intel Xeon CPU E5450 3.00GHz.

2.3.3 BHGbuilder BHGbuilder aims to determine the BHG
adjacency and the corresponding edge weights (saddle heights)

between these adjacent LMs. Initially, all pairs of LMs are

arranged in a priority queue L by increasing base pair distance.
Then BHGbuilder uses an iterative procedure to determine the

BHG-adjacent LMs: for each pair of LMs in L, (i) an initial path

P ¼ ðx ¼ p0, p1, . . . p‘þ1 ¼ yÞ is computed with some existing

heuristic path-finding algorithm. Our implementation uses
findpath (Flamm et al., 2000) provided by the ViennaRNA
Package as the default underlying algorithm (alternatives such

as Pathfinder could be used as well); (ii) an iterative re-

evaluation procedure (Fig. 4) is used to improve P. At each
pi 2 P, we start a gradient walk and determine its end points

vi. If all vi coincide with x or y, then fx, yg is a candidate BHG

edge. Otherwise, each pair of distinct consecutive (w.r.t. to P)

LMs is reinserted into the priority queue. The process ends
when L is empty and returns an approximation of the BHG

graph. Its vertex set consists of both the LMs provided as

input (e.g. by RNAlocmin) and the additional LMs obtained

in the path-construction step. Its edges are the BHG adjacencies
as outlined above. Finally, a double-sided flooding procedure

(optional) is called to further improve the edge weights between
two BHG-adjacent vertices. Here, an exact saddle can be dis-

covered by enumerating the structures in these two adjacent

basins if the number of structures enumerated does not overcome
a certain threshold.
BHGbuilder has a time complexity of OðP �M2 þ E � K � nÞ,

where terms capture the above described algorithm and the

flooding of the resulting pairs of LMs: P is the time complexity
of one run of the underlying path-finding algorithm, Oðn2Þ in the

case of findpath; M is number of LMs in the input, E �M
denotes the number of edges in the BHG as an output; K denotes

the maximal number of additional structures appearing in the
flooding procedure and O(n) is the average time complexity to

compute the neighborhood for each structure. Therefore,
the time complexity of BHGbuilder with findpath is

OðM2 � n2 þM � K � nÞ.

3 RESULTS AND DISCUSSION

3.1 RNAlocmin

Figure 5 summarizes the sampling schedule and the size-weighted

fraction of undetected basins as a function of invested CPU time.
Not surprisingly, the sampling times to reach a given level of

coverage of the landscape increase with sequence length. This
is an obvious consequence of the exponential increase in the

number of LMs. Nevertheless, the adaptive � schedule is effective
because for different RNA lengths, the speed of finding new LMs

remains stable, i.e. the number of detected LMs grows linearly

with respect to the running time (shown in the Supplementary
Material Part D Fig. S2).
Figure 5 (right) shows that for sequence lengths up to 500 nt,

RNAlocmin is able to find a collection of LMs whose combined

basin sizes cover more than two-thirds of the search space within
200 s. For sequences shorter than 300 nt, this fraction increases

to 80%. Similar results are obtained from biological RNA se-
quences and collected in Supplementary Material Part E Figures

S3–S11.
To compare the performance of RNAlocmin with

RNAlocopt (Lorenz and Clote, 2011), we allocate the same
CPU time to both programs and evaluate the total number of

detected LMs and the size-weighted fraction of undiscovered

Fig. 4. Iterative path construction in BHGbuilder. First, an initial path

x! p1 ! � � � ! p7 ! y is computed with findpath for the first pair of

LMs ðx, yÞ in the priority queue L. The base pair distance between x and

y is 8. Next, the gradient walks starting from fp1, . . . , p7g determine three

consecutive LMs v1, v4 and v6. Thus, the adjacent pairs ðx, v1Þ, ðv1, v4Þ,

ðv4, v6Þ and ðv6, yÞ are inserted into L for the next iteration

Fig. 5. Average performance of RNAlocmin for random generated

RNA sequences of lengths 60–500. The crosses annotate the time

points when � get updated
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basins. Both Figure 6 and the additional benchmarks summar-

ized in the Supplementary Material Part E Figures S3–S11 show

that RNAlocmin consistently outperforms its competitor with

respect to both measures.

3.2 BHGbuilder

3.2.1 Approximated BHG versus Barrier tree In Figure 7, we

compared the BHG (top) and the barrier tree (bottom) for the

RNA molecule 50-GUGUCGCUUUCGAUUAAGGACCUAC

AACAGGCU-30. To highlight the difference between the barrier

tree and the BHG, we consider the refolding pathway between (i)

the MFE and (ii) the next-lowest LM. Both structures readily

allow us to read off the saddle height as 1.9 kcal/mol. The BHG

shows that there are two alternative optimal pathways

1! 11! 5! 17! 9! 8! 2 and 1! 11! 5! 17!

9! 3! 2. The barrier tree provides a much more ambiguous

picture. It suggests a refolding pathway climbing to the saddle

separating LM 1 and LM 2 but does not provide any indication

of the intermediate states. The path backtracking procedure im-

plemented in barriers can identify the first folding pathway.

Owing to the inherent tree topology, however, it is not possible

to also find the alternative connection. We note here, this path

backtracking procedure is limited to RNA molecules 100nt only,

as the number of optimal paths is usually too big.
There are pairs of LMs that are not connected by an energet-

ically optimal path but are still BHG adjacent. An example is

LM 1 and LM 5 in Figure 7, which are adjacent in the BHG

while 1:6 ¼ Sð1, 5Þ5DSð1, 5Þ ¼ 3:2. These cases appear when the

underlying path-searching algorithm misses the optimal solution

for the initial path. In practice, these ‘energetically suboptimal’

paths rarely hurt the computation of the saddle height, which is

calculated only after the entire BHG, and hence the competing

indirect paths, have been determined. As these paths usually

reduce the graph distance at the expense of a small energy pen-

alty, such paths may still be relevant for the folding kinetics. One

might want to consider an optimization criterion that involves

both path length and energy instead of just peak energy along the

path as we do here.

3.2.2 Approximation of saddle heights BHGbuilder is a heur-
istic algorithm and thus will in general only find upper bounds of

saddle heights. For moderate-size RNAs, a direct comparison

with exact values obtained from barriers is possible. For

larger molecules, we compare with other heuristics. In particular,

it is interesting to check whether the construction of the BHG

brings a further improvement of the saddle heights compared

with the path construction heuristic findpath alone. Because

BHGbuilder uses findpath for its initial estimates of saddle

heights, it is of course guaranteed that Sbarriersðx, yÞ �

SBHGbuilderðx, yÞ � Sfindpathðx, yÞ. The improvements of

BHGbuilder over findpath are mostly a consequence of

the inclusion of additional LMs such as (17) in Figure 7 (top),

which is necessary for the optimal path. In Figure 8, we use two

snRNAs as examples, the 107 nt U6 snRNA of Melitaea cinxia

and the 166 nt U1 snRNA of the mouse. For U6, we sample 1000

LMs and determine the exact saddle heights between all pairs by

flooding with RNAsubopt/barriers. The saddle point esti-

mates are similar in this case, with BHGbuilder obtaining the

Fig. 7. Comparison of the BHG and the barrier tree for a small RNA

molecule. The vertex set of the BHG (top) comprises the 15 LMs of the

input and two additional LMs 16 and 17 discovered by BHGbuilder.

The barrier tree generated with barriers (below) contains only the 15

input LMs. Secondary structure drawings were produced with VARNA

(Darty et al., 2009)

Fig. 6. Comparison between RNAlocmin and RNAlocopt for the SV11

RNA switch L07337_1 (115nt), see Section 3.2.4. The sample size for

RNAlocmin was limited to N¼ 4000 000 structures. The fraction of un-

detected basins was estimated by enumeration of 10 �N suboptimal struc-

tures with RNAsubopt -e and subsequent evaluation of the gradient

basins with barriers
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exact values and only small errors of up to 0.1 kcal/mol in

�7.4% of the pairs for findpath. For the 166 nt mouse U1

snRNA, however, an exact computation with barriers
already exceeds our hardware limitations. The direct comparison

of BHGbuilder and findpath yields a moderate improve-

ment of on average 0.8kcal/mol for almost half of the pairs

of LMs.

BHGbuilder performs equally well or better than findpath
in all 10 examples of Supplementary Material Part F Figures

S12–S21. For three cases, we find substantial improvements of

the saddle point energies that can help to derive more exact RNA

kinetic parameters. In seven cases, only small or no improve-

ments were obtained. Still, the adjacency information generated

by BHGbuilder, can add further accuracy to kinetic parameters

in all cases because it provides information on alternative con-

nections between LMs; see Supplementary Material Part F for

details.

3.2.3 Prediction of folding pathways BHGbuilder can also be

used to predict the optimal folding path between a pair of user-

prescribed LMs. Here we make use of the iterative path improve-

ment step to elaborate on underlying folding path prediction

software such as findpath (Flamm et al., 2000),

RNAtabupath (Dotu et al., 2010) and Pathfinder (Lorenz

et al., 2009). In Table 1, we compare BHGbuilder with find-
path, RNAtabupath and Pathfinder on 100 randomly gen-

erated instances with n¼ 200, i.e. well beyond the reach of exact

enumeration. Interestingly, the computationally expensive flood-

ing step brings no improvement for this task. Pathfinder
nearly always obtains the path with the lowest peak height but

is more than two orders of magnitude slower.

3.2.4 SV11 RNA: a hard case The SV11 sequence is a particu-
larly hard test case for landscape-oriented algorithms because it

features a functional metastable state with high energy and a

high energy barrier. The 115 nt SV11 RNA was discovered in

in vitro selection experiments as an excellent substrate for Q�
replicase (Biebricher and Luce, 1992). It features a nearly palin-

dromic sequence with an extremely stable hairpin-like MFE

structure. Pulse-chase experiments showed that the active

conformation is a metastable structure formed during replica-
tion, while the MFE serves as a template for the Q� replicase.

Melting experiments indicated that the metastable conformation
comprises two distinct stems (Biebricher and Luce, 1992).

The energy difference between the MFE and the metastable
conformation is 28.5 kcal/mol, well beyond the reach of exhaust-

ive enumeration. Boltzmann sampling is also inefficient for such
large energy differences as well, hence RNAlocopt is still
trapped in the vicinity of the MFE after 1 h at a sample size of

108. During the same wall clock time, RNAlocmin (convergence
parameter � ¼ 0:8) found the metastable in a sample of 4	 106

structures.

A B

C D

Fig. 9. Energy landscape of the SV11 RNA. The distribution of base pair

distances from MFE and metastable structure are shown for a sample of

4	 106 structures for RNAlocmin (A) and 108 structures for

RNAlocopt (B). The metastable basin is missed completely by

RNAlocopt. Panels (C) and (D) record the folding energy and base

pair distance from the MFE structure along the optimal (re)folding

path from the MFE to the metastable state as computed by

BHGbuilder. The x-axis is the number of structures along the path

Fig. 8. Comparison of the saddle height estimates of BHGbuilder and

findpath for Melitaea cinxia U6 snRNA JX878560.1 (107nt) and the

Mus musculus U1 snRNA NR_004413.2 (166nt). Here, the x-axes denote

the indices of LM-pairs, which are sorted according to their saddle

heights in an increasing order and the y-axes are the corresponding

saddle heights (kcal/mol) estimations derived from different methods.

The inset shows the difference in saddle heights between BHGbuilder

and findpath

Table 1. Performance comparison with different folding path prediction

algorithms for the refolding paths between the MFE structure and a

randomly selected LM

Algorithm Number of best runs �E (kcal/mol) Time (s)

RNAtabupath 14 3.0598 4617.7

BHGbuild 34 1.1028 7.6674

BHGbuild -noF 34 1.1028 0.6824

Pathfinder 95 0.0367 113.01

findpath 12 1.5104 0.6397

Note: Values are averages over 100 RNA sequences of length 200 nt. �E is the

average difference in the energy from the best run. BHGbuild -noF is the BHG

algorithm without the optional flooding step. Pathfinderwas run with option -M

DB-MFE, and for findpath we used depth ¼ 1000.

2015

Basin hopping graph

about 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu156/-/DC1
SM
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu156/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu156/-/DC1
since 
,
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu156/-/DC1
SM
,
,
,
very 
,
one 
our


Figure 9A and B summarize the differences between
RNAlocopt and RNAlocmin in the base pair distance distribu-
tions of the LMs. While RNAlocopt found only 620 distinct

LMs, we obtained 2 619 305 with RNAlocmin using a much
smaller sample size. Importantly, RNAlocmin covers not only
LMs near to MFE but also, due to the adaptive schedule, those

more distant LMs in energy and base pairing pattern.
RNAlocmin found the metastable stable state as the 365172th
LM w.r.t. energy.

BHGbuilder cannot process an input set of this size within
reasonable time. Most of the LMs, however, are not persistent.
They are either shallow or just ‘transition’ LMs with only two

neighbors in the final BHG. Therefore, we selected from the
initial input set those that remains LM with respect to an ex-
panded move set that includes base pair shifts (Wuchty et al.,

1999). Now the metastable has rank �6700 w.r.t. energy.
Starting from the 7000 lowest LMs w.r.t. to the expanded

move set and removing shallow LMs whose gradient basin has
an escape barrier51.0 kcal/mol leaves an initial set of 2665 non-
shallow LMs as input. BHGbuilder constructs a BHG with

110593 vertices and 224666 edges in520h. The optimal folding
path connecting MFE to metastable state in the BHG has a
saddle height of �59:2kcal=mol. This is a 3.1kcal/mol improve-

ment over both findpath and Pathfinder. We visualized
the optimal path by monitoring how the free energies and the
base pair distances (with MFE) vary along this path in Figure 9C

and D, respectively. With few exceptions, the base pair distance
monotonically decreases along the pathway. Interestingly, most
of these detours appear in close vicinity of high energy peaks,

which is potentially necessary to circle around the high energy
barriers.

4 CONCLUDING REMARKS

The BHG introduced here is a conceptually rigorous coarse

graining of a landscape comprising the LMs and those direct
saddle points between them that are also globally the most fa-
vorable connections. At the same time it is a refinement of the

barrier tree, which can be obtained from the BHG by single
linkage clustering. It is not specific to RNA folding, which we
used as a concrete application here, but can be computed in

principle for any landscape.
The focus on the BHG adjacency captures the most likely

transitions between basins. Thus, when the BHG serves as a

basis for computing folding dynamics, one-step transition rate
Px, y between any two given local minima x and y is approxi-

mated by an Arrhenius rule as Px, y/e
�Sðx, yÞ=RT if x and y are

adjacent in the BHG and 0 otherwise. This improves on the
Arrhenius approximation for the barrier tree in which

Px, y/e
�Sðx, yÞ=RT for each pair of local minima. Using Figure 2

as an example, in the BHG, any pathway from A to D needs to
pass through either B or C, and thus, it requires two steps to

refold from A to D. However, in a barrier tree, this is approxi-
mated as a one-step transition because it omits the geometric
information between two basins. This approximation will be

less accurate than the macro-state transition rates model outlined
by Wolfinger et al. (2004). For instance, the direct transition
between A and D in Figure 2 is neglected in the BHG model.

A toy kinetic example comparing the three discussed approaches

is presented in Supplementary Material Part G. The exponential

relation between energies and rates suggests that energetically

non-optimal direct transitions will play only a minor role com-

pared with pathways with multiple intermediates that all have

strictly smaller peak energies. This is true only for differences

larger than a few kT. To accommodate this point, we can replace

energetic optimality by a relaxed condition of the form

DSðx, yÞ � Sðx, yÞ � �Eef, which includes some suboptimal

direct transitions between basins to the BHG. It will be interest-

ing to see how the threshold �Eef affects the folding kinetics. It is

computationally feasible to keep suboptimal transitions as long

as �Eef is a small multiple of kT.
The BHG has been introduced with the explicit purpose of

allowing for an efficient high-quality heuristic approximation

so as to overcome the stringent size limitations of the exact al-

gorithms. Empirically we find that the combination of improved

sampling of low-energy local LMs with RNAlocmin, fast con-
struction of initial candidate saddles with findpath and the

construction of the BHG by iterative path improvement with

BHGbuilder comes close to the exact solutions for small sys-

tems. At the same time, it extends the range at which RNA

folding landscapes can be studied to at least 300 nt, thus includ-

ing most structured RNAs of biological interest, such as RNAs

shown in SupplementaryMaterial Part E and F. BHGbuilder is

also capable of exploring partial landscapes determined by the

input set of LMs. Therefore, it allows us to ‘zoom-in’ and focus

on the region of particular biological interest. The methods are

readily extended to pseudoknotted RNAs as shown in

Supplementary Material Part H. However, they become compu-

tationally much more demanding.
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