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Remote sensing using airborne imaging spectroscopy (AIS) is known to retrieve

fundamental optical properties of ecosystems. However, the value of these

properties for predicting plant species distribution remains unclear. Here, we

assess whether such data can add value to topographic variables for predicting

plant distributions in French and Swiss alpine grasslands. We fitted statistical

models with high spectral and spatial resolution reflectance data and tested

four optical indices sensitive to leaf chlorophyll content, leaf water content

and leaf area index. We found moderate added-value of AIS data for predicting

alpine plant species distribution. Contrary to expectations, differences between

species distribution models (SDMs) were not linked to their local abundance or

phylogenetic/functional similarity. Moreover, spectral signatures of species

were found to be partly site-specific. We discuss current limits of AIS-based

SDMs, highlighting issues of scale and informational content of AIS data.
1. Introduction
Spatial modelling of species distributions is commonly used to forecast environ-

mental change effects, detect biodiversity hotspots or predict species’ invasions

[1]. As fine-grained environmental descriptors are difficult to obtain, coarse-

grained (from hundreds of metres to kilometres) topo-climatic descriptors are

usually used. Recent advances in airborne imaging spectroscopy (AIS) have

allowed the acquisition of images with high spectral and sub-metre spatial resol-

ution [2]. Spectral information provided by remotely sensed reflectance is

influenced by phenology, variations in morphological, structural and biochemical

properties of species [3], as well as by local environmental conditions (e.g. hydric

stress, soil properties or productivity [4,5]) that determine species habitat suit-

ability [6]. Nevertheless, previous attempts to predict species distributions with

hyperspectral data have generated mixed results [7,8]. Sub-metre resolution

allows the targeting of small plants and microhabitats where species find

refuge, highlighting potential benefits of hyperspatial remote sensing for bio-

diversity monitoring [9]. However, despite increased spatial and spectral

resolution of airborne data, little is known about its value in modelling species’

distributions in species-rich ecosystems characterized by fine-scale heterogeneity.

Here, we explore the predictive power of AIS data for modelling plant species

distributions in alpine grasslands in two distinct regions. Specifically, we aim to
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Figure 1. Relative importance of reflectance intensity in spectral bands for predicting species distributions at study sites in France (FR) and Switzerland (CH).
Variable importance was assessed using conditional inference in random forest models. Grey areas represent bands used for the calculation of vegetation indices.
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(i) identify key remotely sensed spectral information for predict-

ing the distribution of grassland species and (ii) assess whether

AIS data substantially improve model predictions. We also

test for any phylogenetic or functional dependency of model

characteristics among species.
2. Material and methods
(a) Study sites and species data
The study was conducted in the Western French (FR) and Western

Swiss (CH) Alps (electronic supplementary material, S1). The

French site included 103 vegetation plots of 2–5 m in radius,

located between 2000 and 2830 metres above sea level (m.a.s.l.).

The Swiss site included 68 quadrats (2 � 2 m) located between

1650 and 2150 m.a.s.l. Species cover was visually estimated using

the Braun–Blanquet abundance scale. In total, 160 species were

selected for species distribution analysis (119 species in FR, 78 in

CH). Thirty-seven species were common to both sites (see electronic

supplementary material, S1 for the details on selection criteria).

(b) Remote sensing data
AIS data were acquired with the dual Airborne Imaging Spectro-

radiometer for Applications (AISA; Specim Ltd., Finland). Raw

AISA images contained 359 spectral bands between 400 and

2450 nm with spectral resolution ranging from 4.3 to 6.3 nm,

and a pixel size of 0.8 m. After image processing, we extracted

two types of AIS predictors: (i) reflectance in 75 spectral bands

(avoiding bands with noisy radiometric response) and (ii) four

vegetation indices. Vegetation indices characterized leaf chloro-

phyll (TCARI/OSAVI and ANCB) [10], leaf water content

(SIWSI) [11] and leaf area index (MTVI2) [12] (for details see

the electronic supplementary material, S1). Removal of poorly

vegetated plots resulted in datasets with 70 FR and 53 CH plots.

(c) Topographic predictors
We computed five predictors derived from digital elevation

models at 50 m resolution for FR and 25 m resolution for CH,

representing mesoscale habitat conditions: (i) elevation (metre),

(ii) slope (degree), (iii) aspect (degree), (iv) topographic position

index (unitless) and (v) topographic wetness index (unitless; see

the electronic supplementary material, S1).

(d) Species distribution modelling
Species distribution models (SDMs) were fitted with five different

sets of variables: (i) topographic predictors only, (ii) reflectance
predictors only, (iii) vegetation indices only, (iv) topographic and

reflectance predictors combined and (v) topographic predictors

and vegetation indices combined. We first used a conditional

random forest algorithm to estimate the unbiased relative impor-

tance of predictors in the case of multicollinearity, then ran final

models based on selection of the most important predictors [13]

(see electronic supplementary material, S1). Their predictive accu-

racy was evaluated within each study site separately using a

repeated split-sample procedure (100 iterations). Seventy

per cent of the sample points were used for model calibration

and 30% for model evaluation in each iteration.

(e) Model differences among species
The relative importance of AIS predictors and the predictive

accuracy of SDMs was tested against (i) species’ phylogenetic

relatedness, (ii) species’ functional similarity, including a set of

morphological and physiological traits that are well correlated

with the reflectance of canopy stands [14] (see electronic sup-

plementary material, S2 and §5), and (iii) species’ abundance

patterns within plots. Phylogenetic and functional tests were

computed as described in [15] (see the electronic supplementary

material, S2 and §5).
3. Results
When fitting SDMs with reflectance data, the analysis of predic-

tor importance indicated similarities in the selected spectral

bands among sites (figure 1). The most important spectral

bands were located between 500 and 900 nm for both sites, but

site-specific differences in important spectral bands were also

apparent (1500–1800 nm in FR, 1200–1500 nm and 2000–2500

nm in CH). These site differences existed for species present at

only one or both sites (electronic supplementary material, S2

and figure S1). On average, all vegetation indices showed

similar importance for SDM fitting (electronic supplementary

material, S2 and figure S2).

The prediction accuracy of SDMs based solely on topo-

graphic predictors, reflectance data or vegetation indices did

not differ significantly. However, SDMs including both

AIS and topographic predictors tended to be more accurate

(figure 2 and the electronic supplementary material, S2 and

table S1). The improvement was marginally significant for

vegetation indices (Wilcoxon rank-sum test, p¼ 0.079) but

non-significant for reflectance in FR. Conversely, CH showed

significant improvement when using reflectance (Wilcoxon
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Figure 2. Prediction accuracy of species distribution models (based on the
area under the curve of a receiver-operating characteristic plot: AUC) built
with random forest models at study sites in France (FR) and Switzerland
(CH). Topo indicates topographic predictors, BS indicates reflectance recorded
in the spectral bands and VI indicates vegetation indices.
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rank-sum test, p ¼ 0.012), but non-significant effects when using

vegetation indices. Improvements when including AIS predic-

tors differed among species, with few species showing greater

than or equal to 10% improved predictions and many showing

reduced predictive accuracy (electronic supplementary mate-

rial, S2 and figure S3). These variations were independent of

species’ abundance patterns and species’ phylogenetic or func-

tional similarity (electronic supplementary material, S2 and

figures S4–S13).
4. Discussion
Overall, topographic- and AIS-based SDMs revealed similar pre-

dictive accuracies in both sites. Model accuracy was on average

higher in FR than in CH, whereas the topographical and spectral

ranges observed in CH were much narrower than in FR

(electronic supplementary material, S1 and figures S2, S4, S5).

This agrees with previous studies where accuracy of SDMs

derived from satellite images increased with steepness of eco-

logical gradients [6]. Unlike vegetation indices, we found that

importance of spectral bands differed between sites. Site-specific

differences may partly reflect canopy differences owing to nutri-

ent status or soil chemistry, because reflectance in these spectral

regions is sensitive to light absorption by water [12], biochemical

constituents [14] and scattering by plant architecture [11].

Additional field measurements of vegetation properties could

probably improve ecological understanding of these spectral

regions in SDMs.

The distribution models fit differed between species. Over-

all, models including both topographic and AIS predictors

tended to be more accurate, even though significant improve-

ments were confined to a limited number of species. This

contrasts with results reported for invasive weeds [8], but

agrees with results from meadows [7] where plant assemblages

are inextricably mixed at the fine scale. Benefits of high spatial
resolution of remote sensing data are a subject of debate [16].

Although our methodology considers the existence of geometric

misalignment between AIS images and plot georeferencing, it

still represents a source of uncertainty for matching reflectance

of small pixels with local species occurrence. The significance

of this uncertainty for SDM remains to be assessed.

We expected that differences between species models in

terms of predictive accuracy and relative importance of AIS

predictors would be linked to (i) abundance of species

within-plots, because locally dominant species contribute

more to canopy reflectance and (ii) phylogenetic or functional

similarity, assuming that similar species show either compar-

able spectral signatures or similar habitat requirements as

reflected by AIS data. These hypotheses were not supported.

We suggest two possible explanations for such idiosyncrasy.

First, accurate estimation of species’ similarity may be limited

by uncertainties in phylogenetic trait conservatism or avail-

ability of plant functional trait data. Phylogenies can often

contribute to the integrated comparison of plant functional

and life-history traits among species. However, the evolution

of traits is characterized by both conservatism and diversifi-

cation, and close links between functional similarity and

phylogenetic relatedness are not always found [17]. In this

study, we described species’ functional similarity using mor-

phological and ecophysiological traits that are recognized as

key canopy reflectance drivers [14]. However, biochemical

traits such as leaf nitrogen, chlorophyll or phosphorus con-

tent were not available for all species, and should be

included wherever possible. Second, AIS-based SDMs may

reflect both species’ spectral signature and microhabitat suit-

ability [18] (contrary to topography-based models which

reflect solely habitat suitability at mesoscales). These two fac-

tors may differ in importance when fitting AIS variables

across species and sites. This would explain why AIS-based

models of both locally dominant (species detection scenario,

e.g. Dryas octopetalla), and low-abundance species (habitat

suitability scenario, e.g. Helictotrichon sedense) show equival-

ent accuracy despite very different species contributions to

canopy characteristics and functional traits. Future research

should focus on discriminating between species detection

and habitat suitability for an array of species and ecosystem

types (of varying degree of vegetation complexity), to better

assess the ecological relevance of imaging spectroscopy for

species’ distribution modelling.
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