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Uric acid stored in the fat bodyof cockroaches is a nitrogen reservoir mobilized in

times of scarcity. The discovery of urease in Blattabacterium cuenoti, the primary

endosymbiont of cockroaches, suggests that the endosymbiont may participate

in cockroach nitrogen economy. However, bacterial urease may only be one

piece in the entire nitrogen recycling process from insect uric acid. Thus,

in addition to the uricolytic pathway to urea, there must be glutamine synthe-

tase assimilating the released ammonia by the urease reaction to enable the

stored nitrogen to be metabolically usable. None of the Blattabacterium genomes

sequenced to date possess genes encoding for those enzymes. To test the host’s

contribution to the process, we have sequenced and analysed Blattella germanica
transcriptomes from the fat body. We identified transcripts corresponding to all

genes necessary for the synthesis of uric acid and its catabolism to urea, as well as

for the synthesis of glutamine, asparagine, proline and glycine, i.e. the amino

acids required by the endosymbiont. We also explored the changes in gene

expression with different dietary protein levels. It appears that the ability

to use uric acid as a nitrogen reservoir emerged in cockroaches after its

age-old symbiotic association with bacteria.
1. Introduction
Insect endosymbionts supply their hosts with nutrients needed for their par-

ticular lifestyles, mainly essential amino acids or vitamins. Besides, many

animals also rely on microbial endosymbionts to recycle their nitrogenous

waste products. For instance, in the aphid Acyrthosiphon pisum, the ammonia

generated in the bacteriocytes (cells containing bacterial endosymbionts) is

incorporated into the carbon skeletons of essential amino acids that are gener-

ated by Buchnera aphidicola [1]. In other insects, like the shield bug, Parastrachia
japonensis, or the brown planthopper, Nilaparvata lugens, endosymbionts enable

the host to use uric acid as a nitrogen source during starvation periods [2,3].

It is well known that cockroaches are able to accumulate uric acid when they

are fed on a protein-rich diet, and conversely the amount of uric acid stored

decreases when they are deprived of proteins [4,5]. Classic observations have

suggested that the endosymbiont Blattabacterium lies behind these fluctuations.

For example, observations show that bacteriocytes are closely associated with uri-

cocytes in the host’s fat body, a cell type storing urates [5]. We also know that

aposymbiotic individuals of Blattella germanica accumulate high amounts of uric

acid [6]. The identification of genes encoding for all enzymes of the urea cycle

and for urease in the Blattabacterium genome [7,8], as well as the results of flux
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Figure 1. Proposed model for uric acid mobilization. The expression pattern in response to dietary protein levels is expressed beside each gene as copies of mRNA
from the target gene per 1000 copies of reference gene (actin 5c and EF-Tu for Blattella and Blattabacterium transcripts, respectively). The asterisk represent
statistically significant differences with respect to control ( p , 0.05, n ¼ 3).
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balance analysis (FBA) carried out on the reconstructed meta-

bolic networks of Blattabacterium strains from the cockroaches

B. germanica and Periplaneta americana support the key role of

the endosymbiont in cockroach nitrogen metabolism [9]. The

analysis of six further strains reinforced this hypothesis as the

genes for urease and most of the genes of the urea cycle

are part of the core of the Blattabacterium pangenome [10,11].

Genome-scale metabolic modelling is consistent with these

ideas and also shows that Blattabacterium is auxotrophic for

several non-essential amino acids, including glutamine [9].

Based on these studies, a model was proposed where the

uric acid accumulated in the cockroach fat body was used as

a nitrogen reservoir, to be mobilized in periods of scarcity

[7,9]. This model requires a host uricolytic pathway (i.e. urate
oxidase, allantoinase and allantoicase) and also the supply of

non-essential amino acids to the endosymbiont. Despite the

presence of many of these enzymes among Bacteroidetes [8],

none of the Blattabacterium genomes sequenced so far contains

the necessary genes [10,11]. However, urate oxidase activity

was detected in some tissues of the cockroaches Leucophaea
maderae [12] and P. americana [13]. In the context of this meta-

bolic model, we have also proposed the action of membrane

facilitators for urea and glutamine coded in the Blattabacterium
genome, i.e. glpF and gltP genes, respectively [7].

This work investigates the presence of transcripts for

enzymes involved in nitrogen metabolism in the transcrip-

tome of three B. germanica tissues. Two tissue types harbour

Blattabacterium: the fat body where the bacterium is massively



Table 1. Presence (þ) or absence ( – ) of transcripts related to non-essential amino acid biosynthesis in the three tissue libraries (fat body, ovary and
epidermis) of B. germanica. (All transcripts, even those represented by a single read, were considered. See the electronic supplementary material, table S3, for
accession numbers and best BLAST hits. EC, enzyme commission number.)

gene EC fat body ovary epidermis

asparagine biosynthesis

aspartate aminotransferase (mitochondrial-like and cytoplasmic) 2.6.1.1 þ þ þ
asparagine synthetase 6.3.5.4 þ þ 2

glutamine biosynthesis

glutamate dehydrogenase 1.4.1.3 þ þ þ
glutamine synthetase 6.3.1.2 þ þ þ

proline biosynthesis

glutamate-semialdehyde dehydrogenase 2.7.2.11 þ 2 2

ornithine-d-transaminase 2.6.1.3 þ þ 2

pyrroline-5-carboxylate reductase (isozymes P5CR and P5CR2) 1.5.1.2 þ þ 2

glycine biosynthesis

phophoglycerate dehydrogenase 1.1.1.95 þ þ þ
phosphoserine transaminase 2.6.1.52 þ þ 2

phosphoserine phosphatase 3.1.3.3 þ 2 2

serine hydroxymethyltransferase 2.1.2.1 þ þ þ
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present, and the ovary, where only a small population of

bacteria is present. The third tissue type (the epidermis, includ-

ing cuticle layers) is a Blattabacterium-free tissue. We have also

explored how genes involved in uric acid metabolism respond

to dietary nitrogen levels. Additionally, we have been able to

find the transcripts for the synthesis of the non-essential

amino acids required by Blattabacterium metabolism.

2. Material and methods
Blattabacterium germanica specimens were obtained from a population

reared at the facilities of the Institut de Biologia Evolutiva (CSIC-UPF)

in Barcelona, Spain. RNA extraction and cDNA synthesis were

performed using standard procedures. Each transcriptome library

was sequenced on the 454-Flx platform, assembled and annotated

(see the electronic supplementary material).

The relative expression of genes involved in uric acid metab-

olism was measured in animals fed on different experimental

diets with different protein content (0, 5 and 50%), using animals

fed on dog food (25% of protein content) as a control (see the elec-

tronic supplementary material). Results are represented as copies

of target mRNA against the corresponding reference gene (actin

5c and elongation factor EF-Tu in the case of host and endosymbiont

transcripts, respectively). Statistical analyses were run with REST

[14] (see the electronic supplementary material for further details).

3. Results and discussion
(a) Uric acid metabolism is shared between host and

endosymbiont
The nitrogen recycling process in cockroaches involves the

degradation of uric acid to urea, and the later degradation of

this metabolite by a Blattabacterium urease, generating ammonia

and CO2. It has been postulated that endosymbiont-released

ammonia would be used by a host-encoded glutamine synthe-

tase to produce glutamine, thus incorporating nitrogen from

uric acid to metabolism [7,9]. The expression of the genes for
uricolytic enzymes was detected in the library obtained from

the fat body (figure 1). Conversely, only urate oxidase and

allantoicase transcripts were detected in the ovary library,

whereas none of these genes were expressed in the epidermis

library. With the expression of genes for all uricolytic enzymes

and glutamine synthetase, the pathway postulated for uric acid

recycling would be possible in the fat body (figure 1). On the

strength of these results, we can propose that B. germanica pos-

sesses a nitrogen recycling system similar to the one observed in

P. japonensis [3] or in N. lugens [2], albeit differing greatly with

these systems where the uricolytic activities are supplied by

the symbionts: in B. germanica, the pathway is chimeric with

participation of enzymes from the host and the symbiont.

(b) Host metabolism complements non-essential amino
acid auxotrophies of Blattabacterium

Glutamine is not the only non-essential amino acid required

by the endosymbiont metabolism. The FBA of the genome-

scale metabolic network of B. germanica–Blattabacterium
would suggest that Blattabacterium is also auxotrophic for

L-Asn, Gly and L-Pro [9]. Transcripts from all necessary

genes for the synthesis of these amino acids were identified

in the fat body library, but not in the ovary or the epidermis

libraries (table 1). Interestingly, some of these non-essential

amino acids are among the most abundant free amino acids

in cockroach haemolymph, as measured in Blaberus discoidalis
[15] and in P. americana [16], L-Pro and Gly being the most abun-

dant in both species. The loss of the ability to synthesize non-

essential amino acids seems to be a common feature in other

insect endosymbionts such as Buchnera [17] or Blochmannia
[18], which are endosymbionts of aphids and Camponotus
ants, respectively. In aphids, like cockroaches, these non-

essential amino acids are also among the most abundant in

the haemolymph [1], and their availability in host tissues

renders maintenance of biosynthetic pathways for them

unnecessary in the endosymbiont. Blattabacterium germanica
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might use the amino acid supply to control the metabolic be-

haviour or growth rate of Blattabacterium, like the control that

the aphid A. pisum exerts on the essential amino acid metab-

olism of Buchnera by modulating the supply of metabolic

precursors [19,20]. This sort of control over the symbiotic popu-

lation through amino acid supply has also been observed in

plant hosts when controlling their nitrogen-fixing bacteria [21].

(c) Dietary nitrogen levels affect gene expression
Once we had confirmed that the fat body of B. germanica
expresses genes involved in uric acid production and degra-

dation, we measured the expression of these genes in the fat

body and ovary in response to dietary nitrogen levels. Urate oxi-

dase gene expression increased significantly in both tissues of

animals fed on a low-protein diet (figure 1). The other gene show-

ing a significant variation in expression is the one for glutamine

synthetase, which is over-expressed in the fat body of animals

fed on a non-protein diet, and downregulated in the ovary of

those animals fed on a high-protein diet (figure 1). None of the

other genes showed significant increases in expression, suggest-

ing that the uricolytic pathway is expressed in a constitutive

manner and other levels of flux regulation must exist.
Cockroaches accumulate uric acid in the fat body, especially

specimens fed on protein-rich diets [5]. The amount of uric acid

accumulated in these animals decreases dramatically when

they are shifted to a low-protein diet [22]. Both observations

suggest that uric acid is actually a reservoir of nitrogen, ready

to be mobilized in periods of scarcity. Our observations on

the increased gene expression for urate oxidase and glutamine

synthetase in animals deprived of a dietary nitrogen source are

consistent with this proposal.

We can conclude, thus, that after the symbiotic association

between the ancestors of cockroaches and Blattabacterium,

their metabolic networks merged and transformed a nitrogen

waste product in insects, such as uric acid, into a metabolically

useful source of nitrogen.

Data accessibility. Available in the electronic supplementary material,
table S3.
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