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Abstract

No concrete, causal, mechanistic theory is available to explain how different hepatic zonation

patterns of P450 isozyme levels and hepatotoxicity emerge following dosing with different

compounds. We used the synthetic method of modeling and simulation to discover, explore, and

experimentally challenge concrete mechanisms that show how and why biomimetic zonation

patterns can emerge and change within agent-based analogues, expecting that those mechanisms

may have counterparts in rats. Mobile objects map to compounds. One analogue represents a

cross-section through a lobule. It is comprised of 460 identical, quasi-autonomous functional units

called sinusoidal segments (SSs). SSs detect and respond to compound-generated response signals

and the local level of an endogenous gradient. Each SS adapts by using those signals to adjust (or

not) the probability that it will clear a detected compound during the next simulation cycle. The

adjustment decision is based on the value of a biomimetic algorithm that is based on an assumed,

evolution imposed, genetic mandate that normal hepatocytes resist increasing the cost of their

actions. The algorithm estimates the long-term, discounted cost to a given SS of continuing to use

its current clearance effort. Upon compound exposure, LOBULAR analogues developed a variety of

clearance and hepatotoxicity patterns that were strikingly similar to those reported in the literature.

A degree of quantitative validation was achieved against data on hepatic zonation of CYP1A2

mRNA expression caused by three different doses of TCDD (2,3,7,8-tetracholorodibenzo-p-

dioxone).
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1. Introduction

Hepatic zonation is a conspicuous periportal (afferent) to perivenous (efferent) gradient of

an attribute within lobules. Zonal differences occur in the clearance of a variety of

endogenous compounds and xenobiotics (Gebhardt, 1992; Jungermann, 1995). Zonation is

also evident for a number of normal hepatic functions, absent xenobiotic or toxin exposure.

There is also differential sensitivity to the induction of cytochrome P450 isozymes (Oinonen

and Lindros, 1998). Toxin caused hepatic injury can also exhibit zonal patterns. Such

phenomena are most often ascribed to having a multifactorial basis, in which oxygen

gradients, other blood-borne signals, and blood flow itself may play prominent roles (Camp

and Capitano, 2007; Christoffels et al., 1999; Jungermann and Kietzmann, 2000; Lindros,

1997). Recent evidence supports the hypothesis that components of the Wnt-β-catenin

pathway may play an important role (Benhamouche et al., 2006; Hailfinger, et al., 2006;

Sekine et al., 2006; Burke et al., 2009). Braeuning (2009) reviews the role of several

pathways including Ras–Raf–MAPK (mitogen-activated, protein kinase) and Wnt-β-catenin.

However, no concrete, causal, mechanistic theory has yet been offered for how different

types of hepatic zonation phenomena emerge following dosing with different compounds.

For this study, we focused on zonation patterns of P450 isozymes and the hepatic damage

that can develop following treatment of rats with xenobiotics. We used the synthetic method

of modeling and simulation (Hunt et al., 2009) to discover, explore, and experimentally

challenge concrete mechanisms that show how and why biomimetic zonation patterns can

emerge and change within an agent-based analogue of a hepatic lobule in response to

compound dosing. The in silico mechanism may have counterparts in rats.

Christoffels et al. (1999) demonstrated the plausibility of a molecular level mechanism for

periportal-to-perivenous gradients of gene expression. Expanding upon the zonation ideas

offered in (Gebhardt, 1992), they hypothesized that interaction between two or more,

different signal gradients is necessary to enable development of periportal-to-perivenous

gene expression patterns that mimic those gradients and are stable under different

conditions. They provided support for the hypothesis using both an inductive, mathematical

model and a transgenic mouse model into which hepatocyte-specific DNA-response units

had been integrated. They stated that, “if a hypothesis like the one presented … is to be

tested, we need simple and strictly defined model systems.” They discuss the formidable

issues of constructing such model systems using transgenic mice.

Ohno et al. (2008) constructed sophisticated, single-hepatocyte based LOBULAR models that

focus on ammonia metabolism with the long-range objective of elucidating how molecular

and cellular level properties modify higher-level phenomena. Xenobiotic metabolism and

enzyme induction mechanisms were not a focus. They posit that heterogeneous gene

expression evolved to optimize energy efficiency. They specify histological structure and

zone-specific gene expression of major enzymes, and include the biochemical kinetics of

enzymes and transporters. Ierapetritou et al. (2009) recently reviewed the models of Ohno et
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al. along with a variety of additional computational liver models. Several specified features

of zonation but not how those features may emerge. All but one of the models reviewed was

an inductive mathematical model. The computational modeling and simulation (M&S)

approach used herein (Fig. 1a) and the resulting models are fundamentally different from

those inductive mathematical models and so are not directly comparable. Hunt et al. (2009)

explain those differences and how the two different M&S approaches complement each

other. The approach used herein was developed specifically to enable construction of

biomimetic mechanisms that are real (not conceptual) and strictly defined. They are

designed for use under conditions that are less supportive of inductive modeling methods

(Fig. 1b). Even though abstract, the mechanisms and their spatial context are flexible and

sufficiently concrete to instantiate mechanistic hypotheses and test their plausibility

experimentally.

Following cycles of model construction, evaluation and selection, and refinement, we

arrived at a hybrid discrete event, discrete time system that maps to a cross-section through a

hepatic lobule having periportal-to-perivenous (P-to-P) flow and a connection to EXTRAHEPATIC

tissue. The hepatic lobule component is comprised of 460 identical, quasi-autonomous

functional units called sinusoidal segments (SSs). Each SS maps to a small portion of a

sinusoid (Fig. 2). During a simulation cycle, each SS contributes to establishment of an

endogenous gradient signal, and it has an opportunity to clear a detected compound

administered at the start of the simulation. There is a cost associated with each clearance

event. There is also a cost associated with responding to the compound. We consider

response signals generated in one of three ways. (1) A compound that exits the lobule enters

an EXTRAHEPATIC tissue space and causes release of a response signal, proportional to potency.

(2) Compound causes response signal release within SSs. (3) Or, the compound itself

functions as response signal. Herein we focus more on (1). Each simulation cycle, each SS

adapts to clearance events and any changes in the two signal types by adjusting (or not) the

probability that it will clear a detected compound during the next simulation cycle. That

decision is based on an assumed, evolution imposed, genetic mandate to resist increasing the

cost of its actions. It can try to reduce future costs in one of the two ways. If few or no

response signals were detected, reduce compound clearance during the next simulation

cycle. If response signals were detected, reduce the cost of their subsequent detection by

increasing compound clearance during the next simulation cycle. Each SS makes use of a

biomimetic algorithm to estimate long-term, discounted cost of continuing to use its current

clearance effort. The outcome determines which action is selected.

Upon compound exposure, the simulated lobule developed a variety of compound-specific

gradients in P-to-P clearance effort. Several gradient patterns were strikingly similar to those

reported in the literature for P450 isozymes following xenobiotic dosing (for convenience,

examples are provided in Supplementary Fig. S5). Zonal patterns of clearance effort and SS

damage changed depending on compound dose and potency. We called the system a zonally

responsive LOBULAR analogue (ZoRLA). A ZoRLA was used to achieve a degree of

quantitative validation against data on hepatic zonation of CYP1A2 mRNA expression

caused by three different doses of TCDD (2,3,7,8-tetracholorodibenzo-p-dioxone).
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2. Methods

To distinguish clearly in silico components and processes from corresponding rat

counterparts, we use SMALL CAPS when referring to the former. Parameter names are

italicized.

2.1. The attributes targeted

The first consideration in any modeling effort is to determine why the models are being

created, and identify situations in which they will be used (Zeigler et al., 2000). For this

project, we sought spatially organized, biomimetic mechanisms that could produce

phenomena similar to attributes listed in Box 1. Unlisted hepatic phenomena are, for the

time being, outside the scope of this project. However, a requirement was that the models

and their components be sufficiently flexible so that during a future extension of this project,

or when other investigators use the models, they could be easily modified to account for an

expanding list of attributes. Clear statements about use and targeted attributes facilitate

selecting specifications. Specifications, paired with attributes, are provided in Box 1. Clear

specifications guide model design and development and help one to avoid potentially

unproductive tangents. Each attribute achieved provides a degree of validation.

To achieve targeted attributes, we followed an iterative construction and refinement protocol

similar to that detailed most recently in (Hunt et al., 2009) and (Lam and Hunt, 2009). The

objective was to discover CELL level mechanisms that would make patterns of clearance

effort (defined below) following COMPOUND dosing, increasingly biomimetic, with the long-term

goal of achieving ZoRLAs that exhibit all Box 1 attributes, and do so while adhering to a

strong parsimony guideline. For this project, we focused on the first ten attributes. For each

attribute targeted, we provided a ZoRLA specification that would be commensurate with the

other specifications in enabling eventual achievement of all Box 1 attributes. The iterative

refinement protocol cycles through the following eight steps:

1. Choose an initial, small subset of attributes to target, e.g., 1–3 in Box 1.

2. Select a granularity level that will enable comparing measures of simulated and

targeted attributes. We selected the level illustrated in Figs. 2 and 3.

3. For each attribute targeted, specify a desired level of phenomenal similarity (e.g.,

within ±25% or exhibit the same P-to-P gradient trend). Approach in stages: begins

with relaxed similarity measures.

4. Posit coarse-grained, discrete mechanisms that may generate analogous phenomena

while requiring as few components as is reasonable.

5. Create logic to be used by each component. Instantiate components and

mechanisms. Update specifications.

6. Conduct many, simulation experiments. Measure a variety of phenomena to

establish in silico to wet-lab similarity and lack thereof.
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7. Tune (parameterize) to achieve analogue similarity specified at step 3. When the

effort fails, return to step 4. When successful, return to step 3 and increase the

stringency of the similarity measure.

8. Add one or more new attributes until the current analogue is falsified. Return to

step 2. Strive to achieve the expanded attribute list with as little component

reengineering as possible.

2.2. The synthetic method of modeling and simulation

The method used herein is a relatively new experimental approach to discover and challenge

plausible, biomimetic mechanisms. It acts on the dictum of the great physicist Richard

Feynman “what I cannot create, I do not understand.” To gain insight into plausible

generative mechanisms that may be responsible for biological phenomena of interest, such

as hepatic zonation patterns, when uncertainty is large and detailed data are limited, the

method involves building extant – real, actually existing, and observable – working

mechanisms that exhibit some of those same phenomena, and thus may be biomimetic. The

approach is based on the scientific principle (Darden, 2002) illustrated in Fig. 1a. When two

systems, hepatic lobules of laboratory rats and a model – a ZoRLA – are composed of

interacting components for which similarities can be established at some level of abstraction

(mappings 1 in Fig. 1a), and the two systems exhibit several measurable, phenotypic

attributes (mappings 3), for which some degree of similarity exists, then there may also be

similarities in the generative mechanisms responsible for those attributes (mappings 2). We

cannot yet build hierarchical mechanisms out of biochemicals. However, as described herein

and recently reviewed (An et al., 2009; Fisher and Henzinger, 2007; Grimm et al., 2005;

Hunt et al., 2009), we can build extant biomimetic mechanisms using object-oriented

software tools. In doing so, as Fig. 1 illustrates, we are not following the traditional,

inductive approach of modeling the data. Nor are we describing mathematically the

behaviors of a hypothetical, conceptual mechanism. Rather, we explore the space of

relatively simple, plausible, biomimetic, mechanisms, for concrete instances, which upon

instantiation, verification, and simulation exhibit phenomena, which when measured

produce data that are essentially indistinguishable from comparable wet-lab data. Because

the MECHANISMS are intended to be analogous to biological mechanisms, we refer to the

in silico system as an analogue. To emphasize their concrete, constructive nature (a whole

assembled from stand alone parts), we call them synthetic analogues. The approach provides

an important, scientific and experimental means to explore and test in silico plausible,

biomimetic mechanistic hypotheses, when it would be too difficult, too expensive,

infeasible, or unethical to do so in animals or in vitro.

2.3. ZoRLA design considerations

In related work, we built in silico liver analogues to challenge mechanistic hypotheses and

gain improved insight into plausible micromechanistic details of xenobiotic clearance (Hunt

et al., 2006; Yan et al., 2008a,b), hepatic drug interactions (Lam and Hunt, 2009), diseased-

caused differences in spatiotemporal micro-mechanisms influencing hepatic drug disposition

(Park et al., 2009), and heterogeneities in intraLOBULAR enzyme induction (Ropella et al.,

2008). At the start of this project, we drew on these methods and their validated components
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to instantiate and experiment on LOBULAR analogues targeting subsets of attributes 1–10 in Box

1.

All ZoRLA system components and processes are discrete. Time advances discretely by

simulation cycles and steps within cycles. Each simulation cycle, every component updates

its state based on changes since the last update opportunity. Each SS is a software agent. An

agent is a quasi-autonomous software object that can schedule its own events. SSs can be

connected together in different ways. Within a simulation cycle, SS components interact

with mobile COMPOUND percolating through a sequence of SS. The process maps to absorbed

xenobiotics percolating through sinusoids and interacting (or not) with spaces and cells as

described in (Park et al., 2009; Yan et al., 2008a). Most events are stochastic. During a

simulation cycle, when an event opportunity for a given component occurs, there is a

parameter-specified probability for each, prespecified outcome.

A specific ZoRLA instantiates a mechanistic hypothesis (Fisher and Henzinger, 2007; Hunt

et al., 2009): these component arrangements and operating principles will, upon execution,

produce phenomena similar to targeted attributes. Execution followed by comparison of

results to referent data tests the hypothesis. The process is directly analogous to constructing

and then experimenting on a wet-lab model to test hypotheses. We adhered to a parsimony

guideline and strove to keep ZoRLA components as simple as feasible, while achieving the

attributes in Box 1.

Inductive models are typically grounded to metric spaces. ZoRLAs use relational grounding.

Grounding is defined as the units, dimensions, and/or objects to which a variable or model

constituent refers. Each ZoRLA component is grounded to a subset of the other components.

The merits and limitations of relational grounding are discussed in (Hunt et al., 2009). Using

relational grounding means that a separate mapping (transformation of data) model is

needed to quantitatively relate measures of ZoRLA phenomena, such as clearance effort, to

corresponding wet-lab phenomena, such as a measure of P450 isozyme levels within a tissue

sample or isolated cells.

2.4. SS intrinsic clearance

The primary phenomena in Box 1 are intraLOBULAR changes in compound clearance and the

intracellular levels of P450 isozymes (or their mRNA) responsible for compound clearance.

We needed an SS counterpart to intrinsic clearance. We can see from Fig. 2b that some of

the compounds entering an SS can exit without entering hepatocytes. A COMPOUND that is

detected by an SS maps to compound entering hepatocytes. A COMPOUND that is undetected

exits that SS; we say it bypassed that SS. We specified a bypass probability (pBypass) for

each SS that could be adjusted for each COMPOUND; with one exception, for the ZoRLA

experiments described herein, we arbitrarily set pBypass=0.8. A COMPOUND maps to a small

fraction of the xenobiotic dose used in one of the experiments cited in Box 1. We specified

that if detected, the COMPOUND would be cleared with probability p; that maps to the intrinsic

clearance by hepatocytes within a sinusoidal segment for the time interval to which a

simulation cycle maps. We define pi,t to be the clearance effort of SSi during simulation

cycle t. Within hepatocytes, an increase in intrinsic clearance typically correlates with an

increase in P450 isozymes. For this report, we limit attention to those cases. That increase
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comes at a cost to the cell. In SSs that use the mechanism in Fig. 2d, the cost of a COMPOUND

clearance event is kc. Given the many functions carried out by hepatocytes, we assumed that

hepatocytes have an evolution imposed, genetic mandate to avoid unnecessary costs.

2.5. Signals and methods needed and used by SS

Gebhardt argued that two classes of signals are necessary and essential for creating zonation

(Gebhardt, 1992). An early task was to discover and demonstrate a discretized mechanism

that would enable an SS to adjust its clearance effort based on local levels of two signals.

Further, within a ZoRLA, when needed, these signals could correspond to amounts of two

different mobile objects, RESPONSE (R-) and B-SIGNALS. We specified that R-SIGNALs be

connected to COMPOUND, dose, and potency. We identified three options: (1) a COMPOUND or its

METABOLITE is the R-SIGNAL; (2) a COMPOUND or its METABOLITE initiates a response within an SS and that

response (or an object generated by that response) functions as a R-SIGNAL that is also detectable

subsequently by other SS; and (3) a COMPOUND or its METABOLITE that escapes HEPATIC clearance

initiates an EXTRAHEPATIC response, and that response (or an object generated by that response) is

an R-SIGNAL that is SS detectable. We could achieve our objective if any of the three options

worked. Early exploratory simulations indicated that the third option would be the simplest

to implement. Consequently, we focused on that option. Option three may map to a

xenobiotic that causes EXTRAHEPATIC tissue toxicity. Our attention is on interactions between a

tissue and an active xenobiotic (or its active METABOLITE) that cause observable toxic or

pharmacological responses. We conjectured that some of those interactions would cause the

release of factors that are carried by blood to the liver where they function similar to alarm

signals (Matzinger, 2002). Such factors could be detected by hepatocyte Toll-like (Liu et al.,

2000) or other receptors. The algorithm in Fig. 2d can be modified to give the same

clearance effort change for the second option, as well. In the early SS in preZoRLA1,

discussed below, mobile objects served as R-SIGNALs. In the final, 2D ZoRLA, also discussed

below, we specified that each SS receives a specified R-SIGNAL at the end of each simulation

cycle. We made that change to reduce the duration of each simulation cycle and thus

simplify ZoRLA function.

For simplicity, we specified that B-SIGNALS, which are unrelated to xenobiotic, map to

something external to the liver and that they are carried to the liver by blood. It could, for

example, map to O2 levels. Again, for simplicity, we specified that its hepatic input rate be

constant. We gave each SS the ability to respond to b-signal objects exactly as they respond

to a COMPOUND. There was a bypass probability and a non-zero probability of being cleared

when detected. For a single sequence of SS, the detected level of B-SIGNALS would provide

information about relative location in the sequence. In preZoRLA1, mobile objects, entering

the ZoRLA on the periportal side and flowing in the P-to-P direction, functioned as B-SIGNALS.

In the final, 2D ZoRLA, we specified that a fixed P-to-P b-signal gradient exists so that the

b-signal for each SSi is constant for the duration of the simulation experiment. We made that

change to reduce the duration of each simulation cycle and thus simplify ZoRLA function.

We used an equation (defined below) to specify the value, gi, for each SSi.
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2.6. The linear preZoRLA systems

Before constructing the 2D ZoRLA, we explored a simple linear SS arrangement in which

one of two types of SS mechanism was used. We called them preZoRLA1 and preZoRLA2.

A preZoRLA was composed of n=20 spatially fixed SS embedded within an EXTRAHEPATIC

space. The arrangement maps abstractly to a single sinusoid track. PreZoRLA1 uses the

mechanism in Fig. 2c; its parameters are listed in Table 1. PreZoRLA2 used the mechanism

in Fig. 2d; its parameters are listed in Table 2. There are three mobile objects: B-SIGNALS,

XENOBIOTICS, and R-SIGNALs. A source container for each object type was located just prior to SS1.

The special case where xenobiotics also function as the R-SIGNALs was allowed. Total signals

were specified by aDose and bDose.

Typically, there was no zonation at the start of a simulation. To create measurable, CLEARANCE-

related zonation, something within each SS needed to map to metabolic enzymes. To meet

that need in preZoRLA1, we used the PROTEIN objects illustrated in Fig. 2c. PROTEINS can map to

any measurable, xenobiotic-inducible gene product including xenobiotic metabolizing

enzymes. The number (N) of PROTEINS available during a simulation cycle or a measure of their

use could establish if zonation had or had not occurred. Each SS also needed a gradient of

detectable mobile objects to provide relative location information; SSs working

independently should be able to create whatever mobile object gradients are needed. The SS

mechanism in Fig. 2c used two subsystems to create (or activate) and remove (or deactivate)

PROTEINS.

SIGNALS were metered into SS1 at a constant rate from the SIGNAL source container, typically one

of each type each simulation cycle. Both object types could bypass a SS without being

detected; the bypass probabilities were pbBypass and paBypass, for B- and R-SIGNALs,

respectively. Signal detection, as illustrated in Fig. 2c, triggered two events in sequence and

the SIGNAL was then either removed (with probabilities pbRemove and paRemove) or released

to enter the next SS.

In Fig. 2c, two subsystems regulate protein levels. It is too early to speculate on the

subcellular networks to which they map. However, we identify candidates in the

Introduction. The current subsystems are inductive models serving as placeholders for future

sets of concrete interacting components having behaviors that will cross-validate with the

current subsystems. A detected b-signal causes an event in the b-subsystem: variable b is

increased by a constant value kb; bAVG is the average value of variable b over Navg

simulation cycles ending with the last. For the results presented in Fig. 4, Navg=100.

Subscript t indexes the value for the current simulation cycle. Subscript t+1 indexes the

value for the next simulation cycle. The b event is followed immediately by another event in

the m-subsystem that results in removal (or deactivation) of mt PROTEIN objects: mt is

proportional to bt; c1 is the adjustable proportionality constant; larger c1 values increase the

rate of PROTEIN removal.

A detected R-SIGNAL causes an event in the a-subsystem: variable a is increased by a constant

value ka; aAVG is the average value over Navg simulation cycles ending with the last. The at

event is followed immediately by creation (or activation) of st PROTEINS: st is linearly related to

at and Nt; c2 and c3 are tunable constants, which adjust the influence of aAVG and Navg on s.
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Larger c2 values increase protein production; c3 modulates negative feedback on PROTEIN

production by already existing PROTEINS, dampening the impact of a change in R-SIGNALs on PROTEIN

levels. Independent of all preceding events, at and bt are reduced by one at the end of each

simulation cycle. That reduction can map to normal turnover and/or the involvement of

those pathways in other cell processes.

A XENOBIOTIC that enters a SS can pass through (bypass) undetected with a probability pBypass.

The probability of CLEARANCE following detection is pt. If the XENOBIOTIC is not cleared, it will enter

the next SS at the start of the next simulation cycle. If cleared, it is removed from the

simulation. We specified that pt be a function of Nt and that it be positively correlated with

Nt. When PROTEINS are responsible for XENOBIOTIC CLEARANCE, pt=1−(1−pRemove)Nt, and pRemove is

the probability of a XENOBIOTIC being removed by one PROTEIN.

2.7. Enabling SS to adapt their clearance effort in response to dosing with different COMPOUNDS

Christoffels et al. (1999) and others have posited that zonation is linked to the adaptive

ability of the liver and hepatocytes specifically. The SS that use the mechanism in Fig. 2c

are very simple agents. Each SS has three actions: detect B-SIGNALS, detect R-SIGNALs, and clear

COMPOUND. We conjectured that if a cost were associated to each action, then when given a

simple learning algorithm, a SS could use it to resist increasing costs, and that would result

in location dependent clearance efforts. Consequently, a mandate of each SS was to alter

clearance effort to avoid rising costs. Because B-SIGNALS are independent of COMPOUND and, once

the gradient stabilizes, they are constant for each SS, we elected to ignore them, unless we

failed to achieve targeted attributes. We specified that the cost of clearing one COMPOUND is kc.

We specified that the cost of detecting and responding to one R-SIGNAL is ka. We conjectured

that if a xenobiotic disrupts normal tissue function or causes tissue damage, the

consequences of such an event could cause hepatocytes to alter their behaviors, and so doing

would come at a cost to the hepatocytes. The relationship is more clear when it is the

hepatocyte itself that is disrupted or damaged. Increasing p increases costs. Costs are lowest

when a SS chooses p=0. However, if the COMPOUND is a TOXIN, then with p=0, all COMPOUND would

exit the LOBULE causing EXTRAHEPATIC responses. Subsequent R-SIGNAL detection by all SS would

increase costs. If there is a direct relation between TOXIN potency and the number of R-SIGNALs

detected (or their value), then it is clear that P-to-P patterns of clearance effort would change

as COMPOUND dose and potency are changed. We explored those changes. Based on recent

observations about simulated hepatocyte learning (Sheikh-Bahaei et al., 2009), we

anticipated that, given a simple learning mechanism (an algorithm in this case), a SS at the

end of simulation cycle t−1 could find a new pt that would be expected to lower costs during

subsequent simulation cycles.

The SS mechanism in Fig. 2d provides the preceding capabilities and is simple enough so

that there may be one or more yet to be identified hepatocyte counterparts. The figure shows

an SS with a quasi-autonomous subsystem, the CLEARANCE management module. It maps to all

hepatocyte resources and subsystems associated with enzyme induction and xenobiotic

clearance. The actions taken by the clearance management module are dictated by an

inductive model (Eqs. (1) and (2)) of biological logic. It is serving as placeholder for future

sets of concrete interacting components having behaviors that will cross-validate with
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identified characteristics of the algorithm. The CLEARANCE management module has one

mandate: adjust pt up or down or keep it the same to lower future costs. A function in the

form of a Boltzmann distribution is provided that adjusts pi,t.

(1)

Qi,t is based on the well-known Q-learning algorithm (Watkins and Dayan, 1992). The value

of Q used by SSi during simulation cycle t is an estimate of its long-term, discounted cost of

continuing to use its current clearance effort, pt. At the start of each simulation cycle, pt is

calculated using the Qt value carried-forward from the previous (t−1) simulation cycle (Eq.

(1)). At the end of the current simulation cycle, Qi,t is updated using Eq. (2). Qt+1 is then

carried forward for use in the next simulation cycle. h is a constant; it acts as a gain: it

amplifies and/or dampens the difference: g−Q. A large value of h eliminates zonation

completely; a small value magnifies it. When h is very large, pi,t is constant at 0.5. When h

is very small, pi,t essentially takes one of two location dependent values.

(2)

where V=min(Qi,t, gi) (see Supplementary Material for derivation details and simulation

examples). β is known in the Q-learning literature as the discount factor; it determines the

current importance of future costs. For the SS in Fig. 2, as β→0, the difference between

PERIPORTAL and PERIVENOUS pi,t values increases. ka=potency. α is a constant in [0,1] that controls

the clearance management module's learning rate. For the results presented, β=05, kc=1,

α=0.1, and h=0.01, 5, 10, or 70, depending on the experiment. As specified above, gi is the

value of the P-to-P b-signal gradient used by SSi. We used a simple equation,

(3)

where Xi and Yi are coordinates of agent SSi with respect to the center of the grid space, and

η the uniform random noise in the interval [0,m/2]; we used m=31; that is the number of

spaces per grid edge.

At the end of each simulation cycle, there are two types of SS: those that (1) did and (2) did

not detect a COMPOUND. In the first case, the SS performed an action: it either ignored or cleared

the COMPOUND. Only SSs of the first type update their Q value. If a SS detected one COMPOUND

during the simulation cycle, it updated Q once. If it detected n COMPOUNDS during the simulation

cycle, it updated Q n times.

When a SS detects a COMPOUND, it is either cleared or not. When a COMPOUND has been cleared,

kc=1, else kc=0. When an R-SIGNAL is detected, ka (a measure of potency) takes a value > 0, else

ka=0. The latter still applies in the special case where the COMPOUND is the R-SIGNAL. The term

(ka+kc) represents the per-COMPOUND cost to each SS for the actions taken during simulation

cycle t.
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2.8. SS arrangement and COMPOUND movement

A LOBULE is a system of SSs arranged to mimic a cross-section through a hepatic lobule. The

2D square grid shown in Fig. 3a maps to a 2D view of a cross section through a hepatic

lobule. The parameters of the 2D ZoRLA are listed in Table 2. Located at each grid space is

an SS agent. Compounds enter from the external periportal area, which maps to portal vein

tracts. If not cleared, COMPOUNDS move in discrete steps, from the exit of one SS to the entrance

of an adjacent SS. Event logic from the COMPOUND's perspective is diagrammed in Fig. 3b.

Compounds move stochastically toward the central ZoRLA space, which maps to a lobule's

central vein. The process mimics blood flow through sinusoids. Sinusoid interconnections

enable some lateral periportal flow. There is no lateral flow in perivenous sinusoids. We

implemented and verified a movement algorithm to enable COMPOUNDS to follow a biomimetic

one-grid-space-at-a-time path toward the central vein. Each simulation cycle, the algorithm

below specifies a move direction θ for each COMPOUND. The COMPOUND then uses θ to select, move

to, and then enter an adjacent SS. All neighboring grid locations were numbered counter

clock wise, starting with 1 at 0° and ending with 9 at 360° (see Supplementary Fig. S1A).

We used a Normally distributed random variable (x) for which the mean (μ∈[1,9])

corresponds to the effective flow direction, θ. For example, μ=4 corresponds to θ=135° and

μ=1.5 to θ=22.5°. More formally, x∼N(⌊θ/45⌋+1, σ2), where 0° ≤ θ < 360° is the effective

angle of movement (illustrated in Supplementary Fig. S1A) and σ is the standard deviation

of x; σ controls each COMPOUND's lateral movement.

A COMPOUND moves stochastically to an adjacent SS in an adjacent space at the start of a

simulation cycle. The adjacent space, nextSpace, is stochastically chosen as: nextSpace=⌊x

0.5⌋(modulo 8)+1. Distributions are shown in Supplementary Fig. S1 for θ=135° and three

values of σ. The motion converges to Brownian motion for large values of σ (because the x

distribution becomes effectively uniform). We used three σ values: σ1, σ2, and σ3, for

PERIPORTAL, middle and PERIVENOUS zones, respectively. Because the sinusoid interconnections and

therefore the lateral movement is greater periportal, we arbitrarily set σ1=1.2, σ2=1.0, and

σ3=0.7 (illustrated in Supplementary Fig. S1).

As a simulation progresses, we can observe how the P-to-P pt patterns change and when

they stabilize. The hypothesis being tested is that upon sustained COMPOUND dosing, use of the

mechanism in Fig. 2d can produce stable pt values that exhibit P-to-P patterns. We cannot

rule out that some patterns may have no observed biological counterpart. Our interest herein

is in patterns that are biomimetic.

2.9. Initial conditions

Given any pre-existing pattern of clearance effort (pt,i) and a specific Eq. (2)

parameterization, the same new pattern will eventually emerge upon sustained exposure to a

new COMPOUND. However, the number of simulation cycles required can vary considerably

depending on the pre-existing pattern. For simplicity, Qi values were initialized at the start

of all simulations such that Eq. 1 produced random values of clearance effort, as follows.

Qi=gi+h ln(1/PRN-1), where h is an adjustable parameter (the same as h in Eq. (1)), gi is

calculated using Eq. (3) and prn is a pseudo-random number between 0 and 1. Thereafter,

each SS used Eq. (2) to calculate Qi,t+1, which was then used in Eq. (1) to calculate pi,t+1.
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3. Results

3.1. Results from preZoRLA1

Each SS in preZoRLA1 used the mechanism in Fig. 2c to form and respond to gradients of

R- and B-SIGNALS (targeted attribute 3). The mechanism also produced and removed PROTEINS.

Clearance effort (p) for each SS was proportional to its current number of PROTEINS. The

mechanism was capable of forming a variety of P-to-P B-SIGNAL and clearance effort gradient

patterns that were both dose and potency dependent. Examples are presented in Fig. 4.

Various parameterizations (Table 1) enabled achieving targeted attributes 1–6. However,

inclusion of attribute 7 in the set of currently targeted attributes falsified preZoRLA1.

One measure of zonation is the number of PROTEINS. We explored large regions of preZoRLA1

parameter space and the patterns produced. Six examples are shown in Fig. 4. The first three

(Fig. 4a–f) are biomimetic in that the increasing P-to-P level of PROTEIN is similar to zonation

patterns frequently reported for P450 isozymes. Note that bavg values decline approximately

linearly from SS1 to SS20. Detection and removal of B-SIGNALS leads to the equilibrium values

of bavg; detection and removal of R-SIGNALs leads to the equilibrium values of aavg. By

changing values of c1–c3, paRemove, and pbRemove the mechanism creates a wide variety

of PROTEIN patterns.

Three types of patterns were observed: (1) PERIVENOUS expression (Fig. 4a–f); (2) PERIPORTAL

expression (Fig. 4g–j); and (3) MID-ZONE expression (Fig. 4k–l). To obtain the first pattern, we

specified paRemove<pbRemove. Doing so caused a steeper gradient of B-SIGNAL (bAVG) than

that of R-SIGNAL (aAVG). Consequently, it created a larger PERIVENOUS PROTEIN expression rate relative

to PERIPORTAL expression (Fig. 4b, d, and f). The extent of expression can be controlled by

parameter c2. Fig. 4a and e shows the results for small and large c2 values. Fig. 4a and c

shows the consequences of different c1 values.

The second pattern was achieved by specifying paRemove> pbRemove. In that case the aAVG

gradient was steeper than that of bAVG (Fig. 4h and j), and as a result, the rate of PROTEIN

expression was larger PERIPORTAL. The extent of expression was again controlled by parameters

c1 and c2. Fig. 4g and i shows the results for c2=10 and c2=20, respectively.

The third behavior was not easily attained. One example is shown in Fig. 4k, for which

paRemove<pbRemove; additionally, pRemove was greater than zero but very small. Doing

so made R-SIGNAL>B-SIGNAL in the MID-ZONAL region; but R-SIGNAL<B-SIGNAL in the other two regions.

Unlike the above two patterns, aAVG and bAVG values were unstable and kept increasing as

long as the simulation was running (Fig. 4l). Such instability is abiotic. We took that

instability as evidence that preZoRLA1 should be falsified. We posited that a somewhat

more complicated mechanism would be needed to achieve patterns like those in Fig. 4a–k,

while avoiding instability. Switching to the somewhat more complicated Q learning

mechanisms in Fig. 2d enabled preZoRLA2 to avoid pattern instabilities while also being

adaptive.
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3.2. Results from preZoRLA2

For preZoRLA2, the administered COMPOUND was a TOXIN. This system was also comprised of a

linear sequence of 20 SS that used the mechanism illustrated in Fig. 2d. It too was capable of

forming a variety of P-to-P B-SIGNAL and clearance effort gradient patterns that were both dose

and potency dependent, plus it achieved attribute 7. The patterns produced were always

stable. Parameter values used are listed in Table 2. The five example results in Fig. 5 used

the same parameterization, but the three TOXINS had different potencies (ka values). The

duration of repetitive exposure to the same TOXIN dose was long enough to achieve pattern

stability. Values of repeat experiments were not identical, but the patterns were identical.

Prior to TOXIN dosing, each SS's Q value was initialized to zero. We used two measures of

zonation. One was the value of pAVG (it maps to intrinsic clearance), which is the probability

that a SS cleared a TOXIN if it was detected, averaged over the past Navg=500 simulation

cycles. The second was TOXIN elimination count; it was the number of TOXINS CLEARED by a SS. We

can reasonably infer that hepatocyte exposure is directly correlated with total amount of

COMPOUND cleared by that hepatocyte. Given that, we specified that the number of toxins

cleared by a preZoRLA2 was directly correlated with hepatotoxicity. Toxins that were not

cleared still caused EXTRAHEPATIC responses. We also specified that SS damage would ensue

when a SS lost the ability to detect (and clear) toxins, an event that was set to occur when

the number of cleared toxins passed an arbitrary threshold (e.g., 100). Hepatotoxicity can

map to severe hepatotoxicity or even to localized necrosis. Note that when potency changes,

each SS's Q value also changes, and that causes its pAVG and toxin elimination count to

change.

Fig. 5 shows patterns of clearance effort produced by preZoRLA2 for five different ka

values. The average clearance efforts, pAVG (blue bars), as well as toxin elimination count

(red bars) are shown in Fig. 5a, c, e, g, and i. Corresponding g and Q values are also shown

(Fig. 5b, d, f, h, and j). When ka=0, only perivenous SSs expended clearance effort (Fig. 5a).

As ka increased, the response expanded toward the periportal region. The peak toxin

elimination count also moved toward the periportal region as well.

3.3. Zonation patterns during 2D ZoRLA experiments depend on COMPOUND potency

To explore emergence of stable zonation patterns, we conducted two sets of experiments

using somewhat different ZoRLAs, one using h=5, and the other using h=70. Both used the

same prespecified P-to-P g gradient for all five experiments. Parameter ranges are listed in

Table 2. In both cases, ZoRLAs were dosed at the start of each simulation cycle with 50

COMPOUND having the same potency. A simulation cycle continued until all COMPOUND exited or

were cleared. Several experiments were conducted for each ka. In all experiments, at t=0,

random p values were assigned to each SS. Values at early t for repeat experiments (same

ka) were not identical, but they became identical by the end of the experiment.

In the first set of experiments (Fig. 6) h=5, and COMPOUND potency spanned a 20-fold range.

Experiments terminated at t=1000. SSs were assigned to ten equal width zones. Values of pi,

Qi, and the cumulative number of COMPOUND cleared by each SS in a given zone (COMPOUND

elimination count) were averaged at t=1000. The value of Q used by SSi during simulation

cycle t is an estimate of its long-term, discounted cost of continuing to use its current
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clearance effort, pt. The results graphed in Fig. 6 show that increasing potency caused values

of pavg for periportal zones to increase; it also caused the peak COMPOUND elimination count

(which maps to measurable hepatotoxicity) to shift from PERIVENOUS to PERIPORTAL. Within

each zone, Qavg increased with increasing potency.

In the second set of experiments (Fig. 7) h=70 and COMPOUND potency spanned a 10-fold range.

Experiments were terminated after stable patterns were achieved at t=500. The different,

individual SS clearance effort values are shown in Fig. 7b.

To explore plausible patterns of HEPATOTOXICITY, we specified that SS damage occur (which can

map to either severe hepatocyte damage or necrosis) when any SS in Fig. 7 cleared 50

COMPOUND. We conducted experiments for ka=0, 1, 2.5, and 10. For ka=1, consistent damage is

evident after t=400. It is evident earlier for ka=5 and 10. Results are shown in Fig. 8 at

t=500, t=550 (ka=5 and 10), and t=600 (ka=1). Patterns are similar to the COMPOUND elimination

counts in Fig. 6. The low potency COMPOUND (ka=1) caused PERIVENOUS HEPATOTOXICITY, whereas

for the higher potency COMPOUND (ka=5 and 10), there was more PERIPORTAL HEPATOTOXICITY.

In addition to ka, changes in pBypass can dramatically influence zonation patterns.

Examples are provided in Supplementary Fig. S6 for twenty different combinations of ka

and pBypass values.

3.4. Quantitative validation for dose-dependent ZoRLA zonation patterns

The ZoRLA used for Fig. 7 was reused to explore the consequences of changing the dose

per simulation cycle on zonal patterns of clearance effort. The results in Fig. 9 are for five

different repetitive dosing experiments using a medium potency COMPOUND, ka=5. The dose per

simulation cycle ranged from 10 to 1000 COMPOUNDS. Shown is the pattern at the conclusion of

the 500th cycle. Note that repetitive dosing with 50 COMPOUNDS having ka=1 in Fig. 7 gave a

pattern quite similar to repetitive dosing with 10 COMPOUNDS having ka=5 in Fig. 9. Note also

that repetitive dosing with 50 COMPOUNDS having ka=10 in Fig. 7 gave a pattern quite similar to

repetitive dosing with 100 COMPOUNDS having ka=5 in Fig. 9.

The data in Fig. 10a are redrawn from (Birnbaum et al., 1999). The data show CYP1A2

mRNA expression in periportal and perivenous hepatocytes obtained from rats three days

after a single oral dose of 0.01, 0.3, or 10.0 μg [3H]TCDD/kg (2,3,7,8-tetrachlorodibenzo-p-

dioixon); LD50=0.034 mg/kg, a potent toxin and a potent inducer of P450 isozymes. To

what extent can the data in Fig. 9 be mapped to observations in Fig. 10a?

We needed two separate mappings: one from pavg to log Cyp1A2 mRNA expression levels,

and the second from COMPOUND elimination count (CEC) at the end of the simulation (t=500) to

[3H] counts – assumed to be TCDD – per viable hepatocyte isolated from periportal and

perivenous tissue samples three days after dosing. We first explored simple linear mappings.

In the case when that failed, we next explored log-linear mappings. We followed a three-

step mapping process. First, as done with the wet-lab protocol, we divided the LOBULE into two

regions and then averaged the clearance efforts in Fig. 9. Second, we specified that a simple

linear correlation should exist between clearance efforts and log Cyp1A2 mRNA expression

levels, and that the levels of induction for the high dose are close the maximum that can be
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achieved (they correspond to p≈1.0). Of the several mappings tried, the one for which y-

axis similarity was closest was transformed data=3.8(pavg)+4.6. Those transformed values

are graphed in Fig. 10b.

Step three was placement of the transformed ZoRLA data relative to wet-lab x-axis values.

That mapping was not straightforward. SSs map to more than just hepatocytes. There is not

a 1:1 mapping from a COMPOUND to an amount of TCDD. Further, a COMPOUND in low and high

dose experiments can (and should) map to different amounts of TCDD. Finally, although we

measured CECavg after 500 simulation cycles, we did not include processes that would map

to either (1) elimination and removal of METABOLITEs or (2) redistribution of TCDD and

METABOLITEs to tissues. Nevertheless, we sought a single transform that would provide

similarities following quantitative mapping. None of the simple linear mappings were

effective. The one used in Fig. 10b transformed CECavg according to the following log-

linear equation: log(x)=2 log(CECavg)−9.

However, note that for the two lower doses, there was more TCDD per perivenous than

periportal hepatocyte. For ZoRLA experiments in Fig. 9, there was little difference in the

corresponding low dose transformed CECavg values. For the two larger doses, however, the

PERIPORTAL transformed CECavg values were largest. Adopting those observations as targeted

attributes falsified the Fig. 9 mechanism. Changing pBypass can alter the trend in Fig. 10b.

For Figs. 6–9, pBypass was arbitrarily set to 0.8. We increased pBypass to 0.99, which

would map to compound that is extensively bound to blood proteins, and repeated the

experiments in Fig. 9. The transformation of pavg to log Cyp1A2 mRNA expression levels

(y-axis) was the same as for Fig. 10b. We again sought a single transform that would

provide a reasonable quantitative mapping. The one used in Fig. 10c transformed CECavg as

follows: log(x)=1.3 log(CECavg)+0.51. Note that the similarity between PERIVENOUS—PERIPORTAL

differences in transformed CECavg values for each dose and the corresponding wet-lab

values has improved.

4. Discussion

4.1. Plausible mappings of SS mechanisms to hepatic counterparts

Braeuning recently presented arguments and supporting evidence for the Ras–Raf–MAPK

and Wnt-β-catenin signaling pathways playing roles in both hepatocyte zonation as well as

induction of P450 isozymes (2009). There are clear consistencies between the ideas

presented in that paper and the more abstract preZoRLA1 mechanisms, and they are

identified in Supplementary Material.

Braeuning also presents evidence of an overall deactivating or repressive effect of Ras–Raf–

MAPK (mitogen-activated, protein kinase) signaling on expression of CYP enzymes.

Because detection of local gradients (g-subsystem) by the CLEARANCE management module in

Fig. 2d causes decrement of clearance effort, we conjecture that a mapping exists between

that ZoRLA process and processes that include the Ras–Raf–MAPK signaling pathway. In

addition, there is evidence for direct transcriptional activation of CYPs by Wnt-β-catenin

signaling. The case is made that the β-catenin pathway can be regarded as a decisive factor

in the regulation of the perivenous hepatocyte gene expression profile, including basal
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expression of CYPs and other xenobiotic-metabolizing enzymes. Because detection of

response signals by the CLEARANCE management module causes increment of clearance effort,

we conjecture that a mapping also exists between that process and hepatocyte processes that

include the Wnt-β-catenin signaling pathway. With further iterative refinement of the

CLEARANCE management module, those mappings can be made increasingly concrete.

When designing a synthetic analogue, there is a strong inclination to insert counterparts to

specific biological features, such as including a component that directly represents the Wnt-

β-catenin signaling pathway, simply because current evidence indicates that the component

plays some role in generating the targeted phenomena. Doing so prematurely is a mistake

when we are not yet confident of the component's putative role in causing the phenomena.

So doing forces establishing groundings to other components at a specific level of

granularity that may or may not be warranted for the attributes targeted coupled with the

current levels of knowledge, ignorance, and uncertainty. The components in Fig. 2 are more

abstract and coarse-grained than the Wnt-β-catenin signaling pathway. They were made only

as complicated and specific as needed to achieve the patterns and attributes targeted. They

can be made more fine-grained and specific iteratively, as the set of attributes targeted

expands. Once a degree of validation has been achieved for coarse-grained components,

their behaviors during simulation can be used for cross-model validation during refinement

to more fine-grained (greater mechanistic detail) counterparts.

The current abstract micromechanisms map to a conflation of all fine-grained processes in

lobules that contribute to the simulated events. If we do not have specific evidence on how

some known signaling and/or metabolic pathway is contributing, then there is no scientific

value in simply implementing some conceptual linkage simply for the sake of including it.

So, how can one achieve such linkage?

Consider the following. We have observations from identical experiments on two different

livers, one normal (wild type) and another from a mouse that has had one or more

components within a signaling &/or metabolic pathway measurably altered, e.g., by genetic

deletion. Wet-lab data from the knockout's liver (but not that from the normal liver) falsifies

the current micromechanism. That evidence forces us to posit one or more new, more fine-

grained micromechanisms that incorporate one or more features containing the knocked-out

component. Such an approach was used by Tang and Hunt (2010) to falsify a coarse-grained

micromechanism and replace it with one more fine-grained in which components mapped

directly to individual macromolecules.

A related question is, how can one parse specific micromechanisms from the overall,

systemic behaviors observed experimentally? An effective strategy is to expand the variety

of systemic attributes targeted. Addition of a new attribute can falsify a micromechanism.

To revalidate, it may be necessary to replace a coarse-grained micromechanism with one

that is somewhat more fine-grained. Following that, a clearer mapping may exist between

the more fine-grained micromechanism and the signaling and/or metabolic pathways of

interest. Further iterative refinement can increase the concreteness of the mapping. Such a

process was used by Lam and Hunt (2010) to move iteratively from coarser to more fine-

grained micromechanistic hypotheses.
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4.2. Inverse maps from phenomena to generators

The exploration of an inverse map from phenomena (patterns of zonation) to generators

requires one to hypothesize and then build generators that may cause the phenomena. The

question posed is this: given phenomena such as intraLOBULAR zonation, what plausible

generators might cause their emergence over time? However, a generator-phenomenon map

is not one-to-one. Many generator compositions (mechanisms) can produce phenomena,

which when measured are indistinguishable. Nevertheless, the first step is to find and

validate one, which is what we have done here. So doing opens the door to discovering

others. When we find a hypothetical generator in the form of an extant biomimetic

mechanism, we do not yet have new biological knowledge, but we do have a concrete

instance of a strictly defined, plausible and observable mechanism within a system suitable

for experimentation, as called for by Christoffels et al. (1999), whereas before we only had

unchallenged concepts. Searching for and finding a grounding map of the type in Fig. 10c is

an important part of the process of improving the plausibility of an inverse map. In the

absence of other concrete, competing theories, that system and its mechanism can stand as

the current best explanation of the phenomena's cause until falsified by evidence. A

systematic, scientific study of any inverse map (phenomenon-to-generator) can only be done

with concretizable hypotheses, either biological or in silico. It cannot be done with

hypotheses that remain conceptual (Hunt et al., 2009).

As this new M&S method matures, we anticipate that the preferred approach will be to

identify several somewhat different yet still plausible generator models and refine them in

parallel against an expanding set of targeted attributes. We can expect that modest, selective

expansions in the set of targeted attributes will eliminate some generator concepts but allow

others to advance following refinement.

4.3. Objective achieved

In Methods, we specified that R-SIGNALs are COMPOUND dependent, and listed three mechanistic

options: (1) a COMPOUND or its METABOLITE functions as a R-SIGNAL; (2) a COMPOUND or its METABOLITE initiates

a response within a SS and that response (or an object generated by that response) functions

as a R-SIGNAL that is detectable subsequently by other SS; and (3) a COMPOUND or its METABOLITE that

escapes LOBULAR clearance initiates an EXTRAHEPATIC response, and that response (or an object

generated by that response) is an R-SIGNAL that is SS detectable. We implemented the third

option, because early exploratory simulations indicated that it would be the simplest to

implement. Exploratory simulations showed that zonation does occur when using

compounds as R-SIGNALs for single-pass dosing experiments. Examples are provided in

Supplementary Figs. S3 and S4. However, those explorations did demonstrate that the first

option could not achieve targeted attribute 7 because the R-SIGNALs generated stay within each

SS and so cannot influence other SSs. Option two is more complicated than option three.

Given the evidence presented herein, it merits exploration. It seems likely that there are

several mechanisms by which zonation of hepatic cellular properties could occur. The

approach used herein can be extended to discover and investigate those options.

Reports on regional hepatic CYP1A1 and CYP1A2 induction describe a “switch-like”

hepatocyte response to TCDD: a sharp boundary between areas of induced and noninduced
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cells (Andersen et al., 1997; Andersen and Conolly, 1998; Broccardo et al., 2004). Although

this phenomena was not among the ten attributes targeted, we discovered that decreasing h

to very small values, e.g., 0.01 and smaller, caused ZoRLA to exhibit a clear-cut, switch-like

behavior, in which the zonal location of the switch is dose dependent. An example is

provided in Supplementary Fig. S2.

With the 2D ZoRLA design in Figs. 2 and 3, the abstract mechanism in Fig. 2d, and the

results in Figs. 6–10, we achieved targeted attributes 1–10, with two exceptions, attributes

8d and g. The effects of hypophysectomy and other treatments on lobular mRNA

distributions of various P450 isozymes (8d) is fascinating, but beyond the scope of simple

ZoRLAs. Attribute 8c, cites an example of a xenobiotic inducing zonation patterns that are

the reverse of those in Figs. 7 and 9. If gi in Eq. (1) is replaced by (gmax—gi), the patterns in

Figs. 7 and 9 are reversed.

Based on the preceding evidence, we suggest that hepatic counterparts to the mechanism in

Fig. 2d, along with the zonation patterns produced, exist in rats when treated with some

xenobiotics. The implication of these ZoRLA experiments is that hepatocytes do learn from

experience and can cooperate to remove xenobiotics, including some that produce

significant response or toxicity.

The 2D ZoRLA provides value in three ways. (1) When a specific mechanism generates

patterns different from those observed in wet-lab data, then the micromechanisms used in

the model are likely incorrect and in need of modification. (2) Having achieved a degree of

validation, the model's concrete micromechanisms can be challenged experimentally. (3) We

have demonstrated the feasibility of predicting spatially heterogeneous induction (and

toxicity) patterns in whole lobules for a new compound, given a validated ZoRLA and data

that can be obtained in vitro. If the relative level of interaction of a new compound can be

measured in a simple in vitro test, then that information may be sufficient to parameterize

the ZoRLA and anticipate what dose, time, and zone dependent patterns that compound may

generate and if toxicity is likely.

The results also demonstrate a new scientific method to experimentally explore and

challenge mechanistic hypotheses about the causal nature of toxicological and

pharmacological phenomena.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Box 1

Targeted attributes and specifications

Hepatic lobules are the referent. The model system is called a zonally responsive lobular

analogue (ZoRLA). A: a targeted attribute and S: a ZoRLA specification. Attributes 1–10

are targeted for this report.

1. A: Lobules are comprised of cells, which are typically autonomous functional

units.

S: Each ZoRLA is comprised of autonomous functional units called sinusoidal

segments (SS) that map to a portion of a sinusoid containing one or more

hepatocytes (Fig. 2).

2. A: Hepatocyte function is location dependent. Cells can respond based on local

information.

S: A SS can do the same.

3. A: Upon interaction with hepatic cells, blood-borne material (such as O2), which

function as signals, form periportal-to-perivenous (P-to-P) gradients. Those

gradients provide information to hepatocytes about their relative location.

S: An SS should be capable of forming and responding to various trans-lobular

signal gradients.

4. A: Upon administration via blood, compounds, alone or in combination, having

different potencies and different affinities for hepatic functions, percolate

through lobules exhibiting P-to-P movement.

S: Mobile objects carrying identification information map to small fractions of a

xenobiotic dose. When a compound generates a response, there is a ZoRLA

counterpart to potency. It must be easy to change compound dose, potency,

movement, and affinity characteristics.

5. A: Hepatocytes clear xenobiotics from blood (metabolism and biliary

elimination). A standard measure hepatic removal of a xenobiotic is intrinsic

clearance (CLint), the clearance rate absent blood flow. It depends in part on the

relative amounts of enzymes and transporters expressed by each hepatocyte.

Location-dependent CLint can change following exposure to a xenobiotic.

S: The ZoRLA counterpart to CLint is clearance effort. Each SS can change its

clearance effort upon exposure to compounds.

6. A: Hepatocytes often exhibit location-dependent expression of enzymes and

transporters.

S: SSs can exhibit location-dependent clearance effort.

7. A: Zonation of xenobiotic metabolism occurs at both the cell and lobule level,

implicating cell–cell cooperation at some level. It changes adaptively.
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S: Individual SSs can improve efficiency by adapting their clearance effort to

changing compound exposures and to actions of other SS.

8. A: Xenobiotic dosing, using a variety of experimental conditions, produces

different P-to-P induction patterns for different members of the CYP family.

Examples (provided for convenience in Supplementary Fig. S5) include:

a. Induction patterns of CYP1A1, -1A2 and -1B1 by TCDD (Tritscher et

al., 1992; Walker et al., 1998; Birnbaum et al., 1999).

b. Induction of CYP2B1/2 by octamethylcyclotetrasiloxane (Sarangapani

et al., 2002).

c. The CYP1A1 mRNA induction pattern caused by β-naphthoflavone is

opposite to that caused by 3-methylcholanthrene (Oinonen et al., 1994).

d. Effects of hypophysectomy, growth hormone, and tri-iodothyronine on

the lobular mRNA distribution of various CYP forms (Oinonen and

Lindros, 1998) (not yet achieved).

e. Perivenous induction of CYP2A1, -2B1, -2C11, -2E1 and -3A1 by

acetone, ethanol, or phenobarbital (Buhler et al., 1992).

f. Periportal induction of CYPEtOH2 by ethanol or phenobarbital (Buhler

et al., 1992).

g. Dose-dependent zonation of enzyme induction: perivenous induction

with low-dose, and periportal induction with high-dose phenobarbital

treatment (Buhler et al., 1992) (not yet achieved).

S: A ZoRLA should be capable of producing patterns of clearance effort that

mimic those observed in vivo over variety of experimental conditions. A degree

of validation is achieved by using a simple transformation to achieve

quantitative similarity.

9. A: Most histological zonation data is in the form of stained, 2D sections through

liver samples that also provide evidence of unique sinusoidal flow paths.

S: ZoRLAs consist of 2D SS arrangements that enable mobile objects to follow

multiple, different P-to-P paths.

10. A: Compound dosing can cause dose-dependent zonal patterns of cell damage.

Examples (provided for convenience in Supplementary Fig. S5) include

• Cell necrosis patterns by anterograde infusion of CBrCl3 (Masuda and

Yamamori, 1991).

• Perivenous damage by CCl4 and bromobenzene (Pink, 2001).

• Periportal damage by digitonin (Pink, 2001).

S: A ZoRLA can produce dose-dependent damage patterns that mimic

those above.
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11. A: When retrograde infusion is used, different clearance/damage patterns

emerge (see (Masuda and Yamamori, 1991) for a CBrCl3 example).

S: ZoRLA produce similar patterns when movement of mobile objects is

reversed.

12. A: Histological micrographs show zonation patterns extending over several

adjacent lobules.

S: 2D multi-lobular ZoRLA arrangements that mimic such cross-sections

produce similar patterns of clearance effort.

13. A: Cell response depends in part on the physicochemical properties of

compounds.

S: A ZoRLA is able to use physicochemical property information of a

compound to which a mobile object maps in place of a potency value to produce

zonation patterns that cross-validate.

14. A: Several liver factions exhibit zonation concurrently (e.g. protein synthesis,

fatty acid degradation, xenobiotic metabolism, etc.).

S: ZoRLA zonation mechanisms are scalable to produce concurrent zonation of

various functions.
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Fig. 1.
Features of the synthetic method of modeling and simulation. (a) Shown are relationships

between observations made on rat liver lobules following xenobiotic treatments and the in

silico, zonally responsive LOBULAR analogues (ZoRLA) in Fig. 2 following simulated

treatments with xenobiotics. Left: the referent systems are experimental observations made

on rat livers following various treatments with xenobiotics. During experiments, lobular

components interact with administered xenobiotics causing the compound to be cleared

(metabolized or excreted in bile). The compound may also generate tissue responses, both

intra- and extrahepatic. The consequences of localized mechanistic events cause systemic

effects. Systemic behaviors at all levels are reflected in the recorded data. Right: abstract,

software components are designed, coded, verified, assembled, and connected. The product

of the process is a ZoRLA (as in Fig. 2) within an EXTRAHEPATIC space. Concretizable mappings

(1) exist between components and how they plug together, and lobular physiological and

functional detail at the level of a sinusoid, as illustrated in Fig. 2. Execution gives rise to a
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working analogue; measures of events provide results. Dynamics during execution

(mappings 2) are intended to represent abstractly plausible corresponding dynamics

(believed to occur) within the rat during an experiment. Measures of dynamics – patterns of

zonation, in this case – provide data that may or may not mimic wet-lab counterparts.

Achieving measurable similarities makes mappings 3 quantitative. (b) Conditions supportive

of both the synthetic method of M&S along with the familiar inductive method of M&S are

sketched. Obviously, toxicologists and pharmacologists would like explanatory knowledge

about hepatic phenomena and zonation to be rich and detailed, and for uncertainties to be

limited. Such conditions (toward the far right side), which are common for non-biological,

engineered systems, favor developing inductive models that are increasingly precise and

predictive. However, as discussed in (Hunt et al., 2009), absent detailed knowledge of the

causes of hepatic zonation, we are on the left side, where frequent abduction is needed and

synthetic M&S methods can be most useful.
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Fig. 2.
Referent and analogue features and mechanisms. (a) An illustration of a cross-section

through a hepatic lobule showing sinusoidal flow paths from portal vein tracts to the central

vein (CV) and a functional periportal-to-perivenous zonation pattern. (b) A ZoRLA is an

arrangement of sinusoidal segments (SSs). An SS is a quasi-autonomous agent. As

illustrated here, it maps to small portion of a lobule that includes portions of the sinusoidal

blood flow and space of Disse, along with one or more endothelial cells and hepatocytes. (c)

Illustrated is a simple mechanism to create functional zonation across the 20-SS

preZoRLA1. Each SS uses a copy of the illustrated mechanism. Mobile objects (R-SIGNAL, B-

SIGNAL, and XENOBIOTIC if present) move from left (PERIPORTAL) to right (PERIVENOUS). Each simulation

cycle, each SS determines if each mobile object present will or will not exit. That process

creates mobile object gradients. Subscript t indexes the value for the current simulation

cycle. Subscript t+1 indexes the value for the next simulation cycle. When the b subsystem

detects a b-signal, it increases bt and that causes the removal of mt proteins and possible

elimination of the b-signal. Proteins map to the enzymes that metabolize compound. When

the a subsystem detects an R-SIGNAL, it increases at causing the production of Nt PROTEINS coupled

with the illustrated negative feedback on the a subsystem and possible elimination of the R-

SIGNAL. (d) An SS can detect and act on collocated mobile objects and signals. Three object/

signal types are used: those that comprise the local gradient, RESPONSE signals (generated by a

compound's EXTRAHEPATIC response), and a compound. The local value of the gradient is g. ka is

the compound's potency. To reach the CV, a compound must pass through a sequence of SS

and escape being cleared. If a compound is undetected, it exits (bypass). Upon detection, the

compound is cleared with probability pi,t (simulation cycle t). If not cleared, it exits. The

value of Q used by SSi during simulation cycle t is an estimate of its long-term, discounted

cost of continuing to use its current clearance effort, pt, which is updated each simulation

cycle using that location's g value along with Qi,t. Qi,(t+1) is the value to be used during the

next simulation cycle. h, kc, α, β, and V are defined in the text and Table 2.
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Fig. 3.
Events occurring within simulation cycle t. (a) Illustrated is a portion of a ZoRLA; SS

agents (gray squares) are arranged into the illustrated 2D semi-circular grid pattern. The

external PERIPORTAL area maps to portal vein tracts. At the start of each simulation cycle, the

COMPOUND dose is placed outside. Each COMPOUND enters at a randomly assigned SS on the outside

edge. During each simulation cycle, COMPOUND move towards the CENTRAL VEIN (CV: the

central, vacant region; it maps to both central vein and EXTRAHEPATIC tissues) using the biased

random walk described in Methods. The dotted arrow is an example of a COMPOUND'S path.

When a COMPOUND (ka>0) reaches the CENTRAL VEIN it is removed, a response occurs, and R-

SIGNALs are generated in proportion to ka. (b) The flowchart shows event logic from a COMPOUND'S

perspective. During simulation cycle t, the CLEARANCE management module detects a collocated

COMPOUND with probability=1–pBypass. Upon detection, it is cleared (removed) with

probability pi,t. At the end of each simulation cycle, each SSi updates its Qi,t (to Qi,(t+1)) and

clearance strategy – clearance effort – (pi,t) based on the number of COMPOUND cleared and the

number of R-SIGNALs received. PRN: pseudo random number in [0,1].
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Fig. 4.
Six preZoRLA1patterns of PROTEIN expression. The mechanism used (Fig. 2c) is capable of

generating various expression patterns: PERIVENOUS expression (a, c, e), PERIPORTAL expression (g,i),

and mid-zonal expression (k) are shown after an infusion (one compound per simulation

cycle) lasting 2000 simulation cycles. In panels b−l, parameter values that were different

from those listed in a are provided. Average gradients of a-signal (aAVG, blue) and b-signal

(bAVG, red) are shown on the right side for each expression pattern (b, d, f, h, j, l).
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Parameters are listed in Table 1. For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.
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Fig. 5.
PreZoRLA2 clearance patterns for five TOXINS having different potencies. Running the

mechanism in Fig. 2d created the SS patterns. In the left side panels, average clearance

efforts, pAVG (blue bars), as well as TOXIN elimination count (red bars) for each SS are plotted.

pAVG is the probability that an SS will clear a detected TOXIN, averaged over the past Navg=500

simulation cycles. TOXIN elimination count is the number of TOXINS cleared by SSi. In the right-

side panels, corresponding g and Qt values are graphed. The apparent oscillations in toxin

elimination count are a consequence of multiple random events; they begin to vanish as

values from several simulations are averaged. For interpretation of the references to colour

in this figure legend, the reader is referred to the web version of this article.
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Fig. 6.
Zonation following dosing one ZoRLA with each of five COMPOUND having different potencies

(ka). For simplicity, pBypass for each SS and each COMPOUND was held constant at 0.8. At the

start (t=0), a random p value was assigned to each SSi. A dose of 50 COMPOUND was

administered for each of 1000 simulation cycles. By then, stable patterns had emerged. A

simulation cycle continued until all COMPOUND exited or were cleared. Values at early t during

repeat experiments were not identical, but by t=1000 they became identical. X-axis: the

distance from PERIPORTAL edge to CENTRAL VEIN exit was subdivided into ten regions. For each ka

experiment, there are four bar graphs. The two on the left provide measures of zonation. pavg

is the mean of all pi's in one of the ten zones; pi,t was updated using h=5. Using the default

value h=70 used for Figs. 7–10, we were unable to clearly demonstrate the COMPOUND

elimination shift effect. The clearance effort shift effect became more evident for smaller h

values. We selected h=5 to demonstrate that peak COMPOUND elimination count can shift from

PERIVENOUS to PERIPORTAL as ka increases. Clearance effort, pavg, maps to average intrinsic

clearance for a LOBULAR tissue sample taken from the same relative location within a lobule.

The cumulative total of COMPOUND eliminated by each SSi was recorded. COMPOUND elimination

count is the mean of those values for each region. On the right g is plotted, the value of the

local gradient (which is the same for each of the five ka experiments), and the mean,

regional Q value.

Sheikh-Bahaei et al. Page 32

J Theor Biol. Author manuscript; available in PMC 2014 August 08.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 7.
ZoRLA zonation patterns. The experiments are the same as for Fig. 6, except that h=70. The

DOSE each simulation cycle was 50 COMPOUNDS and pBypass=0.8 for all COMPOUNDS. (a) At t=0, each

SS was assigned a random p value (0–1 color scale). (b) The updated value of pi is shown at

the conclusion of the 500th simulation cycle following dosing with one of four COMPOUNDS

having different potencies (ka). (c) Values of g (rust to yellow color scale) and Qi (gray) are

graphed at t=500. For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.
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Fig. 8.
Patterns of SS damage. The ZoRLA experimental protocol and p color scale are the same as

in Fig. 7. We specified that damage (which can map to either severe hepatocyte damage or

necrosis) occurs after any SSi CLEARED 50 COMPOUNDS. A damaged SS is gray. Following repeated

dosing with one of the three COMPOUNDS having potencies of ka=1, 5, and 10, the updated value

of pi for an undamaged SS is shown after the indicated number of simulation cycles. The

DOSE each simulation cycle was 50 COMPOUNDS.
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Fig. 9.
Dose–response patterns. The ZoRLA, experimental protocol, and color scale are the same as

in Fig. 7. The damage option is turned off. Five experiments were conducted. Each

simulation cycle began with the indicated dose of a COMPOUND having ka=5. These data are used

in Fig. 10b.
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Fig. 10.
Wet-lab and ZoRLA data showing dose-dependent zonation. (a) Dose-dependent (x-axis)

localization of [3H]TCDD (2,3,7,8-tetrachlorodibenzo-p-dioixon) and CYP1A2 mRNA

expression (y-axis) in periportal and perivenous hepatocytes obtained from rats three days

after a single oral dose of 0.01, 0.3, or 10.0 μg TCDD/kg; redrawn from Birnbaum et al.

(1999). X-axis: levels of [3H]TCDD in the two-cell subpopulations expressed as attograms

[3H]TCDD/viable hepatocyte; y-axis: log Cyp1A2 mRNA expression level. (b) The mean

PERIPORTAL and PERIVENOUS clearance effort values (pavg, right axis) from Fig. 9 are mapped

to the wet-lab data using the transforms described in Results Section 3.4. The ZoRLA space

was divided into two equal regions (zones) and the mean pi (pavg: right axis) along with

mean COMPOUND elimination count within each region were calculated. The measurements were

transformed to map quantitatively to the wet-lab data (both y- and x-axis placement) as

described in Results. (c) The experiments that yielded Fig. 9 DOSE–response patterns were

repeated using pBypass=0.99 rather than 0.8. pavg and mean COMPOUND elimination count were

calculated as in (b). The measurements were transformed to map quantitatively to the wet-

lab data as described in Results.
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Table 1

Parameters of preZoRLA1.

Symbol Description Range Used

N Amount of PROTEIN generated [0, ∞) 0–500a

pbBypass Probability that a B-SIGNAL bypasses an SS undetected [0,1] 0.1

paBypass Probability that an R-SIGNAL bypasses an SS undetected [0,1] 0.1

pbRemove Probability that a B-SIGNAL is removed following detection [0,1] 0.03–0.1

paRemove Probability that an R-SIGNAL is removed following detection [0,1] 0.01–0.15

bt The value of b-subsystem at simulation cycle t: has an effect on down-regulation of PROTEINS [0, ∞) 0–6000a

at The value of a-subsystem at simulation cycle t: has an effect on up-regulation of PROTEINS [0, ∞) 0–6000a

mt PROTEINS degraded during cycle t [0, ∞) 0–6000a

st PROTEINS expressed during cycle t [0, ∞) 0–5000a

kb Increment of b following detection of a B-SIGNAL [0, ∞) 1–2

ka Increment of a following detection of an R-SIGNAL [0, ∞) 1–2

c1 Proportionality constant which relates b to m [0, ∞) 1–30

c2 Constant that regulates positive influence of a on s (Fig. 2c) [0, ∞) 1–10

c3 Constant that regulates negative influence of N on s (Fig. 2c) [0, ∞) 0.5–1

a
Simulation result.
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Table 2

Parameters of ZoRLA and preZoRLA2.

Symbol Description Range Used

pi,t Clearance effort of SSi during simulation cycle t: the probability that SSi clears a detected
COMPOUND

[0,1] 0–1a

Qi,t Estimate of SSi's long-term, discounted cost as of events during simulation cycle t (−∞,∞) 0–3500 ZoRLAa

0–1.2 preZoRLA2a

gi The value of the P-to-P B-SIGNAL gradient used by SSi [0, ∞) 0–200 ZoRLA

0–1 preZoRLA2

pBypass Probability that a TOXIN bypasses an SS without being detected [0,1] 0.6–0.99 ZoRLA

0.9 preZoRLA2

h A constant that adjusts the randomness of decisions [0, ∞) −70 ZoRLA

0.1 preZoRLA2

α Learning rate: determines the weight of newly observed costs in calculation of Q [0,1] 0.1

β Discount factor: determines the current importance of future costs [0,1] 0.5 ZoRLA

0 preZoRLA2

ka Cost of detecting one R-SIGNAL [0, ∞) 0–150 ZoRLA

0–20 preZoRLA2

kc Cost of clearing one COMPOUND [0, ∞) 1

Additional parameters for ZoRLA, only

(Xi,Yi) Coordinates of SSi with respect to the center of the grid space ℜ2 (4,4) – (28,28)

η Uniform random noise (Eq. (3)) [0, grid radius] [0, 15.5]

a
Simulation result.
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