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Abstract
Purpose: To evaluate the epigenetic risk linked to assisted reproductive technology (ART) at single-embryo level by analyzing the
methylation status of imprinted H19, PEG1, and KvDMR1 in human preimplantation embryos. Methods: A total of 254 human
day 3 embryos produced by ART procedures were collected. All embryos were normally fertilized but unsuitable for transfer or
freezing due to poor quality. Pyrosequencing with confirmatory routine bisulfite sequencing were used to determine the DNA
methylation patterns of H19 differentially methylated region (DMR) in 63 embryos, PEG1 DMR in 65 embryos, and KvDMR1 in 67
embryos. Results: Aberrant methylation patterns were found in 8.0% embryos at H19 DMR, 16.9% embryos at PEG1 DMR, and
10.4% embryos at KvDMR1. No methylation errors were found in corresponding sperm samples. Conclusions: We
hypothesized that the use of poor-quality embryos may increase the risk of imprinting defects because they might have methylation
errors.
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Introduction

In recent years, multiple case series and reports have been pub-

lished on assisted reproductive technology (ART)-conceived

children with imprinting disorders.1,2 The concerns about the

possibility of epigenetic changes resulting from ART are there-

fore increasing. The identification of epigenetic changes at

imprinted loci of ART infants has led to the suggestion that the

technique itself may predispose embryos to acquire imprinting

errors.3-5 The most major epigenetic mechanism of genetic

imprinting is DNA methylation that regulates the expression

of imprinted genes according to parental origin within discrete

locations known as differentially methylated regions (DMRs).6

The H19 DMR, PEG1 DMR, and KvDMR1 are well-studied

imprinted loci because their aberrant methylation may contribute

to Silver-Russell syndrome (RSS)7-9 and Beckwith-Weidemann

syndrome (BWS)10-12. In humans, H19 is paternally imprinted,

whereas PEG1 and KvDMR1 are maternally imprinted. Previous

studies, especially animal studies, revealed that some procedures

used in the ART process could subject gametes and early

embryos to environmental stress, resulting in the alteration of

DNA methylation. For instance, in vitro maturation (IVM) and

superovulation using high-dose hormone could cause methyla-

tion errors in oocytes13-15; in vitro culture may make imprinting

of embryos aberrantly altered.16-18 On the other hand, sperm

cells from men with severe oligozoospermia or azoospermia

were found with abnormal methylation profiles, suggesting that

infertility itself may be a risk factor for imprinting diseases.19-21

After fertilization, early embryos undergo a genome-wide

demethylation process, but this process does not affect the

differential methylation marks of imprinted genes, which

were previously set in gametes. Thus, aberrant methylation in

embryos could result from in vitro culture condition or as a result

of epigenetic inheritance from gametes. Currently, the studies

regarding human embryo methylation were fewer due to ethical

consideration, and the related knowledge was mainly inferred

from the hypothesis of animal studies; therefore, more human

studies are needed.

In this study, we collected 254 human preimplantation

embryos produced during ART procedures. We determined the

methylation status of H19 DMR, PEG1 DMR, and KvDMR1 at
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the single-embryo level using pyrosequencing and bisulfite

sequencing technique, trying to offer preliminary data to eval-

uate epigenetic risks linked to ART.

Materials and Methods

The study protocol was approved by the institutional ethical

committee. After obtaining the informed consent from all

patients, the embryos were donated for research. In our

ART procedure, the gametes and embryos were manipulated

using Quinn Advantage HEPES Medium, HTF Medium, and

Cleavage Medium (Sage, Pasadena, California). The culture

conditions were 37�C, 5% CO2, 5% O2, and 90% N2. A total

of 254 day 3 embryos that were normally fertilized (2 pronu-

clei) were collected for the study, and all embryos were unsui-

table for transfer or freezing due to poor quality. The number of

embryo tested for the 3 DMRs is 80 embryos for H19 DMR, 84

embryos for PEG1 DMR, and 90 embryos for KvDMR1. The

genomic DNA of single embryo was bisulfite converted using

our previous protocol,22 and the last washing droplet of each

embryo served as a blank.

A seminested polymerase chain reaction (PCR) was used to

amplify the bisulfite-converted DNA of single embryo. To

confirm that the PCR amplification had no bias, the adult

leukocytes were used as controls. The bisulfite PCR, pyrose-

quencing, and bisulfite sequencing protocol were according

to our description.3

The statistical analysis program SPSS version 13.0 was used

to analyze the methylation values. The percentages of methyla-

tion were calculated as mean + standard deviation (SD). Box

plots were generated using default parameters. The bottom and

the top of the box indicate the 25th and 75th percentile,

respectively. The T bars extend from the boxes to at most 1.5

times the height of the box. Outliers are values that do not lie

within these T bars; extreme outliers have values more extreme

than 3 times the box length away from the median. The normal

range of DNA methylation was determined by calculating the

mean + standard deviation (SD) of the data without the out-

liers or extreme outliers

Result

The bisulfite PCR amplification efficiency at single-embryo

level for H19, PEG1, and KvDMR1 were 78.8% (63 of

80 embryos were successfully amplified), 77.4% (65 of 84

embryos were successfully amplified), and 74.4% (67 of 90

embryos were successfully amplified), respectively. A total

of 254 negative PCR controls were tested, and none produced

amplification products, indicating no PCR contamination.

For leukocytes, methylation patterns for the 3 imprinted loci

demonstrated the differential methylation patterns (about half

methylated and half unmethylated), indicating no bias in bisul-

fite PCR.

The methylation values were processed using box plots

analysis (see Figure 1). For H19 DMR, 5 (8.0%) embryos

showed abnormal methylation (3 embryos with demethylation

profiles and 2 embryos with hypomethylation profiles); 60

embryos showed the differential methylation pattern (mean

methylation: 42.7% + 7.1%). For PEG1 DMR, 11 (16.9%)

embryos exhibited aberrant methylation (7 embryos with

demethylation patterns, 3 embryos with hypomethylation

patterns, and 1 embryo with hypermethylation pattern). For

KvDMR1, 58 embryos showed the differential methylation

pattern (mean methylation: 48.6% + 6.4%), 7 (10.4%)

embryos demonstrated abnormal methylation (2 embryos

with demethylation profiles, 1 embryo with hypomethylation

profile, and 4 embryos with hypermethylation profiles); 62

embryos showed the differential methylation pattern (mean

methylation: 38.7% + 2.9%). These results were confirmed

by the subsequent bisulfite sequencing (some results are shown

in Figure 2). Table 1 summarized the results of methylation

analysis of embryos with methylation errors. Comparing the

rate of methylation errors of the 3 DMRs (H19: 8.0%, PEG1:

16.9%, and KvDMR1: 10.4%), no significant difference was

found among the 3 DMRs groups. We also summarized and

compared the day 3 embryo quality between abnormal methyl-

ation group and normal methylation group, and no significant

differences were found (see Table 2).

According to imprinting reprogramming mechanism, in the

embryos, demethylation or hypomethylation of H19 DMR and

hypermethylation of PEG1 DMR/KvDMR1 may be consequent

to methylation errors in spermatozoa. We next examined DNA

methylation patterns in the sperm samples used to fertilize the

10 embryos (5 embryos with demethylation or hypomethylation

of H19 DMR; 1 embryo with hypermethylatikon of PEG1 DMR;

4 embryos with hypermethylation of KvDMR1). All 10 sperm

samples demonstrated normal methylation patterns at the corre-

sponding imprinted loci tested (see Figure 3).

Figure 1. Box plot analysis showed the distribution of methylation
values of 3 differentially methylated regions (DMRs) in human embryo
samples. Bottom of the box indicates the 25th percentile and the top
indicates the 75th percentile. Outliers, which were considered as
aberrant methylation values, are shown as asterisk (for H19 DMR:
embryo No. 47, 52, 59, 60, 61; for PEG1 DMR: embryo No. 64,
100, 104, 119, 120, 122, 123, 124, 126, 127, 128; for KvDMR1: embryo
No. 152, 172, 175, 180, 188, 191, 194).
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Discussion

There is a growing literature evaluating the epigenetic aspects

of ART, and most experiments address the effects of ovu-

lation induction and preimplantation embryo culture. At the

level of genomic CpG methylation, ART-induced epigene-

tic defects are convincingly observed in mouse studies. In

humans, the related studies are relatively limited for ethical

reasons.

After gamete fusion, embryos undergo a global paternal

demethylation at zygote stage and maternal demethylation at

4-cell stage. Remethylation starts at the end of the morula stage;

in blastocysts, methylation level diverges with more methylation

in the inner cell mass.18,24 However, at imprinted loci, the primary

imprints laid down at imprinted genes during oogenesis and sper-

matogenesis are resistant to this demethylation process during the

cleavage divisions.

Figure 2. A-C, The aberrant methylation patterns of 3 imprinted loci in human preimplantation embryos. The CpG sites were measured using
pyrosequencing, and the ‘‘methylation%’’ was the average of ‘‘C%’’ of each CpG site measured. The ‘‘T%’’ of sites marked with an asterisk (*)
represent the bisulfite conversion efficiency. a*c, Consequent bisulfite sequencing technique confirmed the pyrosequencing results. The open
and closed circles represent methylated and unmethylated CpGs, respectively. The regions between the 2 arrows indicate the CpG sites ana-
lyzed by pyrosequencing. The percentage of methylation was calculated as the percentage of methylated CpG sites. A, H19 DMR (7 CpG sites):
the abnormal hypomethylation profile in No.59 embryo (23.6% methylation). a, The result of bisulfite sequencing was 6.1% methylation; (B)
PEG1 differentially methylated region (DMR; 5 CpG sites): the demethylation pattern in No.100 embryo (0% methylation). b, The result of bisul-
fite sequencing was 0% methylation; (C) KvDMR1: (7 CpG sites): the abnormal hypermethylation pattern in No.180 embryo (88.3% methyla-
tion). c, The result of bisulfite sequencing was 91.3% methylation.
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It was demonstrated that in vitro culture systems and

embryo manipulations cause imprinting defects in animal

models; the degree of abnormality may be related to the type

of culture medium. In humans, the aberrant methylation of

H19 DMR was found in surplus embryos (low quality or

arrested).22,24 Dumoulin et al found that in vitro fertilization

(IVF) children derived from embryos that were cultured in 2

different media showed a significant difference in birth weight,

revealing an effect of culture medium on ART offspring.25

However, these studies were less and restricted to 1 gene due

to the limited material. In this study, methylation errors of

H19 DMR, PEG1 DMR, and KvDMR1 were, respectively,

found in 8.0%, 16.9% and 10.4% day 3 embryos. We did not

find which DMR had higher frequency of abnormal methyla-

tion. Our pilot study suggested no differences regarding day

3 embryo quality between abnormal methylation and normal

methylation. Whether the methylation errors are related to

embryo quality should be investigated in further studies and

Figure 3. The pyrosequencing results of some sperm samples used to fertilize the corresponding embryos. A, H19 DMR (7 CpG sites): the
normal hypermethylation profile (94.2%) in the sperm sample (corresponding embryo: No.60); (B) PEG1 DMR (5 CpG sites): the normal hypo-
methylation pattern (0%) in the sperm sample (corresponding embryo: No.123); (C) KvDMR1: (7 CpG sites): the normal hypomethylation pat-
tern (5.4%) in the sperm sample (corresponding embryo: No.172).
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more strict study design is essential. No methylation errors were

found in corresponding sperm samples, suggesting that the pater-

nal epigenetic transmission was unlikely. Because the compari-

son using in vivo human day 3 embryos as controls cannot be

made in the present study, we have no convincing evidence to

confirm the epigenetic effect of in vitro culture on human

embryos. In addition, the effects of IVF or development in

culture medium alone are difficult to investigate. Therefore,

we only hypothesized that the altered methylation found in this

study are partly caused by ART manipulation, especially culture

condition according to previous animal studies.

The embryos we studied were of poor quality, and the

good-quality embryos were not detected due to the ethical

reason, thus the relationship between abnormal methylation

and embryo quality is not known. In ART procedure, the

poor-quality embryos are usually abandoned by patients

according to doctors’ advice. However, some patients may

choose to transfer poor-quality embryos if good embryos are

not available. Our results would suggest that the use of poor-

quality embryos may increase the risk of imprinting defects

because they might have methylation errors. The further stud-

ies are needed to extend analysis to more embryos and different

types of culture medium.
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Table 1. Results of Methylation Analysis of the 3 DMRs in Human Preimplantation Embryos Showing Aberrant Impinting.

Case Age Infertile Factor
Stimulation
Protocol

Insemination
Mode

Embryos
no.

Imprinted
Loci

Day2 Quality Day3 quality Embryo
Methylationa

(%)

Sperm
Methylationb

(%)Cells Gradeb Cells Gradec

12 33 Tube factor Long agonist IVF 47 H19 Uncleaved – 2 2 0 (0) 94.9
18 31 Tube factor Long agonist IVF 52 H19 2 1 3 1 0 95.6
19 29 Tube factor Long agonist IVF 59 H19 4 3 6 4 23.6 (6.1) 94.2
23 36 Endometriosis Long agonist IVF 60 H19 3 2 5 4 27.8 94.5
23 36 Endometriosis Long agonist IVF 61 H19 2 2 2 3 0 94.5
25 37 Tube factor Long agonist IVF 64 PEG1 5 3 9 4 33.0
51 28 Oligospermia Long agonist ICSI 100 PEG1 Uncleaved — 5 3 0 (0)
58 38 Tube factor antagonist IVF 104 PEG1 4 1 4 1 0
63 34 Tube factor Long agonist IVF 119 PEG1 3 3 5 3 32.5 (21.6)
63 34 Tube factor Long agonist IVF 120 PEG1 2 1 3 2 34.2
79 25 Azoospermia Long agonist ICSI 122 PEG1 4 2 4 3 0
85 30 Tube factor Long agonist IVF 123 PEG1 5 3 7 4 69.9 (75.0) 0
85 30 Tube factor Long agonist IVF 124 PEG1 Uncleaved — 5 2 0
90 32 Tube factor Long agonist IVF 126 PEG1 2 1 4 2 0
92 31 Tube factor Long agonist IVF 127 PEG1 2 3 3 3 0
95 30 Oligospermia Long agonist ICSI 128 PEG1 4 2 4 2 0
98 33 Endometriosis Antagonist IVF 152 KvDMR1 4 3 6 3 30.5
102 29 Tube factor Long agonist IVF 172 KvDMR1 3 2 4 2 93.3 5.4
105 35 Tube factor Long agonist IVF 175 KvDMR1 Uncleaved — 3 1 0
110 36 Tube factor Long agonist IVF 180 KvDMR1 2 1 4 2 88.3 (91.3) 4.5
112 30 Tube factor Long agonist IVF 188 KvDMR1 5 2 6 4 48.8 0
112 34 Tube factor Long agonist IVF 191 KvDMR1 4 1 4 1 83.1 0
116 36 Tube factor Long agonist IVF 194 KvDMR1 4 2 5 2 2.8 (2.9)

Abbreviations: DMR, differentially methylated regions; ICSI, intracytoplasmic sperm injection; IVF, in vitro fertilization;
aEmbryo methylation: each value is the percentage of methylation determined by pyrosequencing. The results of routine bisulfite sequencing are given in brackets.
bSperm methylation: DNA methylation patterns in the sperm samples used to fertilize the corresponding embryos. The values were determined by
pyrosequencing.
cEmbryo grading: grade 1: embryo with blastomeres of equal size, no cytoplasmic fragments; grade 2: embryo with blastomeres of equal size, fragments less than
20%; grade 3: embryo with blastomeres of distinctly unequal size, or fragments between 20%-50%; and grade 4: fragments above 50%.

Table 2. Comparison of Embryo Quality Between Abnormal
Methylation and Normal Methylation.a

Day 3 Embryo Quality
Abnormal

Methylation
Normal

Methylation

Cell number 4.5 + 1.6 5.0 + 2.4b

Percentage of grade (%)
Grade 1 17.4 (4/23) 25.6 (44/172)b

Grade 2 34.8 (8/23) 20.3 (35/172)b

Grade 3 26.1 (6/23) 37.8 (65/172)b

Grade 4 21.7 (5/23) 16.3 (28/172)b

Arrested embryos (%)c 21.7 (5/23) 14.5 (25/172)b

Abbreviation: DMR, differentially methylated regions
aAbnormal methylation of the 3 DMRs were found in 23 embryos, while
normal methylation in 172 embryos.
bNo significant difference (P > .05; chi-square test was used).
cThe embryos stopped developing from day 2 to day 3.
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